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Abstract— This work provides a framework for the observ-
ability analysis of linear networked dynamic systems (NDS).
A distinction is made between NDS that have homogeneous
agent dynamics and NDS that have heterogeneous dynamics.
In each case, conditions for the observability of such a system
are presented; we will also quantify the relative degree of ob-
servability of these systems. Moreover, an index of homogeneity
and an index of heterogeneity are introduced as the means of
quantitatively measuring how homogeneous a particular NDS
is.

I. INTRODUCTION

There has a been a recent research surge in the controls

community focusing on the study of networked dynamic

systems (NDS). A NDS is a collection of dynamic systems

that are coupled together through some kind of network. The

network may represent a communication topology through

which each dynamic agent can exchange information, or a

sensing topology to coordinate high-level objectives such

as formations. Examples of such systems include multiple

space, air, and land vehicles [1], [2], [3], [4]. What makes

this class of problems interesting is the role that the network

plays in the dynamics of the entire system.

When studying linear and time-invariant systems, all the

essential properties of the system can be derived from the

quadruple (A,B,C,D). In a NDS, however, there is an ad-

ditional parameter in the underlying connection topology. Al-

though this connection topology can easily be embedded into

the system matrices, it is more enlightening to consider how

changes in that topology explicitly affects certain systems

theoretic properties. Therefore, it is becoming increasingly

important to consider the quintuple (A,B,C,D,G), where

G denotes the underlying connection topology graph, when

performing analysis of linear NDS. Examples include relat-

ing controllability to graph symmetry [5], and observability

properties in consensus seeking filters [6]. In this paper,

we consider NDS where the network couples the agents

at their outputs. Such systems are prevalent in formation

flying applications where high level objectives are obtained

via relative sensing. An example includes work on formation

flying of spacecraft [7].

The contribution of this paper is twofold. We first in-

troduce two distinct classes of NDS consisting of homo-

geneous and heterogeneous agent dynamics. Although the

homogeneous case can be considered as a subset of the
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heterogeneous case, it turns out to be enlightening, whether

through algebraic simplicity or development of intuition,

to consider both cases separately. The second contribution

is a rigorous observability analysis of NDS based on the

relative sensing problem. Specifically, this paper highlights

how both the qualitative and quantitative notions of observ-

ability change as the dynamics of each agent become more

homogeneous. In this direction, an index of homogeneity and

an index of heterogeneity are introduced to quantitatively

capture how the dynamics of each agent in the ensemble

and the underlying connection topology affect the overall

observability properties of the overall system.

II. PRELIMINARIES AND NOTATIONS

We provide some notations and preliminaries that will be

used throughout the paper.

A. Graphs and their Algebraic Representation

An undirected (simple) graph G is specified by a vertex

set V and an edge set E whose elements characterize the

incidence relation between distinct pairs of V . Two vertices i
and j are called adjacent (or neighbors) when {i, j} ∈ E ; we

denote this by writing i ∼ j. An orientation of an undirected

graph G is the assignment of directions to its edges, i.e.,

an edge ek is an ordered pair (i, j) such that i and j are,

respectively, the initial and the terminal nodes of ek.

In this work we make extensive use of the |V| × |E| inci-

dence matrix, E(G), for a graph with arbitrary orientation.

The columns of E(G) are indexed by the edges, and the

ith row entry takes the value +1 if it is the initial node of

the corresponding edge, −1 it it is the terminal node, and 0

otherwise.

From the definition of the incidence matrix it follows

that the null space of its transpose, N (E(G)T ), contains

span {1}, where 1 is the vector of all ones. The rank of

the incidence matrix depends only on |V| and the number of

its connected components [8].

The (graph) Laplacian of G, L(G) := E(G)E(G)T , is a

rank deficient positive semi-definite matrix. The spectrum

of the graph Laplacian {λi(L(G))}1≤i≤n can be ordered as

0 = λ1 ≤ λ2 ≤ · · · ≤ λ|V|. Two graphs, G1 and G2, are said

to be cospectral with respect to the graph Laplacian if the

spectrum of L(G1) is identical to the spectrum of L(G2).

B. Homogeneous and Heterogeneous NDS

Henceforth, we will be referring to two classes of NDS;

those with 1) homogeneous dynamics, and 2) heterogeneous
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dynamics. For both cases, we will work with linear and time-

invariant systems for each agent, driven by a generalized

disturbance

ẋi(t) = Aixi(t) + Biwi(t) (1)

yi(t) = Cixi(t).

Each agent is indexed by the sub-script i, and the sub-script

is dropped for the homogeneous case.

In the homogeneous case, it is assumed that each dynamic

agent in the NDS is described by the same set of linear state-

space dynamics (e.g., (Ai, Bi, Ci) = (Aj , Bj , Cj), ∀i, j).

In the heterogeneous case, each agent is assumed to have

different linear dynamics.

For both cases, we will assume a stable, strictly proper

system (Di = 0) with a minimal realization. Finally, we

also assume that each agent has compatible outputs (e.g.

system outputs correspond to the same physical quantity)

and dimensions.

The observability grammian of a dynamic system is an

important operator that will be used throughout this paper.

The observability grammian for an individual agent based on

the dynamics in (1) is defined as

Y (i)
o =

∫ ∞

0

eAT
i tCT

i Cie
Aitdt . (2)

As each agent is assumed to be minimal, the grammian

is a positive-definite matrix and can be expressed in terms

of its singular value decomposition, Y
(i)
o = UiΣiU

T
i . We

denote, respectively, the largest and smallest singular values

of Y
(i)
o as σ(Y

(i)
o ) and σ(Y

(i)
o ).

The grammian can be calculated by solving a system of

linear equations, described by the Lyapunov equation

AT
i Y (i)

o + Y (i)
o Ai + CT

i Ci = 0. (3)

The grammian can be used as a quantitative way to

compare the relative observability of different modes in the

system, as ‖y(t)‖2 = ‖Y
1/2
o x(0)‖2.

In both cases, we will represent the parallel intercon-

nection of all the agents with the following state-space

description:

ẋ(t) = Ax(t) + Bw(t) (4)

y(t) = Cx(t),

with x(t), w(t), and y(t) denoting respectively, the concate-

nated state vector, generalized disturbance vector, and output

vector of all the agents in the NDS. The dimensions of each

agents state, control, and output vectors are xi(t) ∈ R
n,

ui(t) ∈ R
m, and yi(t) ∈ R

r respectively. In the hetero-

geneous case, the dimension of the state and the control

need not be the same, but for notational convenience we

only examine the above case. The matrices A, B, and C are

the block diagonal aggregation of each agents’ state-space

matrices.

The model we examine in this paper is motivated by the

relative sensing problem. The sensed output of the NDS is a

vector yG(t) ∈ R
r|E| containing the relative information of

each agent and its neighbors . For example, the output sensed

across an edge e = (i, i′) would be of the form yi(t)−yi′(t).
This can be compactly written as

yG(t) = (E(G)T ⊗ Ir)y(t); (5)

here, ”⊗” denotes the Kronecker product, and Ir is the r×r
identity matrix. An important result on the singular value

decomposition of Kronecker products will prove useful in

subsequent discussions.

Theorem 2.1 ([9]): Let A ∈ R
m×n and B ∈ R

p×q each

have a singular value decomposition of A = UAΣAV T
A and

B = UBΣBV T
B . The singular value decomposition of the

Kronecker product of A and B is

A ⊗ B = (UA ⊗ UB)(ΣA ⊗ ΣB)(V T
A ⊗ V T

B ). (6)

In subsequent sections, we will refer to homogeneous and

heterogeneous NDS by Σhom(G) and Σhet(G) respectively.

We also refer to Σhom(G) and Σhet(G) in an operator

context. Using the above notations, we have the following

compact descriptions for homogeneous and heterogeneous

NDS:

Σhom(G)

{

ẋ(t) = (IN ⊗ A)x(t) + (IN ⊗ B)w(t)
yG(t) = (E(G)T ⊗ C)x(t)

(7)

Σhet(G)

{

ẋ(t) = Ax(t) + Bw(t)
yG(t) = (E(G)T ⊗ Ir)Cx(t)

(8)

III. OBSERVABILITY PROPERTIES OF NDS

Examination of observability properties of a system is

an important tool in the analysis of dynamical systems. It

can be used to characterize, for example, the H2 norm of a

system, as well as provide answers to the existence of a state-

estimator. In this section we present observability analysis for

the homogeneous and heterogeneous linear NDS separately.

The results of both are valuable, noting that each agent

can be individually compensated to achieve homogeneous

or heterogeneous dynamics. Furthermore, it will be shown

that the homogeneous system is a specialization of the

heterogeneous case.

We also include in this discussion expressions for the

observability grammian for both the homogeneous and het-

erogeneous cases. As mentioned in §II-B, the observability

grammian of a dynamic system can give additional insight

about the observability properties of the system. In the con-

text of NDS, the grammian leads to explicit characterization

of how the underlying topology affects the observability

properties.

A. Homogeneous System

For the homogeneous case, we have the following result

on its observability properties.

Proposition 3.1: The homogeneous networked dynamic

system (7) is unobservable.

Proof: Using the PHB test for observability of a linear

system, it suffices to show that we can construct a nonzero

vector q such that

(IN ⊗ A)q = λq and (E(G)T ⊗ C)q = 0,
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where λ is an eigenvalue of (IN ⊗ A).
Let q̃ be an eigenvector of A such that Aq̃ = λq̃.

To construct an eigenvector for IN ⊗ A, we only need

concatenate N versions of q̃ into one vector. Thus, q = 1⊗q̃.

Exploiting properties of the Kronecker product reveals that

q is in the null space of E(G)T ⊗C, completing the proof.

(E(G)T ⊗ C)(1 ⊗ q̃) = (E(G)T 1) ⊗ (Cq̃) = 0.

It is also beneficial to discuss how the observable and

unobservable subspaces of the NDS relate to the structure of

the network. One way to examine these subspaces is to find

a transformation matrix S that separates the system into its

observable and unobservable components. There are many

ways to construct such a transformation, and we will do so

by exploiting properties of the incidence matrix associated

with the underlying graph.

First, we define a partition of the network into a tree and

its cycles. Denote Eτ as the incidence matrix corresponding

to any spanning tree subgraph of G. The remaining edges

necessarily complete the cycles in G, and Ec denotes the

incidence matrix for those edges. Therefore, with an appro-

priate permutation of the columns of E(G), we can always

write E(G) =
[

Eτ Ec

]

.

One important property of Eτ is that its columns are

linearly independent. We can construct the transformation

matrix as S = (
[

Eτ 1
]

) ⊗ In.

Now, we define the new state z(t) such that Sz(t) = x(t).
The transformed state-space is thus

ż(t) = S−1(IN ⊗ A)Sz(t) + S−1(IN ⊗ B)w(t)

yG(t) = (ET ⊗ C)Sz(t). (9)

Using properties of the Kronecker product, we note the

following simplifications:

S−1(IN ⊗ A)S = IN ⊗ A (10)

(E(G)T ⊗ C)S =

[ ([

ET
τ Eτ

ET
c Eτ

]

⊗ C

)

0

]

. (11)

This transformation clearly shows that the unobservable

subspace is spanned by the 1 vector. Physically, this corre-

sponds to a rigid-body type motion of the NDS. That is, we

are not able to observe the inertial position of the formation.

For the estimation problem, if the objective is to estimate the

relative states between each agent, then we can accept the

unobservable subspace. However, if we require an estimate

of the inertial states then we must affectively anchor one of

the nodes to reconstruct the states of all the other nodes. We

should also note that based on our earlier assumption that

each agent is minimal and stable, we are at least guaranteed

that the unobservable mode is stable.

An expression for the observability grammian of the entire

NDS in (7) is

Yo =

∫ ∞

0

e(IN⊗A)T t(ET ⊗ C)T (ET ⊗ C)e(IN⊗A)tdt

= L(G) ⊗ Yo, (12)

where Yo represents the observability grammian of a single

agent in the network (described in (2)).

The form of (12) explicitly shows how the network struc-

ture affects the observability grammian. In fact, (12) can be

used as an alternative proof to Proposition 3.1 by invoking

Theorem 2.1. Since zero is an eigenvalue of L(G), it must

also be an eigenvalue of Yo with multiplicity |V|, resulting

in a positive-semidefinite grammian. This is equivalent to the

system being unobservable.

B. Heterogeneous System

We give conditions for when (8) is observable or unob-

servable.

Proposition 3.2: The heterogeneous networked dynamic

system (8) is observable if there is no eigenvalue of A that

is an eigenvalue for each Ai.

Proof: We must show that we can not construct a non-

zero vector q that satisfies Aq = λq and (ET ⊗ Ir)Cq = 0.

Assume that no agents share the same eigenvalues. The proof

is similar if a subset of agents do share an eigenvalue. In this

case, an eigenvector of A must have the form

q =
[

0T
n 0T

n · · · q̃T
i 0T

n · · · 0T
n

]T
,

where q̃i is the eigenvector for Ai.

We now check to see if q ∈ N
{

(E(G)T ⊗ Ir)C
}

.

(E(G)T ⊗ Ir)Cq =

(E(G)T ⊗ Ir)
[

0T
n · · · (Ciq̃i)

T 0T
n · · ·

]T
.

By assumption, Ciq̃i 6= 0, and (8) is observable.

Proposition 3.2 only provides a sufficient condition for

observability. In order for a heterogeneous system to be

unobservable, not only does each agent need to share a

common eigenvalue, but the outputs of each agent associated

with a certain direction must be indistinguishable. This is

characterized in the following proposition.

Proposition 3.3: The heterogeneous networked dynamic

system (8) is unobservable if the following conditions are

met:

1) There exists an eigenvalue, λ∗, of A that is common to

each Ai

2) Ciqi = Cjqj ∀ i, j with Aiqi = λ∗qi ∀ i.
Proof: By assumption, there exists a λ∗ that is an

eigenvalue for each Ai. We can construct an eigenvector for

A as q = [ qT
1 , · · · , qT

|V| ]
T , with Aiqi = λ∗qi. By condition

2, we have that Cq = 1 ⊗ r, where r = Ciqi 6= 0 for all i.
Using properties of the Kronecker product we have

(E(G)T ⊗ Ir)Cq = (E(G)T 1 ⊗ r) = 0.

This shows the system is unobservable.

It is clear that Proposition 3.3 is a generalization of the

homogeneous case.

The advantages of an observable heterogeneous system is

the ability to reconstruct the inertial states of each agent us-

ing an observer (given that the conditions of Proposition 3.3

are not met). However, a heterogeneous system introduces

another degree of complexity. For the homogeneous case, the

assignment of an agent to a certain position in the network

topology does not change the observability properties. In
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the heterogeneous case, the assignment of an agent to a

certain position can have a dramatic affect on the system

observability.

As in the homogeneous case, we can derive an expression

for the observability grammian of the heterogeneous NDS.

Using the definition directly, we have

Yo =

∫ ∞

0

eA
T tCT (L(G) ⊗ Ir)CeAtdt.

The above form, however, is not as satisfying as the form

derived for the homogeneous case. The reason is that the

graph structure does not decouple cleanly from the expres-

sion. However, with some manipulation, the expression can

be derived to highlight the role of the network in a more

transparent way.

We begin by first noting that

CeAt =

|V|
∑

i=1

(eie
T
i ⊗ Cie

Ait),

where ei ∈ R
|V| is the i-th unit coordinate basis vector for

R
|V|.

It can also be verified that

L(G) =

|V|
∑

i=1

|V|
∑

j=1

eie
T
i L(G)eje

T
j .

Using these results, the expression for the observability

grammian can be further simplified to

Yo =

|V|
∑

i=1

|V|
∑

j=1

∫ ∞

0

eie
T
i L(G)eje

T
j ⊗

(

eAT
i tCT

i Cje
Ajt

)

dt.

We now can introduce a notational simplification by defining

the observability operator and its adjoint:

Ψi(x) = Cie
Aitx and Ψ∗

i (y(t)) =

∫ ∞

0

eAT
i tCT

i y(t)dt.

Each agent is assumed to be stable and minimal, so we have

that Ψi : R
n 7→ Lm

2 [0,∞) and the adjoint Ψ∗
i : Lm

2 [0,∞) 7→
R

n. We also note that the composition of Ψ∗
i with its adjoint,

as in Ψ∗
i Ψi, is precisely equal to the observability grammian

of agent i, Y
(i)
o . More generally, Yij = Ψ∗

i Ψj can be

calculated by solving the Sylvester equation

AT
i Yij + YijAj + CT

i Cj = 0. (13)

All the results above can be used to derive the following

expression for the observability grammian of a heterogeneous

NDS:
Yo = (L(G) ⊗ Jn) ◦ (Ψ∗Ψ), (14)

where Jn is the n × n matrix of all ones, Ψ =
[

Ψ1 · · · Ψ|V|

]

, and A◦B denotes the Hadamard prod-

uct of A and B.

The form of (14) is appealing in how it separates the role

of the network from each agent. A precise characterization

of the eigenvalues of (14) is non-trivial, but we can construct

bounds on those values, as presented in [10]. In particular,

since both terms in the Hadamard product are positive-

semidefinite matrices, we can apply Schur’s Theorem to

obtain the following bound:

d σ(Ψ∗Ψ) ≤ σ(Yo) ≤ σ(Yo) ≤ d σ(Ψ∗Ψ), (15)

where d = mini [L(G) ⊗ Jn]ii and d = maxi [L(G) ⊗ Jn]ii.
These correspond, respectively, to the minimum and maxi-

mum degree vertices of the underlying graph.

The grammian expression (14) can be represented alterna-

tively as a node weighted Laplacian. Consider scalar weights

wi on each node collected together in a diagonal matrix

W = diag{w1, . . . , w|V|}. The node weighted Laplacian can

be defined as

L̂(G) = WL(G)W = L(G) ◦ wwT . (16)

This can be generalized to n × n-block matrix weights,

and (16) can be equivalently written as

L̂(G) = W(L(G) ⊗ In)WT . (17)

Using (17) leads to a new interpretation of the expression

in (14). Each node in the graph is weighted by the observ-

ability operator of the agent assigned to that node.

Yo = diag{Ψ∗}(L(G) ⊗ In)diag{Ψ}. (18)

C. Necessary and Sufficient Conditions for Observability of

NDS

The results of the previous sections provide necessary and

sufficient conditions for the observability of a NDS. These

conditions do not depend on the homogeneity of the NDS, as

the general conditions capture both scenarios. We combine

the results into the following theorem.

Theorem 3.1: Consider a NDS composed of homoge-

neous or heterogeneous dynamics that are individually ob-

servable. The NDS is unobservable if and only if the follow-

ing conditions are met:

1) There exists an eigenvalue of A, λ∗, that is common to

each Ai

2) Ciqi = Cjqj ∀ i, j with Aiqi = λ∗qi ∀ i.
Proof: The proof follows immediately from the proofs

of Propositions 3.1, 3.2, and 3.3.

IV. CHARACTERIZING OBSERVABILITY IN A NDS:

INDEX OF HOMOGENEITY AND HETEROGENEITY

The previous section only provides a “yes” or “no” answer

to the question of observability in a NDS. As discussed in

§II-B, the singular values of the observability grammian can

be used to give a quantitative comparison of the relative

observability between different modes of the system. In the

context of a single agent, the symmetry of the observability

ellipsoid could be considered as a description of the homo-

geneity of that agents’ initial condition to output map. As

an example, the ellipsoid in Figure 1(a) is symmetric, which

corresponds to the output energy being independent of the

direction of the initial condition of the system. On the other

hand, the ellipsoid in Figure 1(b) shows the output energy is

strongly dependent on the direction of the initial condition.
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(a) Symmetric Ellipsoid
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(b) Stretched Ellipsoid

Fig. 1. Visualization of observability grammian ellipsoids for a “symmet-
ric” system and “stretched” system

The shape of the ellipsoid, of course, corresponds to the

relative magnitude of the singular values of the observability

grammian.

This notion can be extended for NDS to answer the

following questions:

1) How does the structure of the underlying network

topology affect the relative observability of the NDS?

2) How does the placement of agents in the network affect

the relative observability of the NDS?

More fundamentally, these questions suggest that certain

topologies in a homogeneous system might be “more ho-

mogeneous” then others. Similarly, placing heterogeneous

agents in different locations of a NDS might result in a “more

heterogeneous” NDS. This would correspond to a symmetry,

or lack thereof, of the observability ellipsoid of the NDS.

This section aims to develop an index of homogeneity

for homogeneous NDS, and an index of heterogeneity for

heterogeneous NDS that can be used to answer these ques-

tions. It is natural that these measures should some how

relate to the observability grammian of the NDS. As in

§III, we separate the discussion into the homogeneous and

heterogeneous settings.

A. NDS Index of Homogeneity

In the homogeneous case, as indicated by (12), we rec-

ognize that the network topology has a direct affect on the

observability grammian. Furthermore, the statement of Theo-

rem 2.1 shows that the eigenvalues of Yo are the eigenvalues

of Yo scaled by the eigenvalues of the graph Laplacian, L(G).
The index of homogeneity should capture the affect of the

network on the overall observability properties. Using the

symmetry analogy developed earlier, a more homogeneous

NDS should correspond to a more symmetric observability

grammian.

The index of homogeneity will be denoted as ρ(Σhom(G)).
One choice for this index is

ρ(Σhom(G)) =

(

λ2(G)

λ|V|(G)

)

σ(Yo)

σ(Yo)
, (19)

where λ2(G) and λ|V|(G) denote, respectively, the second

smallest and largest eigenvalue of the graph Laplacian.

Using this index for characterizing the relative observ-

ability properties of the homogeneous NDS leads to some

interesting observations. First, note that whenever the graph

is disconnected, ρ(Σhom(G)) = 0. This corresponds to the

intuitive result that a disconnected graph should somehow be

“less homogeneous” than a connected one. In terms of this

specific index, the homogeneity of the NDS is lower bounded
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Fig. 2. Visualization of Observability Grammian Ellipsoids

by 0, and is indistinguishable from any disconnected graph

on |V| nodes.

This index is also upper-bounded by σ(Yo)/σ(Yo). This

upper-bound is achieved whenever the underlying graph is

complete. The complete graph is the only graph where

λ2(G) = λ|V|(G).
Finally, we note the set of graphs that are cospectral with

respect to the graph Laplacian will all result in the same

index of homogeneity. This property could prove to be useful

if reconfiguration of the connection topology is required.

The motivation for choosing such a function has a more

intuitive explanation relating to the symmetry arguments of

the observability grammian.

The term containing the ratio of the smallest and largest

singular values of Yo corresponds loosely to a measure of

the eccentricity of the grammian ellipsoid. The closer this

ratio is to the value 1, the more symmetric the ellipsoid is.

Conversely, as this ratio approaches 0, the ellipsoid becomes

more elongated (along one plane). As we have assumed

a minimal realization for the system dynamics, we are

guaranteed that this ratio will always be strictly positive.

Next, consider the observability grammian of the parallel

configuration of homogeneous NDS, corresponding to the

system in (4). The grammian can be written as Ỹo = IN⊗Yo.

In the N agent case, the ellipsoid of agent i is oriented

orthogonally to the ellipsoid of agent j. This is illustrated

by the solid lines in Figure 2. In this example, we look

at the grammian for a 4-agent homogeneous system with

2 states. The grammian for each agent is the same, and its

2-d projection is plotted for each pair of state variables.

When the parallel NDS is coupled by a network, say a

path graph, the ellipsoid becomes scaled and rotated. This is

visualized by the dotted lines in Figure 2. We immediately

notice that one ellipsoid is scaled by the 0 eigenvalue of

graph Laplacian. Using the statement of Theorem 2.1, we

see that σ(Yo) = λ2 σ(Yo) and σ(Yo) = λN σ(Yo) are

respectively, the minimum and maximum non-zero singular

values of Yo. We thus have the following relationship:

0 < λ2 σ(Yo) ≤ λN σ(Yo). (20)

In the homogeneous NDS, Yo represents a fixed property

of the system, determined by the agent dynamics. Thus,

in terms of the symmetry argument, a more homogeneous

NDS should preserve as closely as possible the shape of the

grammian. Scaling the eigenvalues of Yo by λ|V|(G)σ(Yo) is
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Fig. 3. Three topologies on 4 nodes

effectively normalizing the observability grammian singular

values to 1.

B. NDS Index of Heterogeneity

In the heterogeneous case, we wish not only to charac-

terize how the topology affects the observability properties,

but also how the placement of agents within that topology

affects the observability of the NDS as well. Contrary to

the homogeneous case, the interplay between the graph

Laplacian eigenvalues and the eigenvalues of the NDS gram-

mian is less straightforward. A nice property of the index

of homogeneity is that it can be computed by studying-

independently- the spectral properties of the graph and the

observability properties of the homogeneous agents. Finding

an analogous approach for the index of heterogeneity reduces

to understanding the spectral properties of (14) or (18), which

requires further examination.

An index of heterogeneity can be developed using the

numerical evaluation of the grammian. The index of het-

erogeneity will be denoted as ρ(Σhet(G)). One choice for

this index is

ρ(Σhet(G)) =

(

min
σi(Yo) 6=0

σi(Yo)

)−1

σ(Yo), (21)

where Yo is given in (18).

Although not as transparent as the index of homogeneity,

some useful observations can be made about this choice of

index. It can be seen that the index is upper-bounded by 1,

which corresponds to an upper-bound on the homogeneity

of the NDS. It is interesting to note that this upper-bound

can be achieved by a homogeneous NDS with a complete

graph topology, and with the agent grammian ellipsoid being

completely symmetric.

In fact, if all the agents in the NDS are homogeneous,

then the index of heterogeneity reduces to (19). It might be

natural to assume that the observed properties of (19) also

apply to the heterogeneous case. Unfortunately, this is not

the case, and is best illustrated with a simple example.

We consider a heterogeneous NDS with 4 agents and three

different topologies. The topologies used are a star graph, a

path graph, and the complete graph, which are shown in

Figure 3.

Note that there are only four unique node assignments for

the star graph, twelve unique assignments for the path graph,

and one for the complete graph. For each permutation of the

agent’s position, the index of heterogeneity was calculated

and plotted in Figure 4. As indicated in the above discussion,

larger values of ρ (Σhet(G)) correspond to the NDS being

“more homogeneous”. The important point to notice in the

figure is that the topology alone is not sufficient to determine

which systems are more homogeneous. Furthermore, it can
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Fig. 4. Index of Heterogeneity

be seen that the complete graph does not correspond to the

most homogeneous system.

V. CONCLUSIONS

In this paper we presented an observability analysis for

certain classes of NDS. A distinction was made between

NDS with homogeneous agent dynamics and NDS with

heterogeneous agent dynamics. One important distinction

between homogeneous and heterogeneous NDS relates to the

observability of the system. In the homogeneous case, the

NDS is always unobservable whereas in the heterogeneous

case the NDS can be either observable or unobservable

depending on the structure of the individual agent dynamics.

By studying the observability grammian, further quanti-

tative results on the relative degree of observability were

developed. In the homogeneous case, the relative degree of

observability can be attributed to the underlying network

topology. Specifically, the spectrum of the graph Laplacian

provides a sufficient characterization of the relative degree

of observability. In the heterogeneous case, an expression

for the observability grammian was developed that involves

a Hadamard product, or alternatively as a node weighted

graph Laplacian. In both representations, the analysis of the

spectrum is non-trivial and is the subject of ongoing research.

One of the contribution of the present paper is the in-

troduction of an index of homogeneity and an index of

heterogeneity for the two distinct classes of NDS. This index

provides a quantitative means for comparing the homogene-

ity of different NDS which could be used as a performance

metric for the synthesis of controllers and estimators for

networked dynamic systems.
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