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Abstract—In networked control systems, when data are

transmitted over wireless channels, measurements of the trans-

mitted data are often incomplete due to transmission errors

and/or packet losses. The problem of designing reduced-order

H∞ filters for discrete-time systems from incomplete measure-

ments is investigated in this paper. A Bernoulli distributed

white sequence is adopted as a model for the normal operating

condition of packet delivery and transmission failure. The

reduced-order filter to be designed from incomplete measure-

ments is required to to ensure the mean-square stability of

the filtering error system and to guarantee a prescribed H∞

filtering performance level. It is shown that such a desired

reduced-order H∞ filter can be constructed under a sufficient

condition expressed in terms of two linear matrix inequalities

(LMIs) subject to a rank constraint.

I. INTRODUCTION

The problem of H∞ filtering for dynamic systems is

concerned with designing an estimator which guarantees that

the L2-induced gain from the noise signals to the estimation

error is less than a prescribed level. During the past decade,

design of H∞ filters has been an active area of research (see,

e.g., [4], [6], [22], [25]).

It is noticed that in the existing literature most approaches

to H∞ filter design assume that the measurements of the

system output are complete without any loss. How to use

lossy measurements in estimating signals presents a prac-

tically important issue that requires much attention. The

lossy measurements maybe arise in information transmis-

sions across limited bandwidth wireless channels [2], [14]. In

memoryless communication channel, the lossy measurement

is commonly modeled as a stochastic Bernoulli process

while in fading communication channel it is modeled as

a finite-state Markov chain [3], [9]. Estimation with lossy

measurement for dynamic systems has been a hot research

topic recently [2], [5], [14]. Some signal estimation results

for dynamic systems with lossy measurements have been

reported in the literature [2], [14], [17], [21]. A jump

estimation technique was presented to cope with lossy infor-

mation in [2]. The authors in [14] investigated the Kalman

filtering problem with intermittent observations. A variance-

constrained filtering approach was proposed for systems with

lossy measurements in [17].

On the other hand, in many real-world problems, there

is need to utilize lower order filters, which has inspired

the research on reduced-order H∞ filtering. Based on the

projection lemma, the authors in [19] proposed an LMI

(linear matrix inequality) with rank constraint approach to

the reduced-order H∞ filter design for a class of stochastic

systems. The reduced-order H∞ filtering problem for linear

systems with Markovian jump parameters was studied in

[16]. More recently, an LMIs with equality constraint ap-

proach to the fixed-order H∞ filtering problem of uncertain

systems with Markovian jump parameters was presented in

[18].
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The purpose of this paper is to investigate the reduced-

order H∞ filtering problem for dynamic systems with lossy

measurements. The works in [14], [19], [24] provide the

impetus to carry out the present investigation. Specifically,

we are interested in designing reduced-order filters by using

lossy measurement such that the filtering error system is ex-

ponentially mean-square stable and a prescribed H∞ filtering

performance level is achieved.

Notations: Throughout this paper, Z+ denotes the set of

positive integers; R
n denotes the n dimensional Euclidean

space; R
m×n denotes the set of all m × n real matrices.

A real symmetric matrix P > 0(≥ 0) denotes P being a

positive definite (or positive semi-definite) matrix, and A >

(≥)B means A−B > (≥)0. I denotes an identity matrix of

appropriate dimension. Matrices, if their dimensions are not

explicitly stated, are assumed to have compatible dimensions

for algebraic operations. The superscript ‘τ ’ represents the

transpose. ∗ is used as an ellipsis for terms that are induced

by symmetry. For a x ∈ R
n,

||x||2 := xτx.

Any matrix whose columns form the basis of the right null

space of M is denoted by N (M) or NM . The notation

l2 [0,∞) represents the space of square summable infinite

vector sequences with the usual norm ‖·‖2. A sequence

v = {vk} ∈ l2[0,∞)

if

‖v‖2 =

√

√

√

√

∞
∑

k=1

vτ
kvk < ∞.

P rob{.} stands for the occurrence probability of an event;

E{.} denotes the expectation operator with respect to some

probability measure.

II. PROBLEM FORMULATION

Consider the discrete-time dynamic system Σ:

xk+1 = Axk + Aωωk (1)

zk = Lxk + Lωωk (2)

where xk ∈ R
n is the state; ωk ∈ R

p̄ is the deterministic

disturbance signal in l2[0,∞); zk ∈ R
q is the signal to be

estimated; and A, Aω , L and Lω are known constant matrices

with compatible dimensions. The measurement is modeled

by

yk = Cxk (3)

yck = (1 − θk)yk + θkyk−1 (4)

where yk ∈ R
p is the output, yck ∈ R

p is the measured

output, C ∈ R
p×n is a known matrix, and the stochastic

variable θk is a Bernoulli distributed white sequence taking

value on 0 and 1 with

Prob{θk = 1} = E{θk} = ρ (5)

Prob{θk = 0} = E{1 − θk} = 1 − ρ (6)

where ρ ∈ [0, 1] and is a known constant.

Remark 1: The system measurement modeled in (3) and

(4) was first introduced in [13] and has been used to char-

acterize the effect of communication data loss in informa-

tion transmissions across limited bandwidth communication

channels over a wide area, such as navigating a vehicle

based on the estimations from a sensor web of its current

position and velocity [14]. The output yk produced at a time

k is sent to the observer through a communication channel.

If no packet-loss occurs, the measurement output yck takes

value yk; otherwise, the measurement output yck takes value

yk−1. When the probability of event packet-loss occurring is

assumed as ρ, the measurement output yck in (4) thus takes

the value yk with probability 1− ρ, and the value yk−1 with

probability ρ.
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We consider the following filter for the estimation of zk:

x̂k+1 = Af x̂k + Bfyck

ẑk = Cf x̂k + Dfyck

}

(7)

where x̂k ∈ R
n̂, 0 < n̂ ≤ n, and ẑk ∈ R

q. Af , Bf , Cf and

Df are to be determined.

Remark 2: The filter in the form of (7) reduces to a full

order one when n̂ = n. There are many results for the designs

of the full order filters (see, e.g., [12], [25]).

Combining (1)–(4) and (7) together, the filtering error

dynamics can be represented as Σ̃:

x̄k+1 = A(θk)x̄k + A1(θk)Hx̄k−1 + Aωωk

z̄k = L(θk)x̄k + L1(θk)Hx̄k−1 + Lωωk

}

(8)

where

x̄k =
[

xτ
k x̂τ

k

]τ

z̄k = zk − ẑk

H =
[

I, 0
]



















(9)

A(θk) =

[

A 0
(1 − θk)BfC Af

]

A1(θk) =

[

0
θkBfC

]

Aω =

[

Aω

0

]

L(θk) =
[

L − (1 − θk)DfC, −Cf

]

L1(θk) = −θkDfC

Lω = Lω



















































































(10)

Let

F =

[

Af Bf

Cf Df

]

(11)

It can be checked via (10) that

[

A(ρ) A1(ρ) Aω

L(ρ) L1(ρ) Lω

]

=





A 0 0 Aω

0 0 0 0
L 0 0 Lω





+





0 0
I 0
0 −I



F

[

0 I 0 0
(1 − ρ)C 0 ρC 0

]

(12)

where the ρ-dependent matrices are defined as in (10) with

θk replaced by ρ.

Throughout the paper, we make the following assumptions

for system (1)-(4).

Assumption 1: The matrix A is Schur stable (i.e., all

eigenvalues of A are located within the unit circle in the

complex plane).

Assumption 2: x−1 = 0.

Remark 3: Assumption 1 is a common assumption in

dealing with the filtering problem. Assumption 2 implies

from (3) that

y−1 = 0,

which gives the initial condition for the lossy measurement

model (4).

It is noted that the filtering error dynamics (8) is a system

with stochastic parameters since some of the parametric

matrices in (10) are associated with the stochastic variable

θk. For the problem formulation, we adopt the notion of

stochastic stability in the mean-square sense from [15].

Definition 1: The filtering error dynamics Σ̃ is said to be

exponentially mean-square stable if with

ωk ≡ 0,

there exist constants α > 0 and τ ∈ (0, 1) such that

E{‖x̄k‖
2} ≤ ατk

E{‖x̄0‖
2},

for all x̄0 ∈ R
n+n̂, k ∈ Z+.

The H∞-type filtering problem addressed in this paper is

to design a filter in the form of (7) such that the filtering error

system Σ̃ is exponentially mean-square stable and under the

zero initial condition, the filtering error z̄k satisfies

∞
∑

k=0

E{‖z̄k‖
2} ≤ γ2

∞
∑

k=0

‖ωk‖
2 (13)

for a given scalar γ and all nonzero ωk. In such a case,

the filtering error system is called to be exponentially mean-

square stable with H∞ filtering performance γ.
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To begin with, we establish a condition of mean-square

stability and H∞ performance for the filtering error dynamics

Σ̃, which will be fundamental in the derivation of our H∞

filter design methodology.

Lemma 1: Consider the filtering error dynamics Σ̃. Given

a scalar γ > 0, the filtering error system Σ̃ is exponentially

mean-square stable and has a guaranteed γ level of distur-

bance attenuation, if there exist matrices P and Q such that













−P 0 PA(ρ) PA1(ρ) PAω

∗ −I L(ρ) L1(ρ) Lω

∗ ∗ HτQH − P 0 0
∗ ∗ ∗ −Q 0
∗ ∗ ∗ ∗ −γ2I













< 0 (14)

where ∗ denotes the corresponding transposed block matrix

due to symmetry.

III. REDUCED-ORDER H∞ FILTER DESIGN

Based on Lemma 1 we will give a sufficient condition for

the existence of the H∞ filter in the form of (7) and present

a method to construct the filter. We first give the following

lemma (i.e., Projection Lemma) which will be used in the

derivation of the main result in this section.

Lemma 2: [8] Given a real symmetric Ψ and two real

matrices U and V, the following linear matrix inequality

problem

Ψ + U τXτV + V τXU < 0

is solvable with respect to X if and only if

N τ
UΨNU < 0

N τ
V ΨNV < 0

where NU and NV denote matrices whose columns form

bases of right null spaces of U and V , respectively.

The following theorem provides us with a solution to the

reduced-order H∞ filtering for dynamic systems with lossy

measurements in terms of two linear matrix inequalities and

a rank constraint condition.

Theorem 1: Consider an H∞ filter (7), of order n̂, with

the H∞ filtering performance level γ, for system (1)-(2) with

lossy measurements (3)-(4). Suppose that 0 < n̂ ≤ n. There

exist a filter matrix F , and matrices P and Q satisfying (14),

if and only if there exist matrices X > 0, Y > 0 and Q > 0

such that









−Y Y Aω 0 Y A

∗ −γ2I 0 0
∗ ∗ −Q 0
∗ ∗ ∗ Q − Y









< 0 (15)









−X 0 XAω XAN2

∗ −I Lω LN2

∗ ∗ −γ2I 0
∗ ∗ ∗ −N τ

1 QN1 + N τ
2 (Q − X)N2









<0 (16)

X − Y ≥ 0 (17)

where

[

N1

N2

]

:= N
[ ρC (1 − ρ)C ]

(18)

and

rank(X − Y ) ≤ n̂ (19)

In this case, if matrices X, Y , and Q are solutions to linear

matrix inequalities (15)-(17) with rank constraint (19), then

there always exist matrices X22 ∈ R
n̂×n̂ with X22 > 0 and

X12 ∈ R
n×n̂ satisfying

X12X
−1
22 Xτ

12 = X − Y (20)

The parametric matrix F defined in (11), of the filter in the

form of (7) with order n̂, can be obtained via solving the

linear matrix inequality:

Ψ + U τFτV + V τFU < 0 (21)
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where

Ψ =





















−X −X12 0 XAω 0
∗ −X22 0 Xτ

12Aω 0
∗ ∗ −I Lω 0
∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ −X22

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

0 XA

0 Xτ
12A

0 L

0 0
0 Xτ

12

−Q 0
∗ Q − X





















(22)

U =

[

0 0 0 0 I 0 0
0 0 0 0 0 ρC (1 − ρ)C

]

(23)

V =

[

Xτ
12 X22 0 0 0 0 0
0 0 −I 0 0 0 0

]

(24)

Remark 4: Theorem 1 provides not only a sufficient con-

dition for the solvability of the reduced-order H∞ filtering

problem for the discrete-time systems with lossy measure-

ment, but also an equivalent condition to Lemma 1. This

equivalence implies that the filter design result derived from

Lemma 1 is more general. It should be pointed out that

the rank-constrained linear matrix inequalities (15)-(19) are

non-convex due to the rank constraint (19). Many techniques

have been presented to solve rank-constrained linear matrix

inequalities (see [7], [11] and the references therein).

IV. CONCLUSIONS

This paper has examined the problem of designing

reduced-order H∞ filters for a class of discrete-time sys-

tems with lossy measurements. The main contribution has

been the development of a reduced-order H∞ filter design

approach by using the projection lemma. The solvability of

the reduced-order H∞ filtering problem with lossy mea-

surements has been linked to the feasibility of two linear

matrix inequalities with a rank constraint, which significantly

facilitates finding out the desired solution.
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