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Abstract— Motivated by some crowd motion models in the
presence of noise, we consider an optimal control problem
governed by the Fokker-Planck equation. We sketch optimality
conditions by means of an Hamilton-Jacobi-Bellman equation
and we give a monotonic scheme for the numerical approxima-
tion of the solution.

I. INTRODUCTION

Our aim is to solve numerically the following optimization

problem:

inf E(ρ, v) :=

∫ 1

0

∫

Rd

1

2
|v(t, x)|2ρ(t, x)dxdt

+

∫

Rd

V (x)ρ(1, x)dx (1)

governed by the Fokker-Planck equation

∂tρ − ε2∆ρ + div(ρv) = 0 on (0, 1) × R
d (2)

with (given) initial datum ρ(0, .) = ρ0 where ρ0 is a

probability measure on R
d.

The main motivation for this model comes from macro-

scopic crowd motion modelling (see the recent papers of

Maury and Venel [10] and Buttazzo, Oudet and Jimenez [3]).

Let us mention that in the case ε = 0 and if one imposes
a prescribed value ρ1 to ρ(1, .) instead of having a terminal
cost in (1), then the minimal value of the cost is exactly

the squared 2-Wasserstein distance between ρ0 and ρ1: this

is the dynamic formulation of the optimal transportation

due to Brenier and Benamou [1]. In [3], Buttazzo, Jimenez

and Oudet, building upon Brenier-Benamou formulation,

consider the minimization of the sum of the kinetic energy

and an additional term taking into account congestion effects

(e.g. the integral of ρ2), the state equation is the continuity

equation (ε = 0) and both initial and terminal probabilities
ρ0 and ρ1 are prescribed. In the model (1)-(2), one looks

for the optimal motion of a crowd that is initially distributed

according to ρ0 and whose dynamics is governed by (2).

As usual, the diffusion term in (2) amounts to considering

that the individual dynamics of particles is governed by

a stochastic differential equation with volatility
√

2ε. The
cost functional E that we consider involves the total kinetic
energy (as in [1] and [3]) plus a terminal cost given by a

potential V . The interpretation of this terminal cost is that
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Université Paris IX Dauphine, Pl. de Lattre de Tassigny, 75775
Paris Cedex 16, France. carlier@ceremade.dauphine.fr ,
salomon@ceremade.dauphine.fr

the crowd aims to reach zones of low potential V at the
terminal time 1 (as an extreme case, if V is 0 on some set
K and +∞ elsewhere then the aim of the crowd is to be

in the safe zone K at the terminal time). Some variants and
generalizations of this simple model present some similarities

with Mean-Field Games recently introduced by J.-M. Lasry

and P.-L. Lions ([5] [6] [7]).

II. OPTIMALITY CONDITIONS

In this section, we give an informal description of the

optimality conditions for the minimization problem (1)-(2)

(existence results, detailed proofs and generalizations to a

wider class of functionals will be given in [4]). Let us start by

remarking, as in Brenier and Benamou [1] that E is convex
in the variables (ρ,m) := (ρ, ρv) and the Fokker-Planck
equation is linear in these variables. By a strict convexity

argument, there is in fact uniqueness of the minimizer. Let us

now note that (2) together with the Cauchy datum ρ(0, .) =
ρ0 can be written in the weak form as

∫

Rd

(φ(1, x)ρ(1, x) − φ(0, x)ρ0(x))dx

=

∫ 1

0

∫

Rd

(∂tφ + ε2∆φ + v · ∇φ)ρ dxdt (3)

for every φ ∈ C∞
c (R×R

d). Following Brenier and Benamou
[1], we then introduce the Lagrangian:

L(ρ, v, φ) := E(ρ, v)+

∫ 1

0

∫

Rd

(∂tφ + ε2∆φ + v · ∇φ)ρdxdt

−
∫

Rd

φ(1, .)ρ(1, .)dx +

∫

Rd

φ(0, .)ρ0dx

and rewrite (1)-(2) as:

inf
(ρ,v)

sup
φ

L(ρ, v, φ). (4)

The (formal) dual is obtained by permuting the inf and the

sup and the conditions characterizing the saddle-point of L
read as (2) together with:

v = −∇φ, (5)

∂tφ +
1

2
v2 + v · ∇φ + ε2∆φ = 0, (6)

φ(1, .) − V = 0. (7)

Thus, at least formally (i.e. ignoring regularity issues), the

minimization problem (1)-(2) admits a unique solution (ρ, v)
where the optimal velocity is given by v := −∇φ and φ
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is the solution of the (backward) Hamilton-Jacobi-Bellman

equation:

∂tφ + ε2∆φ − 1

2
|∇φ|2 = 0, (8)

φ(1, .) = V.

Now, the optimal density ρ is obtained by solving the Fokker-
Planck equation (2) with v = −∇φ, which can be done
as follows. Considering the stochastic differential equation

(assuming φ is regular enough):

dXx
t = −∇φ(t,Xt)dt +

√
2ε dBt, Xx

0 = x (9)

(where (Bt)t is the standard Brownian motion) then it is a

well-known consequence of Itô’s lemma that ρ(t, .) is the
probability law of Xt whenever X0 is distributed according

to the probability ρ0, which more precisely means
∫

Rd

ψ(x)ρ(t, x)dx =

∫

Rd

E(ψ(Xx
t ))ρ0(x)dx (10)

for every test-function ψ. The description above deals with
the problem (1)-(2) on the whole space. In the whole space,

Eq.(8) can be solved explicitly since, using the Hopf-Cole

transformation, it reduces to the heat equation.

In our numerical simulations, we will focus on the case of

a bounded domain Ω (which requires to consider additional
boundary conditions like the Neumann homogeneous bound-

ary conditions v · n = 0 in (2) and ∂nρ = 0 in (8) on
(0, 1)×∂Ω). In this case, the corresponding Hamilton-Jacobi-
Bellman equation does not admit a closed-form solution.

III. DISCRETE SETTING

Before presenting the optimization algorithm, we intro-

duce the following discretization of the problem. Even if

what follows easily generalizes to 2D and 3D situations, we

will focus in the rest of that paper on the 1D-case for the
sake of simplicity. Given a matrix C, we denote by C∗ its

transpose matrix.

Let us consider two positive integers M,N and a positive
real number L. We consider here the case of the bounded
space domain [0, L] for (2). We define the time and space
steps by ∆t = 1

N and ∆x = L
M and denote for j = 0, ...,M ,

i = 0, ..., N by ρi
j and ρj the numerical approximations

of ρ(i.∆t, j.∆x) and ρ(·, j.∆x) respectively. For reasons
that will appear later, the discrete velocity is defined at

the points (i.∆t, (j + 1/2).∆x), and is therefore denoted
by vi

j+1/2. To be consistent with the fact that the total

mass of [0, L] is constant in time, at the discrete level, we
impose the homogeneous Neumann boundary condition for

ρ complemented by vi
1/2 = vi

M−1/2 = 0, for i = 0...N − 1.

We shall also use the notations vi = (vi
j+1/2)j=0...M−1 and

ρi = (ρi
j)j=1...M−1.

A. Discretized cost functional

From now on, v stands for the discrete velocity (vi
j+1/2)i,j

and V is the vector of components Vj = V (j.∆x). We

consider the following discrete version of the cost functional

E:

E∆t,∆x(v) : = ∆t.∆x
N−1∑

i=0

M−1∑

j=1

1

2
qj(v

i)ρi
j

+∆x

M−1∑

j=1

Vjρ
N
j

= ∆t
N−1∑

i=0

1

2
〈ρi, q(vi)〉 + 〈ρN , V 〉

where 〈·, ·〉 is the scalar product on R
M−1 defined by:

〈u, v〉 = ∆x

M−1∑

j=1

ujvj .

The vector q(vi) = (qj(v
i))j=1...M−1 is defined from vi by:

qj(v
i) =

(vi
j−1/2)

2 + (vi
j+1/2)

2

2
.

This choice corresponds to use a trapezoid rule to approxi-

mate |v|2 in the first integral of (1).

B. Numerical scheme for the Fokker-Planck equation

The preservation of the positivity of ρ at the discrete level
appears in numerical simulation as a crucial issue, especially

for small values of ε. Indeed, the linearity of E with respect
to ρ leads to numerical instabilities when using schemes
which do not possess this property, independently of their

order of accuracy. This fact motivates the use of a low order

Godunov scheme for the advective part of (2) which ensures

both small computational cost and positivity of the numerical

solutions.

Remark 1: In addition, this framework enables us to avoid

the introduction of Lagrange multipliers corresponding to the

constraint ρ ≥ 0.
We are now in the position to define the numerical solver of

(2). Starting from ρ0
j = ρ0(j.∆x), ρi

j is computed iteratively

for j = 1...M − 1 by:

ρi+1
j = ρi

j + ε2 ∆t

∆x2
(ρi

j+1 − 2ρi
j + ρi

j−1)

− ∆t

∆x
(ρi

j+1/2v
i
j+1/2 − ρi

j−1/2v
i
j−1/2). (11)

In this equation, the terms ρi
j+1/2 and ρi

j−1/2 of the advective

part are defined according to a Godunov scheme, i.e. using

up-winding:

ρi
j+1/2 =

{
ρi

j+1 if vi
j+1/2 < 0

ρi
j if vi

j+1/2 ≥ 0.

To simplify our notations, we rewrite (11) as:

ρi+1 =
(
A + B(vi)

)
ρi,

where A corresponds to the identity matrix plus the discrete
Laplace operator, i.e. the first two terms of the right hand-

side of (11), and B is associated to the advective part, i.e.
the last term of the right hand-side of (11).
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Given a positive vector ρi, it is a simple matter to check

that a sufficient condition to guarantee the positivity of ρi+1

(and the stability of the scheme) is:

∀j = 1...M − 1, |vi
j+1/2| ≤ λ :=

∆x

2∆t
− ε2 1

∆x
. (12)

IV. OPTIMIZATION PROCEDURE

In order to compute efficiently a minimizing sequence, we

use a so called monotonic scheme. This approach has already

shown a great efficiency in the field of optimal quantum

control [8], [9], [12], where gradient methods usually lead

to numerical instabilities. These types of algorithms apply

for bilinear control problems and are based on a special

factorization of the variations in E∆t,∆x that is presented

in the next sections.

A. Adjoint state

In the approach we follow, a crucial role is played by the

adjoint state φi = (φi
j)j=1...M−1 that is defined iteratively

for i = 0...N , by the backward propagation:

φN = V,

φi =
(
A∗ + B∗(vi)

)
φi+1 +

∆t

2
q(vi). (13)

This variable is the discrete version of the Lagrange multi-

plier defined by (5-7).

B. Variations in E∆t,∆x

We present now the algebraic manipulations at the heart of

the monotonic schemes. Let us consider two controls v and v′

and the corresponding solutions (ρi)i=0...N and (ρ′i)i=0...N

of (11). In what follows, the adjoint φ = (φi)i=0...N

corresponds to v. One has:

E∆t,∆x(v′) − E∆t,∆x(v) =
∆t

2

N−1∑

i=0

〈ρ′i, q(v′i) − q(vi)〉

+
∆t

2

N−1∑

i=0

〈ρ′i − ρi, q(vi)〉

+
N−1∑

i=0

〈ρ′i+1 − ρi+1, φi+1〉 − 〈ρ′i − ρi, φi〉

=
∆t

2

N−1∑

i=0

〈ρ′i, q(v′i) − q(vi)〉

+

N−1∑

i=0

〈
(
B(v′i) − B(vi)

)
ρ′i, φi+1〉.

This identity can also be expressed locally through the

formula:

E∆t,∆x(v′) − E∆t,∆x(v) = ∆t.∆x

N−1∑

i=0

M−2∑

j=1

∆i
j(v

′, v),

where:

∆i
j(v

′, v) =
ρ′ij + ρ′ij+1

2

( (v′i
j+1/2)

2 − (vi
j+1/2)

2

2

)

+
(
ρ′ij+1/2v

′i
j+1/2 − ρ̃′

i

j+1/2v
i
j+1/2

)(φi+1
j+1 − φi+1

j

∆x

)
. (14)

In this equation, we have introduced

ρ̃′
i

j+1/2 =

{
ρ′ij+1 if vi

j+1/2 < 0

ρ′ij if vi
j+1/2 ≥ 0.

Remark 2: Given v, note that the value of ρ′i
j+1/2 depends

on the sign of v′i
j , so that v

′i
j 7→ ∆i

j(v
′, v) is a continuous,

piecewise polynomial function.

C. Optimization strategy

This section provides a brief exposition of the optimization

strategy we follow to solve our problem.

Given v and a positive real number θ, We define v′i
j as a

solution of

∆i
j(v

′, v) = −θ
ρ′ij + ρ′ij+1

2
(v′i

j+1/2 − vi
j+1/2)

2. (15)

According to Remark 2, this equation may have one, two or

four roots, including the trivial one v′i
j = vi

j . When possible,

we define v′i
j as the root of (15) that is closer to vi

j , and

we set v′i
j = vi

j otherwise. Thus, the monotonicity of our

algorithm is guaranteed.

Let us give the explicit formula corresponding to this

procedure. We suppose that
ρ′i

j +ρ′i
j+1

2 > 0, otherwise the
contribution of this term is zero for all choice of v′i

j+1/2.

We introduce

δ =
2

θ + 1
,

νi
j+1/2 =

2ρ̂′ij+1/2

ρ′ij + ρ′ij+1

,

and

ν̃i
j+1/2 =

2ρ̃′
i

j+1/2

ρ′ij + ρ′ij+1

,

with

ρ̂′ij+1/2 =

{
ρ′ij+1 if ρ̃′ij+1/2 = ρ′ij
ρ′ij if ρ̃′ij+1/2 = ρ′ij+1

.

Consider now:

αi
j+1/2 = (1 − δ)vi

j+1/2 + δνi
j+1/2

φi+1
j+1 − φi+1

j

∆x
,

βi
j+1/2 =

−bi
j+1/2 − sign(vi

j+1/2)
√

(bi
j+1/2)

2 − 4ai
j+1/2.c

i
j+1/2

2ai
j+1/2

,

where sign is the function

sign(x) =

{
1 if x ≥ 0
−1 if x < 0,

and :

ai
j+1/2 = 1 + θ,

bi
j+1/2 = −2(θvi

j+1/2 + νi
j+1/2

φi+1
j+1 − φi+1

j

∆x
),

ci
j+1/2 = θ(vi

j+1/2)
2 + ν̃i

j+1/2

φi+1
j+1 − φi+1

j

∆x
.
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The control v′i
j can be expressed by :

v′i
j+1/2 =

{
αi

j+1/2 if vi
j+1/2.α

i
j+1/2 ≥ 0

βi
j+1/2 if vi

j+1/2.α
i
j+1/2 < 0.

(16)

D. Constraints on v

We recall that the bound (12) on the velocity v is crucial
for the positivity of the density. As the stability of our

optimization scheme is based on the positivity of the variable

ρ, the strategy presented in the last section has to include
a slop-limiter such that (12) prevails. Instead of defining

v′i
j+1/2 through (16), we alternatively denote by v̌i

j+1/2 the

value obtained in (16) and consider the definition:

v′i
j+1/2 = sign(v̌i

j+1/2).min(λ, |v̌i
j+1/2|). (17)

It is easy to check that this modification does not spoil the

monotonicity of our procedure, as soon as v satisfies (12).

E. Algorithm

We can now define precisely our optimization algorithm.

Suppose that vk is given. The computation of vk+1 is

achieved as follows.

• Define φk by (13) with v = vk.

• Define ρ0 = ρ0 and compute iteratively ρi from ρi−1

according to the sub-steps:

– define (vk+1)i−1 by (17) where v̌i
j+1/2 is computed

with φ = φk,

– define (ρk+1)i by (11) with vi−1 = (vk+1)i.

A possible termination criterion is obtained by checking

the discrete optimality conditions, i.e., given a tolerance

threshold Tol > 0:

sup
1≤i≤N−1,1≤j≤M−1

( ∣∣∣∣
(ρk)i

j+(ρk)i
j+1

2 (vk)i
j+1/2

+(ρk)i
j+1/2

(φk)i+1

j+1
−(φk)i+1

j

∆x

∣∣∣∣
)
≤ Tol.

(18)

Remark 3: Note that the necessity of the computation of

ρ only comes from the Godunov scheme. Indeed, the formal
gradient of the Lagrangian with respect to v is:

∇vL(ρ, v, φ) = ρ(v + ∇φ),

so that only v and φ are necessary to determine the descent
direction. This additional computation substitutes the com-

putation of a Lagrange multiplier associated to the positivity

constraint that applies on ρ.

V. NUMERICAL RESULTS

This section aims at presenting some numerical results

obtained with our approach. In our algorithm we choose

θ = 1.
Numerical simulations exhibit very good convergence re-

sults. This is explained by the fact that the discrete energy

E∆t,∆x decreases with the iterations of our algorithm and by

the strict convexity of E in the variables (ρ, ρv) which yields
uniqueness of the minimizer characterized by the conditions

of section II.

A. The 1D-case

We first focus on the computation of optimal transportation

between two Gaussian densities in Ω = [0, 1]. We choose:

V (x) = 5(1 − e−10(x−0.2).2 − e−10(x−0.8)2).

In a first example, the initial probability is symmetric with

respect to space and defined by :

ρ(0, x) = e−10(x−0.5)2 .

A second test is done with a initial condition that has been

slightly shifted to the right. These two results are obtained

with ε = 0. The case ε > 0 is treated in a third test.

These functions and the final state are represented in Fig.

1. A fast convergence is observed. In the framework we work,
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0
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0
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Fig. 1. Evolution of ρ in the 1D-case. Dashed line : initial datum, solid line
: final probability, dotted line : potential. Top: symmetric initial probability.
Middle: slightly shifted initial probability. Bottom: case ε2 = 10−2.

the control v has 5.104 components. Only 100 iterations, and

a CPU time1 of 196.64s are required to obtained numerical

convergence. The cost functional values together with the

termination criterion defined in (18) are depicted in Fig. 2.

1The computation are done using the free software OCTAVE
(http://www.octave.org ).
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0
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1

1.5
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2.5

Fig. 2. Numerical convergence in the 20 first iterations. Solid line : Values
of E∆t,∆x. dashed line : values of the termination criterion defined in (18)
(rescaled).

B. The 2D- case

The algorithm is tested in the 2-dimensional case, with

Ω = [0, 1] × [0, 1]. We consider the initial probability :

ρ(0, x, y) = e−10(x−0.2)2 + e−10(y−0.2)2 ,

and the potential :

V (x, y) = 40(1 + e−10(y−0.8)2 − e−10(x−0.8)2

+e−10(y−0.5)2 − e−10(x−0.5)2).

This potential is represented in Fig. 3. The evolution of the
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Fig. 3. Potential V (x, y).

probability ρ during the transportation is depicted in Fig.
4. As it was the case in 1D, the numerical convergence is
obtained in about 100 iterations.
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Paris VII).

REFERENCES

[1] J.-D. Benamou and Y. Brenier, A computational fluid mechanics
solution to the Monge-Kantorovich mass transfer problem , Numer.

Math., vol. 84 (3), 2000, pp 375-393.

0

0.005

0.01

0.015

0.02

0.025

0.03

0

0.2

0.4

0.6

0.8

1

0

5

10

15

20

25

30

35

0

0.005

0.01

0.015

0.02

0.025

0.03

0

0.2

0.4

0.6

0.8

1

0

2

4

6

8

10

12

14

0

0.005

0.01

0.015

0.02

0.025

0.03

0

0.2

0.4

0.6

0.8

1

0

5

10

15

20

25

0

0.005

0.01

0.015

0.02

0.025

0.03

0

0.2

0.4

0.6

0.8

1

0

50

100

150

200

250

300

350

Fig. 4. Evolution of ρ in the 2D-case. Top: initial probability. Middle:
probability at time t = .5 and t = .75. Bottom: final probability.

[2] Y. Brenier, Polar factorization and monotone rearrangement of vector-
valued functions, Comm. Pure Appl. Math., vol. 44 (4), 1991, pp 375-
417.

[3] G. Buttazzo, E. Oudet and C. Jimenez, An optimization problem for
mass transportation with congested dynamics, preprint available at
http://cvgmt.sns.it/people/buttazzo/, 2007.

[4] G. Carlier and J. Salomon, work in preparation.
[5] J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas station-
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