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Abstract— This work studies how the randomized gossip
algorithm can solve the average consensus problem on networks
with quantized communications. The algorithm is proved to
converge to the average value, up to the size of the quantization
bins, whenever the the graph is connected. Moreover, its speed
of convergence is estimated.

I. INTRODUCTION

In the latest years, an increasing interest in the control

community has been devoted to distributed systems, and

much research has been focused on the so called average

consensus problem [13], [3]. Suppose we have a graph G
with set of nodes V = {1, . . . , N} and a real quantity

xi for every node i ∈ V . The average consensus problem

consists in computing the average xave = N−1
∑

i xi in an

iterative and distributed way, exchanging information among

nodes exclusively along the available edges in G. Most of the

literature on the consensus problem assumes that the com-

munication channel between the nodes allows to transfer real

numbers with no errors: however, from the implementation

point of view, it is more natural to assume the agents to

communicate by finite capacity digital channels. This clearly

forces a quantization on the real numbers that agents have

to transmit. This crucial issue has attracted attention only

very recently, in the works [14], [4], [1], [7], [9]. Other

quantization effects have also been considered, namely [10]

studies the convergence when the agents have quantized

states, and [12] when quantization is in the updating rule.

The use of quantized communication has been noticed

since [14] to complicate the convergence of the algorithms

used for the average consensus problem. This happens

mainly because the initial average of states is not preserved.

The correction term introduced in [4] allows to avoid this

shortcoming and to preserve the average at each step of

the algorithm, every time the evolution matrix is doubly

stochastic.

This mild assumption covers the case of the gossip al-

gorithm, introduced in [2] and further discussed in [6], in

which at each time step only a randomly chosen pair of

neighboring nodes exchanges information and performs an

adjournment of their states. In this work we prove that, under

the constraint of quantized communication, an adaptation of

such algorithm converges to the average consensus, up to the
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size of the quantization bin, for any connected undirected

graph. This is shown in Section III, while in Section IV we

give estimates of its speed of convergence. In Section V, we

present significant simulations and draw our conclusions.

II. STATEMENT

Assume we are given an undirected graph G = (V , E). Let

V = {1, . . . , N} be the set of vertices (nodes) of the graph,

and let E be the set of edges, which is a subset of {{i, j} :
i, j ∈ V , i 6= j}. Each vertex corresponds to an agent, and

each edge to an available link connecting two agents. Two

agents connected by a link are said to be neighbors. We

assume that the graph is connected, that is, for any given

pair of vertices {i, j} there exists a path which connects i to

j. A path in G consists in a (ordered) sequence of vertices

(i = i1, i2, . . . , ir = j) such that {ij, ij+1} ∈ E for every

j ∈ {1, . . . , r − 1}. A graph is said to be fully connected or

complete if E = {{i, j} : i, j ∈ V , i 6= j}.
Each agent i ∈ V is given a time-dependent state xi(t) ∈

R and the goal is to design an adjournment algorithm such

that in the limit each agent’s state tends to the average of

initial states.

In this work, we assume that the agents cannot access

the values of their neighbors’ states, but only an integer

approximation of them. This is intended to model a system

in which only digital communications are allowed between

agents. With this constraint, it is clear that the agents’ states

can not converge to an exact consensus. However, algorithms

can be designed to drive the system to a weaker condition

of quantized average consensus. Let x(t) be the vector of

states [x1(t), . . . , xN (t)]∗ where ∗ denotes the transpose.

Definition 1: A quantized average consensus state is a

state x̄ ∈ R
N such that

∣

∣

∣
x̄i − N−1

∑N
j=1 xj(0)

∣

∣

∣
< 1 for all

i ∈ V . The algorithm is said to have reached the quantized

average consensus if Tcon exists such that, for all t > Tcon,

x(t) is a quantized average consensus state.

We define a quantized gossip algorithm as follows. At

each time step, one edge {i, j} is randomly selected in E
with probability P{i,j} such that

∑

{i,j} ∈E P{i,j} = 1. Let

P ∈ R
N×N be

Pij = Pji =

{

P{i,j} if {i, j} ∈ E
0 otherwise

(1)

Remark that, if we denote as 1 the vector of length N whose

component are all equal to 1, then 1
∗P1 = 2. The agents

insisting on the selected edge average their states following

xi(t + 1) = xi(t) − αq[xi(t)] + αq[xj(t)]
xj(t + 1) = xj(t) − αq[xj(t)] + αq[xi(t)],

(2)
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where q[z] is the nearest integer to the real number z, and

α ∈ (0, 1) is a parameter of the method. We assume, with no

loss of generality, that every edge is selected with positive

probability.

It is easy to check that the average of states is preserved,

that is, defining xave(t) = N−1
∑N

k=1 xk(t), xave(t + 1) =
xave(t).

Of special interest is the case α = 1/2, which is the most

natural choice. Moreover, in this case we are able to prove

convergence results. From now on, unless otherwise stated,

we assume α = 1/2.

III. CONVERGENCE

In this section we give conditions assuring that with prob-

ability one the system converges to a quantized consensus

state in finite time. To this aim, we can take advantage of a

symbolic dynamics which lies under the real states dynamics.

The idea of its construction comes from [7], and in its

analysis we can adapt results in [10].

To construct such symbolic dynamics we need the follow-

ing technical lemma, proved in the appendix. Let ⌊·⌋ and ⌈·⌉
denote the floor and ceiling operators from R to Z.

Lemma 2: Given a, b ∈ N and x ∈ R, it holds

⌊x⌋ =

⌊

⌊ax⌋

a

⌋

(3)

q[x] = ⌊x + 1/2⌋ =

⌈

1

2

⌊

⌊2bx⌋

b

⌋⌉

(4)

We define ni(t) = ⌊2xi(t)⌋ for all i ∈ V . Simple

properties of floor and ceiling operators, together with the

above lemma, allow us to remark that q[xi(t)] =
⌈

ni(t)
2

⌉

and that

xi(t + 1) = xi(t) −
1

2
q[xi(t)] +

1

2
q[xj(t)]

⌊2xi(t + 1)⌋ = ⌊2xi(t)⌋ − q[xi(t)] + q[xj(t)],

from which we can obtain that

ni(t + 1) = ni(t) −

⌈

ni(t)

2

⌉

+

⌈

nj(t)

2

⌉

=

⌊

ni(t)

2

⌋

+

⌈

nj(t)

2

⌉

.

We have thus found an iterative system involving only the

symbolic signals ni(t). When the edge {i, j} is selected, i
and j adjourn their states following the pair dynamics

(ni(t + 1), nj(t + 1)) = g(ni(t), nj(t)) (5)

where

g(h, k) =

(⌊

h

2

⌋

+

⌈

k

2

⌉

,

⌊

k

2

⌋

+

⌈

h

2

⌉)

.

It is clear that g is symmetric in the arguments, in the

sense that if g(h, k) = (η, χ), then g(k, h) = (χ, η).
The analysis of the evolution of (5) will then allow us

to obtain information about the asymptotics of xi(t), since

ni(t) = ⌊2xi(t)⌋.

We now start the analysis of system (5), which we based

on a slight extension of results in [10]. We define the

following quantities

m(t) = min
1≤i≤N

ni(t) M(t) = max
1≤i≤N

ni(t),

and

D(t) = M(t) − m(t).

From the form of (5) one can easily remark that m(t) can

not decrease and M(t) can not increase. Hence D(t) is not

increasing. A much stronger result about the monotonicity

of D(t) is the content of the following lemma.

Lemma 3: If D(t) ≥ 2, then there exists τ ∈ N such that

P[D(t + τ) < D(t)] > 0.
Proof: Let I(t) = {j ∈ V s.t. nj(t) = m(t)} . We

start by proving that |I(t)|, i.e., the cardinality of I(t), does

not increase and that, if D(t) ≥ 2, then there is a positive

probability that it decreases within a finite number of time

steps. Notice first that, for h, k ∈ Z, g(h + 2, k + 2) =
g(h, k) + 2. Hence, by an appropriate translation of the

initial condition, we can always restrict ourselves to the case

m(t) ∈ {0, 1} , which is easier to handle.

Case m(t) = 0. In this case it is possible for a nonzero

state to decrease to 0, but only in the case of a swap between

0 and 1. This assures that |I(t)| is nonincreasing. Let S(t)
denote the set of nodes which have value m(t)+ 2 or more.

Since D(t) ≥ 2 then S(t) is non empty at time t. Now let

(v1, v2, . . . , vp−1, vp) be a shortest path between I(t) and

S(t). Such a path exists since G is connected. Note that

v1 ∈ I(t) and vp ∈ S(t) and that {v2, . . . , vp−1} could be

an empty set; in this case a shortest path between I(t) and

S(t) has length 1. Moreover note also that all the nodes in

the path except v1 and vp have value 1 at time t, otherwise

(v1, v2, . . . , vp−1, vp) is not a shortest path. Since each edge

of the communication graph has a positive probability of

being selected in any time, there is also a positive probability

that in the p−1 time units following t the edges of this path

are selected sequentially, starting with the edge {v1, v2}. At

the last step of this sequence we have that the values of

vp−1 and vp are updated. By observing again, that the pair

of value (0, 1) is transformed by (5) into the pair (1, 0) we

have that the value of vp−1, when the edge {vp−1, vp} is

selected, is equal to 0. This update, for the form of (5), will

cause the value of both nodes to be strictly greater than 0.

Therefore, this proves that |I(t+ p− 1)| < |I| with positive

probability. Clearly, if |I(t)| = 1 then we have also that

D(t + p − 1) < D(t) with positive probability.

Case m(t) = 1. In this case no state can decrease to

1, and then |I(t)| is not increasing. Let I(t), S(t) and

(v1, v2, . . . , vp−1, vp) be defined as in the previous case.

Obviously in this case all the nodes v2, . . . , vp−1 in the

path have value equal to 2. Moreover observe that also

the sequence of edges {vp−1, vp}, {vp−2, vp−1},. . . ,{v2, v3},

{v1, v2} has positive probability of being selected in the p−1
time units following t. At the last step of this sequence of

edges, the values of v1 and v2 are updated. Clearly the value

of v1 is equal to 1. Since the value of vp at time t is greater
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or equal to 3, and since the pair (2, 3) is transformed by (5)

into (3, 2), we have that the value of v2 when the edge v1, v2

is selected, is greater or equal to 3. This update, for (5), will

cause the value of both nodes to be strictly greater than 1.

Hence |I(t + p− 1)| < |I| with positive probability. Again,

if |I(t)| = 1 then we have also that D(t + p − 1) < D(t)
with positive probability.

Consider now the following sequence of times t0 =
t, t1, t2, . . .. For each i ≥ 0, if |I(t)| > 1, then we let ti+1

to be the first time for which there is a positive probability

that |I(ti+1)| < |I(ti)|. Let now k ∈ N be such that

|I(tk)| = 1. Then we have that D(tk+1) < D(tk). This

concludes the proof.

Before stating the main result regarding the convergence

properties of (5), we provide two notational definitions. Let

ω =

⌊

1

N

N
∑

i=1

ni(t)

⌋

=

⌊

1

N

N
∑

i=1

ni(0)

⌋

,

and

R =
{

r ∈ N
N : ri ∈ {ω, ω + 1} ∀ i ∈ V

}

.

Theorem 4: Almost surely there exists Tcon ∈ N such

that D(t) < 2, for all t > Tcon. Consequently n(t) ∈ R for

all t > Tcon.
Proof:

Notice first that, fixed the initial condition n(0), there

exists a fixed finite set F such that n(t) ∈ F for all t. It

follows from a repeated application of Lemma 3 that for

every n̄ ∈ F , there exists tn̄ such that

P(n(tn̄ + s) ∈ R|n(s) = n̄) = pn̄ > 0 .

Put

T = max
n̄∈F

tn̄ , p = min
n̄∈F

pn̄

Using the fact that R is invariant by the dynamics of n(t)
(n(t) ∈ R yields n(t + 1) ∈ R), we have that,

P(n(s + T ) ∈ R|n(s) ∈ F) ≥ p > 0 .

Now

P [n(tT ) /∈ R] =
t
∏

r=2
P [n(rT ) /∈ R|n((r − 1)T ) /∈ R] ·

·P [n(T ) /∈ R|n(0) ∈ F ] ≤ (1 − p)t .

Hence, P(n(tT ) /∈ R∀t) = 0. This proves the thesis.

We can go back to the original system, and prove the

following result. Let v ∈ R
N and denote ‖v‖∞ = maxi vi

and ‖v‖2 =
(
∑

i v2
i

)2
.

Corollary 5: Consider the algorithm (2). Let α = 1/2.

Then, almost surely, there exists Tcon ∈ N such that

|xi(t) − xj(t)| ≤ 1 ∀ i, j ∀ t > Tcon, (6)

and hence ‖x(t)−xave‖∞ ≤ 1 and N−1/2‖x(t)−xave‖2 ≤
1/2.

Proof: The proof is an immediate consequence of

Theorem 4 and of the relation ni(t) = ⌊2xi(t)⌋.

Remark 1: It is worth noting that Lemma 3 and The-

orem 4 are an extension of respectively, Lemma 3 and

Theorem 1 in [10]. In [10] the authors introduced the so-

called class of quantized gossip algorithms. According to

their definition, a quantized gossip algorithm is as follows.

Assume that {i, j} is the edge selected at time t and that

ni(t) and nj(t) are respectively the values of node i and of

node j at time t. If ni(t) = nj(t) then ni(t+1) = ni(t) and

nj(t+1) = nj(t). Otherwise, defined Dij = |ni(t)−nj(t)|,
if Dij ≥ 1 the method used to update the values has to

satisfy the following three properties:

(P1) ni(t + 1) + nj(t + 1) = ni(t) + nj(t),
(P2) if Dij(t) > 1 then Dij(t + 1) < Dij(t), and

(P3) if Dij(t) = 1 and (without loss of generality) ni(t) <
nj(t), then ni(t + 1) = nj(t) and nj(t + 1) = ni(t).
This update is called swap.

Now we substitute the property (P3) either with the property

(P3’) if Dij(t) = 1 and (without loss of generality) ni(t) <
nj(t), then, if ni(t) is odd then ni(t + 1) = nj(t) and

nj(t+1) = ni(t), otherwise if ni(t) is even then ni(t+
1) = ni(t) and nj(t + 1) = nj(t)

or with the property

(P3”) if Dij(t) = 1 and (without loss of generality) ni(t) <
nj(t), then, if ni(t) is even then ni(t + 1) = nj(t)
and nj(t + 1) = ni(t), otherwise if ni(t) is odd then

ni(t + 1) = ni(t) and nj(t + 1) = nj(t).

We call the class of algorithms satisfying (P1), (P2), (P3’)

or satisfying (P1), (P2), (P3”), extended quantized gossip al-

gorithms. It is possible to prove that Lemma 3 and Theorem

1 stated in [10] are true also for this class (the proof are

analogous to the proofs of Lemma 3 and Theorem 4 provided

in this paper). Moreover it is easy to see that the algorithm

(5) satisfies the properties (P1), (P2), (P3’). This represents

an alternative way to prove Theorem 4.

A. General case

We conjecture that Corollary 5 can be extended, still using

a symbolic dynamics, to cover all cases in which α is a

rational number in (0, 1/2].
Conjecture 1: For a gossip algorithm with adjournment

step (2), α = h
k , and 2h < k, almost surely there exists

Tcon ∈ N such that

|xi(t) − xj(t)| ≤ 1 ∀ i, j ∀ t > T, (7)

and hence ‖x(t)−xave‖∞ ≤ 1 and N−1/2‖x(t)−xave‖2 ≤
1/2.

Computer simulations (Figure 5), which intrinsically use

rational numbers, confirm this convergence property. We

expect that similar behavior should also show up in those

cases when α ∈ (0, 1/2] is not necessarily rational but to

prove this we would need other ideas: a possibility would

be to use suitable rational approximations and a stronger

version of Corollary 1 where some uniform estimation of

Tcon is obtained. Finally, we do not expect to have a similar

result for α > 1/2. Indeed, computer simulations show in

this case that there is convergence to a bounded interval, but
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the length of the interval is bigger than 1, and grows as α
approaches 1.

IV. SPEED OF CONVERGENCE

In the above section we just proved convergence for the

system (2), with no attention to estimate how fast this

convergence occurs. In this section, we get some results in

that direction, and we focus on two examples, the complete

graph and the ring graph. The latter is the graph with edges

set E = {{i, i + 1} : i = 1, . . . , N − 1} ∪ {(1, N)}.

A first approach can be to perform a probabilistic analysis

of the symbolic dynamics, and derive bounds on E[Tcon].
This can be done on the lines of [10], Section 6, using

some theory on the hitting times of Markov chains [11]. This

provides bounds which for N → ∞ are of order O(N3) on

the complete graph and O(N4) on the ring graph.

Are these bounds tight? Simulations (Figure 4) suggest

that this approach can be too conservative. Then a different

approach should be developed.

We recall that the not-quantized gossip algorithm has been

proved to converge exponentially fast, and its ǫ−convergence

time

Tǫ = sup
x(0)

inf

{

t : P

(

||x(t) − xave1||2
||x(0)||2

≥ ǫ

)

≤ ǫ

}

has been estimated in [2] and [5] 1.

It comes out that, assuming every edge is selected with

equal probability,

• Tǫ = Θ(N) for N → ∞, for the complete graph;

• Tǫ = Θ(N3) for N → ∞, for the ring graph.

Moreover, in simulations it is evident that the quantized

communication algorithm converges almost as fast as the not

quantized version, until it approaches its inherent precision

limit, the quantization step size. At that moment, it slows

down until it reaches its best achievable performance.

Then the idea is to prove that, as long as the distance from

the agreement is much larger than the quantization step, the

speed of convergence is almost the same as the not-quantized

algorithm, until the algorithm starts to slow down.

Consider the following function of x(t)

V (x(t)) = x∗(t)Ωx(t) = ||x(t) − xave||
2
2

where Ω = I − N−1
11

∗. First observe that

E[V (x(t + 1))|V (x(t))] =

=
∑

{i,j}∈E

P{i,j}E[V (x(t + 1))|V (x(t)), e(t) = {i, j}]

where e(t) denotes the edge selected at time t. Observe now

that

E[V (x(t + 1))|V (x(t)), e(t) = {i, j}]− V (x(t)) =

= (xi(t + 1) − xave)
2 + (xj(t + 1) + xave)

2−

(xi(t) − xave)
2 − (xj(t) − xave)

2

where xave = N−1
∑

i xi(t).

1In the latter, the algorithm we are discussing is called symmetric gossip.

Then, we substitute (2) and we obtain

(xi(t + 1) − xave)
2 + (xj(t + 1) + xave)

2+

− (xi(t) − xave)
2 − (xj(t) − xave)

2 =

(q[xi(t)] − q[xj(t)])
2

2
− (q[xi(t)] − q[xj(t)]) (xi(t) − xj(t))

= (q[xi(t)] − q[xj(t)])
q[xi(t)] − q[xj(t)]

2
(xi(t) − xj(t)) .

Since |q[z]− z| ≤ 1/2 for all z ∈ R, then

xi(t) − xj(t) − 1 ≤ q[xi(t)] − q[xj(t)] ≤ xi(t) − xj(t) + 1.

The latter inequality implies

(q[xi(t)] − q[xj(t)]) (
q[xi(t)] − q[xj(t)]

2
− (xi(t) − xj(t)))

≤ −
1

2
(xi(t) − xj(t))

2 +
1

2
,

and then

E[V (x(t + 1))|V (x(t)), e(t) = {i, j}]− V (x(t)) ≤

≤ −
1

2
(xi(t) − xj(t))

2 +
1

2
.

Hence we have that

E[V (x(t + 1))|V (x(t))]

≤
∑

{i,j}∈E

P{i,j}

(

V (x(t)) −
1

2
(xi(t) − xj(t))

2 +
1

2

)

=

=
1

2
−

1

2

∑

{i,j}∈E

P{i,j}(xi(t) − xj(t))
2 + V (x(t)).

Notice now that
∑

{i,j}∈E

P{i,j}(xi(t) − xj(t))
2 = 2 x∗(t)( diag(P1) − P )x(t)

and moreover that diag(P1) − P ≥ λΩ where λ is the

smallest eigenvalue of diag(P1)−P which is different from

zero. From these facts we argue that

E[V (x(t + 1))] = E[E[V (x(t + 1))|V (x(t))]] ≤

E[
1

2
−

1

2
2λx(t)∗Ωx(t) + V (x(t))] =

E[(1 − λ)V (x(t)) +
1

2
] =

= (1 − λ)E[V (x(t))] +
1

2
.

From the recurrence inequality

E[V (x(t + 1))] ≤ (1 − λ)E[V (x(t))] +
1

2

we can argue that

E[V (x(t))] ≤ (1 − λ)t
E[V (x(0))] +

1 − (1 − λ)t

2λ

and then

E[V (x(t))] ≤ (1 − λ)tV (x(0)) +
1

2λ
(8)

This shows that E[V (x(t))] tends initially to decrease

exponentially fast at the rate 1−λ, and then to saturate to a
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constant 1
2λ . It is important to remark that λ is a function of

P , and then of the topology of the graph. This will be clear

in the following examples.

Given a set A, we denote as |A| its cardinality. We assume,

for simplicity, that P{i,j} = 1
|E| for all {i, j} ∈ E . This

implies that

diag(P1) − P =
1

|E|
LG ,

where LG is the Laplacian matrix2 of G. Let us consider two

particular cases.

Example 1: Assume that G is the complete graph. Note

that |E| = N(N−1)
2 . Then P{i,j} = 2

N(N−1) . In this case we

have that

diag(P1) − P =
2

N − 1
I −

2

N(N − 1)
11

∗,

from which it follows that λ = 2
N−1 .

Example 2: Assume that G is the ring graph. Note that

|E| = N . Assume that each edge is chosen with the same

probability 1/N . Hence it turns out that diag(P1) − P =

= 2















1
N − 1

2N 0 0 · · · 0 − 1
2N

− 1
2N

1
N

1
2N 0 · · · 0 0

0 1
2N

1
N

1
2N · · · 0 0

...
...

...
... · · ·

...
...

...

− 1
2N 0 0 0 · · · − 1

2N
1
N















.

In this case, it is possible to prove, using results in [3], that

λ = 2
N

(

1 − cos 2π
N

)

, and then λ = 4π2

N3 + o
(

1/N3
)

for

N → ∞.

In these examples we see that, in the early steps, the

convergence rate is of the same order as the not quantized

case recalled above, but as time goes on the expected V
saturates to a constant level, which also depends on N . Since
1
2λ increases drastically as N increases, for huge N this

approach is less informative.

V. SIMULATIONS AND FINAL REMARKS

To illustrate and motivate our analytical results, we show

some simulative results for the complete and ring graphs,

and also for the random geometric graphs, which are a very

common model in the analysis of wireless networks [8].

The random geometric graphs are constructed by randomly

placing N nodes in the unit square, and joining them with

edges whenever their distance is below a threshold R =
Θ(

√

log N/N) for N → ∞. In this case, it is known [2]

that Tǫ = Θ(N2/ log N) for N → ∞.
As already mentioned, simulations point out the interesting

question of the relationship between the gossip algorithm

with or without quantization. How far are they apart in

terms of performance, namely, asymptotic distance from the

average consensus and speed of convergence?

We discussed the former issue in Section III, while the lat-

ter has been partially answered in Section IV. Any refinement

2The Laplacian matrix of a graph G = (V , E) is defined as LG =
AG1 − AG , where AG is the adjacency matrix of the graph. The latter is
such that (AG)ij = (AG)ji = 1 if {i, j} ∈ E and 0 otherwise.

would be of great interest: the bound (8) does not seem to be

tight, since the dependence on N of the saturation level (see

Figure 3) is not expected from the results of Section III, and

does not appear in simulations. Moreover, we want to recall

that an analysis developed for t going to infinity is not, at

least in principle, appropriate for a system which is governed

by a symbolic dynamics, converging in finite time. Our

contribution has been to show that, as long as the distance

from the agreement is much larger than the quantization

step, the speed of convergence is almost the same as the

not-quantized algorithm. Instead, when we are near to the

consensus, the granularity effects have to come out, so that

a full understanding of the algorithm has to be based on

both the not quantized approximation and the analysis of

some integer dynamics. Finally, the issue of generalizing the

results to different values of the local averaging parameter

α has been addressed in Section III-A: we believe this is a

relevant point because it is well known [2], [5] that the ’best’

value of α from the point of view of speed of convergence

is not, in general, 1/2.
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Fig. 1. Time evolution of the squared euclidean distance from agreement,
with normalization, for the complete graph on N = 5, 10, 20, 40, 80 nodes,
from left to rigth. Algorithm with quantized (solid lines) and with non-
quantized communication (dashed). Average of 50 trials, from random initial
conditions from a uniform distribution. Remark that the committed error is
in facts smaller than predicted by theory.
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APPENDIX I

PROOF OF LEMMA 2

We first prove (3). Let m = ⌊x⌋. So

am ≤ ax < am + a .
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Fig. 4. Dependence of Tcon on N in the examples: complete, ring, and
random geometric. We plot the average of 40, 40, 100 trials respectively.
Remark that the order of growth is approximately N , N3, and N2,
respectively.
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Fig. 5. Time evolution of the squared euclidean distance from agreement,
with normalization, for the random geometric graph on N = 20 nodes,
for different values of α (from bottom to top). Average of 40 trials. The
evidence is supporting Conjecture 1.

Hence, we can find s ∈ N, 0 ≤ s ≤ a−1 such that am+s ≤

ax < am+ s+1. This yields ⌊ax⌋ = am+ s and
⌊

⌊ax⌋
a

⌋

=

m. We now prove equation (4). The equality q[x] = ⌊x+1/2⌋
is clear from the definition of q[x]. To prove the second

equality, let h = ⌊2x⌋. Then h ≤ 2x < h + 1, from which

follows that

h

2
+

1

2
=

h + 1

2
≤ x + 1/2 <

h + 2

2
=

h

2
+ 1.

From this inequality it follows that ⌊x + 1/2⌋ = ⌈h
2 ⌉. This,

with (3), implies (4).
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