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Abstract— This paper presents a novel application of the two-
time scale controller for the full envelop flight control of a
Rotary wing Unmanned Aerial Vehicle (RUAV). In this paper
flapping and servo dynamics, important from a practical point
of view, is included in the RUAV model. The two-time scale
controller takes advantage of the ‘decoupling’ of the nonlinear
translational and rotation dynamics of the rigid body, resulting
in a two-level hierarchical control scheme. The inner loop
controller (attitude control) tracks the attitude commands and
sets the main rotor thrust vector, while the outer loop controller
(position control) tracks the reference position and control the
flapping angles and the tail rotor thrust vector. High fidelity
RUAV simulation results are used to demonstrate the control
performance. Simulation results show acceptable performance
of the proposed two-time scale controller. The comparison of
control inputs between the proposed two-time scale controller
and an already implemented PID controller show that this
controller is suitable for practical implementation.

Index Terms— Robotics, RUAV model, Backstepping, Position
control, Lyapunov methods, RUAV simulation

I. INTRODUCTION

This paper presents a position and attitude controller for a

rotary wing UAV (RUAV) using two-time scale method. This

paper includes the flapping dynamics and the servo actuator

dynamics from a practical point of view. The overall objec-

tive of this research is the launch and recovery of RUAVs

on moving platform. The proposed algorithm considers a

full envelop flight control including hover and forward flight

condition.

The landing of a RUAV using tether as a guiding mech-

anism is proposed in [1]. In [1] ‘small effects’ due to

rigidity of the blades are ignored [2]; flapping angles are

considered as control inputs resulting in impractical RUAV

control inputs. Flapping angles of a RUAV cannot be set

directly because of the flapping and the flybar dynamics.

Also, servo actuator dynamics play a vital role as mentioned

in [3] and essentially it increases the DOF of the system,

which is an important consideration for the controller design

of an underactuated mechanical system.

The modelling of RUAVs is described in [4]. The design

of linear controllers for RUAVs are proposed using LQG [5],

H2 [6], H∞ [7], µ-synthesis [8] and dynamics inversion [9]

methods. A selected literature review relating to the nonlin-

ear control design techniques includes approximate input-

output linearization [10], differential flatness [11], sliding
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mode [12], backstepping [13], [14], [15], neural-network

based controller [16], fuzzy control [17] and nonlinear H∞

control [18].

The innovation in this paper is the extension of the control

algorithm in providing a correction for the flapping and

the servo dynamics. In this paper, a practical approach is

presented to control the flapping dynamics indirectly. The

method in this paper is proposed with a view to practical

implementation on our RUAV based on the Hirobo Eagle

RC helicopter [1], [19, Fig. 1].

The organization of this paper is as follows. In Section II,

an overview of the nonlinear RUAV model is presented.

The servo actuator dynamics is presented in Section III.

In Section IV, two-time scale flight control of a RUAV is

discussed. This section also discusses a correction control to

include flapping dynamics in the attitude control loop. The

simulation results are given in Section V, and Section VI

presents conclusion of this paper.

II. RUAV MODEL

This section introduces the basic system blocks which

make up the complete dynamics of the RUAV as shown

in Fig. 1. This model is based on the nonlinear rigid body

dynamics [11], where forces and moments due to main rotor,

tail rotor, fuselage and empennage are acting on the center

of mass of the body. The position of the origin of the body

is denoted by ζ = [x, y, z]T in the inertial frame. Linear

velocities along the axes of the body frame are given by

V = [u, v, w]T . The angular velocity expressed in the body

frame is defined as ω = [p, q, r]T . The Euler angles denoted

as η = [φ, θ, ψ]T establish a kinematic relationship with the

angular velocities η̇ = πω, where π is given in [15].
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Fig. 1. Schematic of Rotary wing UAV dynamics

Assumption 1 Euler angles are used in the model to rep-

resent the geometric coordinates. This representation has a

geometric singularity at θ = ±90 deg. It is assumed that the

flight condition never reaches this singularity condition.
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A brief description of the each sub-system shown in Fig. 1 is

given as follows:

A. Rigid-Body Dynamics

The nonlinear rigid-body dynamics in terms of transla-

tional and rotational dynamics of the airframe is given by:

ζ̇ = V (1)

mV̇ = mge3 +Rfb (2)

η̇ = πω (3)

Iω̇ = −ω × Iω +M (4)

where I is the inertia matrix, m is the mass of the body and

R ∈ SO(3) is a rotation matrix between the body and the

inertial frame. The parameterized R in terms of the Euler

angles is given in [20]. The gravitational force mge3 is

explicitly included where e3 is a unit vector with one in the

third place. Note that the external forces fb = [X,Y, Z]T

and moments M = [L,R,N ]T are acting on the center of

mass of the body due to main and tail rotor, fuselage and

empennage.

B. Main and Tail rotor

The main rotor blade flapping a1, b1 and the main and tail

rotor thrusts Tmr, Tt create appropriate forces and moments

on the (RUAV) rigid body. The compilation of the forces and

moments due to the main and the tail rotor of a RUAV are

given as follows [21]:





Xm

Ym

Zm



 =





−Tmra1

Tmrb1 + Tt

−Tmr



 (5)





Lm

Rm

Nm



 =





dL
db1
b1 + Ym.MZ + T t.TZ
dM
da1

a1 +Xm.MZ

MQ + Ym.MX + T t.TX



 (6)

The main rotor torque MQ can be computed using an

approximation given in [22]. Note that there exists algebraic

relationships between Tmr and δcol and also between Tt and

δped [20, p. 1958].

First order flapping dynamics for the Eagle RUAV is given

by:

ȧ1 = −
a1

τf
+ q +

Ac

τf
c+

Alon

τf
δlon (7)

ḃ1 = −
b1

τf
− p+

Bd

τf
d+

Blat

τf
δlat (8)

ċ = −
c

τs
+ q +

Clon

τs
δlon (9)

ḋ = −
d

τs
− p+

Dlat

τs
δlat (10)

where δlat, δlon are servo actuator outputs, c, d are fly-

bar flapping angles and τf , τs are the main rotor flap-

ping and flybar time constants. The identified parameters

Ac, Alon, Bd, Blat, Clon, Dlat for the Eagle RUAV are given

in Table I. Apart from the dominant forces and moments

due to the main and tail rotor, relative wind acting on the

helicopter produces forces due to the fuselage and verti-

cal/horizontal wings which is given in the next paragraph.

C. Fuselage and Empennage

The forces and moments due to fuselage and empennage

are given as follows [23, p. 115]:

[Xfs, Yfs, Zfs]
T

=
ρ

2

[
Fax u

2, Fay v
2, Faz w

2
]T

(11)

[Lfs, Rfs, Nfs]
T

= [0, 0, 0]
T

(12)

[Xv, Yv, Zv]
T

= [0, Fvt, 0]
T

(13)

[Lv, Rv, Nv]
T = [Fvt vtx, 0, Fvt vtz]

T
(14)

where Fax, Fay, Faz are the coefficients of the drag force

relative to the center of gravity of the body and Fvt is an

aerodynamic force due to vertical tail.

Forces fb = [X,Y, Z]T and moments M = [L,R,N ]T

in (2) and (4) are obtained by putting together (5)–(6) and

(11)–(14) given by:

X = Xm +Xfs +Xv (15)

Y = Ym + Yfs + Yv (16)

Z = Zm + Zfs + Zv (17)

L = Lm + Lfs + Lv (18)

R = Rm +Rfs +Rv (19)

N = Nm +Nfs +Nv (20)

III. SERVO ACTUATOR DYNAMICS

Radio controlled servo actuators are an essential part of

RUAVs. Servo dynamics sets a constraint in designing a

controller due to delay and rate limitation. The delay and rate

limit due to servo actuators degrade the stability margin and

hence this needs to be considered during the control system

design. To model the servo (JR DS8231) dynamics separately

and to explicitly include the rate limit, experiments were

conducted on servo actuators with a sinusoidal chirp as the

test input as shown in the Fig. 2. Apart from rate limitation,

the first pole which occurs at about 5Hz imposes a bandwidth

limitation in designing a controller. The frequency response,

at different input signal amplitudes, is shown in Fig. 3.

The first order servo actuator model is given by:

δ̇i = −τiδi + ui (21)

where i = lat, lon; the time constant τi is 0.04 sec. A rate

limitation for the input ui is set to ±2.5 deg in simulation.

Servo
Power 

supply
Real-time

    DSP

PWM

Analogue Signal

Fig. 2. Block diagram of the radio controlled servo actuator identification

Assumption 2 The Eagle platform is equipped with fast

digital servos (NES-8700G) for the tail rotor pitch control
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Fig. 3. Frequency response of DS8231 servo actuator

with active yaw damping system. It is assumed that the servo

dynamics is much faster than the main and the tail rotor

pitch control δcol, δped. The servo actuator dynamics for the

cyclic pitch control δlat, δlon is comparable with that of the

flapping dynamics a1, b1, c, d.

IV. TWO-TIME SCALE CONTROL

The aim of this section is to present a two-time scale

controller, which essentially makes use of separation in the

nonlinear translational and rotational dynamics of the RUAV.

The block diagram of the closed-loop system is shown in

Fig. 4. Two-level hierarchical control scheme contains an

Slow Controller 

(HLC)

Fast Controller 

(LLC)

Xd,Yd,Zd

X,Y,Z

Helicopter 

Dynamics

-d,�d,%0

%0

-,�,%

Tmr

a1,b1,Tt

Fig. 4. Two-time scale-based full envelop flight control of a RUAV

inner loop fast controller (attitude control) and an outer

loop slow controller (position control). The main idea is to

compute the control inputs to achieve the desired thrust and

flapping angles for the commanded position. The proposed

control law is elaborated in the following paragraphs.

A. Design of an Attitude Controller

The rigid-body rotational dynamics from (3)–(4) and the

flapping dynamics from (7)–(10) including servo dynamics

is given below for easy reference:

η̇ = πω (22)

Iω̇ = −ω × Iω +M (23)

ȧ1 = −
a1

τf
+ q +

Ac

τf
c+

Alon

τf
δlon (24)

ḃ1 = −
b1

τf
− p+

Bd

τf
d+

Blat

τf
δlat (25)

ċ = −
c

τs
+ q +

Clon

τs
δlon (26)

ḋ = −
d

τs
− p+

Dlat

τs
δlat (27)

δ̇lat = −τlatδlat + ulat (28)

δ̇lon = −τlonδlon + ulon (29)

The control objective in this section is to design a control

law u = [ulat, ulon, δped] for the system (22)–(29) to track

the desired attitude ηd = [φd, θd, ψd]. To achieve this objec-

tive, a nonlinear design technique called backstepping [24]

is used in this paper. As a first step in using backstepping,

let the starting Lyapunov Function Candidate (LFC) be:

W1 =
1

2
(η − ηd)

T
Kη (η − ηd)

where Kη is a positive definite matrix. The desired attitude

ηd = [φd, θd, ψd] is a reference signal generated by the

position controller then,

Ẇ1 = (πω)T
Kηη̃ (30)

If

ω = ωd △
= −απ−1η̃ (α is scalar α > 0) (31)

where η̃ = (η − ηd) then Ẇ1 ≤ 0. Let us denote π−1 = γ

in (31) for notational simplicity. The process of backstepping

continues by defining an error z1
△
= ω − ωd and having

another LFC as follows:

W2(η, z1) =
1

2
(η − ηd)

T
Kη (η − ηd) +

1

2
zT
1 Iz1

then,

Ẇ2 = zT
1

(
πTKηη̃ − ω × Iω +M + αIγη̇ + αIγ̇η̃

)

+ (πωd)TKηη̃
︸ ︷︷ ︸

≤0

(32)

If

M = ω × Iω − αIγη̇ − αIγ̇η̃ − πTKηη̃ (33)

then Ẇ2 ≤ 0.

Remark 1 The inputs to the attitude controller are the

desired attitude ηd and a nominal value of the main rotor

thrust T̄mr. To achieve the desired attitude the moments M
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should be as given by (33). This value of M is achieved by

setting a1, b1, Tt such that (18)–(20) are satisfied.

The flapping angles a1, b1 can only be controlled indi-

rectly, thus a feedback system is used to minimize an error

between the actual flapping angles and the desired flapping

angles. The flapping angles can be obtained by using the

following rotor moment formulation [4] given by:

ṗ = Kβb1 (34)

q̇ = −Kβa1 (35)

Remark 2 Commercially-Off-The-Shelf (COTS) rate gyros

are used to measure the angular velocities ω = [p, q, r]T of

the Eagle RUAV. We have calculated the roll-acceleration

ṗ and pitch-acceleration q̇ by differentiating the measured

angular velocities and using the accelerations to estimate the

flapping angles a1, b1.

The flapping error dynamics using (24)–(29) can be writ-

ten as,

Ẋe = AeXe +Beũ (36)

where,

Xe = [a1 − ad
1
, b1 − bd

1
, c− cd, d− dd,

δlat − δd
lat, δlon − δd

lon, p, q]
T

ũ =
[
ulat − ud

lat, ulon − ud
lon

]T

The steady-state control inputs ud
lon, u

d
lat can be obtained by

setting ȧ1, ḃ1, ċ, ḋ, δ̇lat, δ̇lon = 0 in (24)–(29). Let us choose

a system LFC given by:

W3(η, z1, Xe) = W2 +XT
e PXe, (37)

where P is a positive definite matrix. Let M = Ud
m + Ũm,

where Ud
m is the value of the right-hand side of (33) with

ad
1
, bd

1
, T d

t and Ũm is yet to be computed “correction” term

which is chosen to make Ẇ3 in the presence of flapping

dynamics negative definite. When the flapping dynamics is

ignored Ũm = 0. The time derivative of (37) along the

system trajectories is then given by:

Ẇ3 = Ẇ2 + zT
1
Ũm +XT

e

(
AT

e P +AeP
)
Xe

+ [ũlat, ũlon]
(
BT

e P +BT
e P

T
)
Xe (38)

Ẇ3 can shown to be non-positive by considering three

separate cases:

1) Xe equals to zero: In this case Ũm is zero because the

actual flapping angles are at their desired values. The

control signal Ud
m will make Ẇ3 = 0.

2) Xe is non-zero and BT
e P + BT

e P
T is not orthogonal

to Xe: In this case choose ũ = KXe, where K is fixed

gain matrix. Substituting this in (38) gives:

Ẇ3 = Ẇ2 + zT
1
Ũm

+XT
e

[

(Ae +BeK)T P + P (Ae +BeK)
]

Xe

︸ ︷︷ ︸

≤0 for suitable K

It is possible to make the Ẇ2+zT
1 Ũm term non-positive

by choosing control as given in Proposition 1 below.

3)
(
BT

e P +BT
e P

T
)
Xe = 0 In this case Proposition 1 can

be used to introduce the tail rotor thrusts to set Ẇ3 = 0

Proposition 1 When
(
BT

e P +BT
e P

T
)
Xe = 0 the tail rotor

thrust T d
t = Tt + T̃t can be chosen such that Ẇ3 = 0,

provided z1(1) 6= 0 or z1(3) 6= 0.

Proof : The derivative of the LFC is given by:

Ẇ3 = Ẇ2 + zT
1
Ũm +XT

e

(
AT

e P +AeP
)
Xe (39)

In the above equation, choose P a positive definite such

that
(
AT

e P +AeP
)

is negative definite. The remaining terms

are given by:

∆Ẇ3 = Ẇ2 + zT
1
Ũm (40)

where, ∆ denotes the remaining terms from (39). Note that,

M = Ud
m + Ũm and in terms of T̄mr, a1, b1, Tt. Note that

T̄mr is a nominal value from the position controller.

Remark 3 The idea here is to choose the tail rotor thrust Tt

to make ∆Ẇ3 = 0, if there are no control inputs available

due to higher DOF.

The Ũm is given by:

Ũm =





dL
db1
b̃1 + (T̄mr b̃1 + T̃t)Mz + T̃tTz

dM
da1

ã1 − T̄mrã1Mz

T̄mrb̃1Mx+ T̃tMx+ T̃tTx





The leftover terms (40) are given by:

∆Ẇ3 = Ẇ2 + zT
1
Ũm

= Ẇ2 + χT
1 z1 + T̄mr(χ

T
2 z1) + T̃t(χ

T
3 z1)

where,

χ1 =





b̃1(
dL
db1

+ T̄mrMz)

ã1(
dM
da1

− T̄mrMz)

0



χ2 =





0
0

b̃1Mx





χ3 =





Mz + Tz

0
Mx+ Tx





The tail rotor thrust T̃t can be chosen in the following

manner to make ∆Ẇ3 = 0.

T̃t =
−χT

1
z1 − T̄mrχ

T
2
z1

χT
3
z1

(41)

provided z1(1) 6= 0 or z1(3) 6= 0.

The above condition shows that it is possible to stabilized

the complete system even when (BT
e P + BT

e P
T )Xe = 0.

The above results are novel and can be used in other control

applications for the underactuated mechanical systems.
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B. Design of an Position Controller

The translational dynamics of the system from (1)–(2) and

(21) is given by:

ζ̇ = V (42)

mV̇ = mge3 +Rfb (43)

The control objective in this section is to design a control

law u = [φd, θd, δcol] for the system (42)–(43) to track the

desired position ζd = [xd, yd, zd].

Proposition 2 If a tracking error exist between η and ηd,

then the attitude converged to the last command η = ηd and

a1, b1, Tt converged to the desired values ā1, b̄1, T̄t.

Proof : See [1, p. 540]

The backstepping technique can be used for the given

system because of its feedback form. The process starts by

having a LFC as follows:

W4 =
1

2
(ζ − ζd)

T (ζ − ζd),

where ζd is a constant then

Ẇ4 = (ζ − ζd)
TV (44)

If

Vd = −
1

m
(ζ − ζd) (45)

then

Ẇ4 = −
1

m
(ζ − ζd)

T (ζ − ζd) ≤ 0

The process of backstepping continues by defining an ‘error’

(z2
△
= mV −mVd) and choosing a system LFC given by:

W5 =
1

2
(ζ − ζd)

T (ζ − ζd) +
1

2
zT
2 z2

then

Ẇ5 = (ζ − ζd)TVd
︸ ︷︷ ︸

≤0

+(ζ − ζd)
T z2 + zT

2
(Rfb +mge3 + V )

If

Rfb = −Kp(ζ − ζd) −KdV −mge3 (46)

where, Kp,Kd are diagonal gain matrices and Kp,Kd ≥ 0
then Ẇ5 ≤ 0.

Assumption 3 It is assumed that the desired heading ψd is a

constant value ψ0 and provided by the user. This assumption

is valid because ψ will converged to ψ0 in the attitude control

loop and it enables pilot to set the desired heading.

Remark 4 The forces fb in (46) are in terms

of ā1, b̄1, T̄t, Tmr given in (15)–(17). Note that at this

stage ā1, b̄1, T̄t are the desired values. This leads to

the solution of three nonlinear algebraic equations for

TABLE I

PARAMETERS OF THE EAGLE RUAV

Parameter Description

m = 8.2 Kg helicopter mass

Ixx, Iyy, Izz = 0.23,0.82,0.4 Kg.m2 Inertia components

Mx, Mz = 0,-0.284 Main rotor distances w.r.t C.G.

Tx, Tz = -0.915,-0.104 Tail rotor distances w.r.t C.G.

Kβ =270 Main rotor hub spring constant

τs, τf = 0.226, 0.027 sec Flapping time constants

Ac, Bd= 0.152,0.136 rad/ms Bell-mixer derivative

Alon, Blat = 0.19,0.17 rad/ms Stick to swash-plat gearings

Clon, Dlat = 1.58,1.02 rad/ms Stick to swash-plate gearings

φ, θ, Tmr using (46) and (15)–(17). The nonlinear equations

are solved using the Newton-Raphson method with initial

condition [0, 0,−80] and solution converged after 10

iterations.

V. SIMULATION

Performance of the controller is tested using a high fidelity

RUAV simulation [25] including flapping dynamics. The

two-time scale controller simulation results are shown in

Fig. 5. Simulation is done for the case where the ini-

tial position ζ = [−5.0, 0,−2]T and the desired position

ζd = [−5.0,−1.0,−4.0]T . The control inputs obtained

using two-time scale controller are compared with a PID

controller in Fig. 5. Note that the same initial and desired

positions are used for the PID controller and the proposed

two-time scale controller in this simulation. The proposed

controller shows control input values suitable for practical

implementation.

VI. CONCLUSION

In this paper, a position control of a RUAV is presented

including the flapping and the servo actuator dynamics.

The proposed controller is based on two-level hierarchical

control scheme, i.e, inner loop attitude control and outer

loop position control. The simulation results confirm the

asymptotic stability of the position and attitude control loops.

This paper contributes novel results in presenting a detailed

analysis of the flapping correction dynamics which is an

essential part for the control implementation purposes on

RUAVs. The RUAV model presented in this paper is based

on the minimum complexity helicopter model, but captures

the key dynamics of the platform. Work is in progress to

implement the proposed controller on our Eagle RUAV.
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Fig. 5. Simulation results of the two-time scale controller at sampling time 0.02 sec.

[4] V. Gavrilets, B. Mettler, and E. Feron, “Nonlinear model for a small-
size acrobatic helicopter,” in AIAA Conference on Guid., Navig., and
Control, Montreal, Quebec, Canada, August 2001.

[5] J. Morris, M. Van Nieuwstadt, and P. Bendotti, “Identification and
control of a model helicopter in hover,” in Proceedeings of the

American Control Conference, vol. 2, June 1994, pp. 1238–1242.

[6] M. Takahashi, “Synthesis and evaluation of an H2 control law for
a hovering helicopter,” J. Guid., Control, Dyn., vol. 16, no. 3, pp.
579–584, 1993.

[7] H. Shim, T. Koo, F. Hoffmann, and S. Sastry, “A comprehensive study
of control design for an autonomoushelicopter,” in IEEE Conference

on Decision and Control, vol. 4, December 1998.

[8] G. Dudgeon and J. Gribble, “Helicopter attitude command attitude
hold using individual channel analysis and design,” J. Guid., Control,

Dyn., vol. 20, no. 5, 1997.

[9] S. Snell and P. Stout, “Robust longitudinal control design using
dynamic inversion and quantitative feedback theory,” J. Guid., Control,

Dyn., vol. 20, no. 5, pp. 933–940, 1997.

[10] R. Mahony and R. Lozano, “(Almost) exact path tracking control for
an autonomous helicopter in hover manoeuvres,” in IEEE Conference

on Robotics and Automation, 2000, pp. 1245–1250.

[11] T. Koo and S. Sastry, “Output tracking control design of a helicopter
model based on approximate linearization,” in IEEE Conference on

Decision and Control, vol. 4, December 1998, pp. 3635–3640.

[12] J. Pieper, “Application of SLMC: TRC control of a helicopter in
hover,” in Proceedeings of the American Control Conference, June
1995, pp. 1191–1195.

[13] R. Mahony and T. Hamel, “Robust trajectory tracking for a scale model
autonomous helicopter,” Journal of Robust Nonlinear Control, vol. 14,
pp. 1035–1059, 2004.

[14] H. Pota, B. Ahmed, and M. Garratt, “Velocity control of a UAV using
backstepping control,” in IEEE Conference on Decision and Control,
San Diego, CA, USA, 13–15 December 2006, pp. 5894–5899, ISBN
1-4244-0342-1.

[15] B. Ahmed and H. Pota, “Backstepping-based landing control of a

RUAV using tether incorporating flapping correction dynamics,” in
Proceedeings of the American Control Conference, Seattle, Washing-
ton, USA, June 2008, pp. 2728–2733, ISBN 1-4244-2079-7.

[16] J. Prasad, A. Calise, Y. Pei, and J. Corban, “Adaptive nonlinear
controller synthesis and flight test evaluation,” in IEEE Conference
on Control Applications, 1999, pp. 137–142.

[17] C. Sanders, P. DeBitetto, E. Feron, H. Vuong, and N. Leveson, “Hier-
archical control of small autonomous helicopters,” in IEEE Conference

on Decision and Control, vol. 4, December 1998, pp. 3629–3634.
[18] C. Yang, W. Liu, and C. Kung, “Nonlinear H∞ decoupling control

for hovering helicopter,” in Proceedeings of the American Control

Conference, May 2002, pp. 4353–4358.
[19] M. Garratt, B. Ahmed, and H. Pota, “Platform enhancements and

system identification for control of an unmanned helicopter,” in IEEE

Conference on Control, Aut., Robotics and Vision — ICARCV 2006,
Singapore, 5–8 December 2006, pp. 1981–1986, ISBN 1-4244-0342-1.

[20] B. Ahmed, H. Pota, and M. Garratt, “Rotary wing UAV position
control using backstepping,” in IEEE Conference on Decision and

Control, New Orleans, LA, USA, December 2007, pp. 1957–1962,
ISBN 1-4244-1498-9.

[21] R. Prouty, Helicopter Performance, Stability, and Control. PWS
Engineering, 1986.

[22] T. Koo and S. Sastry, “Differential flatness based full authority heli-
copter control design,” in IEEE Conference on Decision and Control,
vol. 2, December 1999, pp. 1982–1987.

[23] G. Padfield, Helicopter flight dynamics: The theory and application

of flying qualities and simulation modeling. AIAA, 1996.
[24] H. Khalil, Nonlinear Systems, 3rd ed. Englewoo Cliffs, NJ: Prentice

Hall, 2002.
[25] M. Garratt, “Biologically inspired vision and control for an au-

tonomous flying vehicle,” Ph.D. dissertation, Australian National Uni-
versity, October 2007.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThB18.3

5047


