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Abstract— This paper investigates the problem of global
consensus between a complex dynamical network (CDN) and
a known goal signal by designing an impulsive consensus
control scheme. The dynamical network is complex with respect
to the uncertainties, non-identical nodes and coupling time-
delays. The goal signal can be a measurable vector function
or a solution of a dynamical system. By utilizing Lyapunov
function and Lyapunov-Krasovskii functional methods, robust
global exponential stability (RGES) criteria are derived for
the error system, under which global exponential consensus
is achieved for the complex dynamical networks. These criteria
are expressed in terms of LMIs and algebraic inequalities.
Thus, the impulsive controller can be easily designed by solving
the derived inequalities. Meanwhile, the estimations of the
consensus speed rate for global exponential consensus is also
obtained. One example with numerical simulations is worked
out for illustration.

I. INTRODUCTION

Synchronization of chaotic systems and its potential appli-

cations to secure communication has been an active research

area since the 1990’s. Numerous methods have been devel-

oped for chaos synchronization (see, for example, [1-11]).

Recently, synchronization of complex dynamical networks

(CDNs) is also reported in the literature (see, for exam-

ple, [12-27]). The complex dynamical network consists of

coupled nodes, which are usually dynamical systems. There

have been proposed several approaches for synchronization

of a CDN, for example, feedback control synchronization

(see, for example, [22-23]), adaptive synchronization [20],

synchronization based on the invariance principle [10], state-

observer-based approach [26], and impulsive synchronization

[34], etc.

It has been noticed that the complex dynamical networks

(CDNs) studied in the literature have the following limita-

tions: (i) the coupled nodes have the same dynamics; (ii)

by using the linearization technique and matrix eigenvalue

method, most synchronization criteria are local; (iii) uncer-

tainty and time delays which are common in practical CDNs

have not been studied fully, although there are published

results ([8, 15, 20, 34]) which study the robust synchroniza-

tion problem with respect to uncertainties, and some ([21-

24]) deal with a single constant time delay. Uncertainties

often occur due to the uncertainties of parameters, modeling
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mismatches, measurement errors, approximations, channel

noises etc. And time delays occur commonly due to the

congestion of the network traffic and the fact that the

switching and spreading speed of the hardware and circuit

implementation is finite. Moreover, the time delays presented

in many real synchronization schemes are difficult to know

a priori and they are in the form of multiple time delays and

time-varying.

The CDNs with non-identical nodes represent more gen-

eral and practical networks than the models typically studied

in the literature. Moreover, to the best of our knowledge,

no literature has been published for the consensus problem

between CDNs and a known goal function. However, allow-

ing different dynamics of nodes in a CDN brings difficulties

in achieving consensus. If the uncertainty and time delays

occur simultaneously in a CDN with non-identical nodes,

and consensus is to be achieved to a known goal function, it

will be much more difficult to use previous synchronization

control schemes, specially for the global consensus problem.

Hence, there is a need to study new consensus control

schemes which can achieve the objective.

In this paper, we propose an impulsive consensus control

scheme for the consensus problem between CDNs and the

known signal. In this control scheme, the control signal is

designed to input into the CDN as follows: at impulsive

instances, the impulse signal is input into the nodes, and at

other times, the signal containing the goal signal is input

into the nodes. Hence, this control scheme is a type of

impulsive control scheme. Impulsive control arises naturally

from a wide variety of applications, such as drug adminis-

tration, spacecraft control, inspection processes in operations

research, native forest ecosystems management, just to name

a few. Based on the stability theory of impulsive systems (see

[28-30, 35-38], and references therein), the impulsive control

method (see [31-33, 39] and references therein) provides

greater prospect for solving many problems that are basically

defined by continuous dynamical systems, but on which only

discrete-time actions are exercised. An essential benefit of the

impulsive control approach may be derived from the fact that

such controls are typically simpler and cheaper to implement.

In [9], impulsive control was first introduced to synchronize

chaotic systems. Since then, significant progress has been

made in impulsive synchronization of chaotic systems, see

[11] and the references therein. Recently, impulsive synchro-

nization for CDNs was also reported in [34]. The theory and

experiments have proved that the impulsive synchronization

scheme for chaotic systems or CDNs (with identical nodes)

has good robustness against uncertainties and can achieve
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global synchronization.

The aim of this paper is to study the global exponential

consensus problem for CDNs and a known goal function by

using an impulsive consensus control scheme. The model of

CDNs consists of non-identical nodes, uncertainties, and cou-

pling time delays. Here, the “uncertainties” means the uncer-

tainty of parameters, which take values in some intervals. The

exponential consensus scheme has an obvious advantage over

other consensus schemes, in which the consensus speed and

consensus time can be estimated easily. By utilizing the Lya-

punov function and Lyapunov-Krasovskii functional ([40-

41]) methods, robust global exponential stability (RGES)

results for delay error systems shall be established, and

then we shall derive several criteria under which the global

exponential impulsive consensus (GEIC) is achieved for the

CDNs. These criteria are expressed in terms of LMIs and

algebraic inequalities. Thus, the conditions of consensus are

easy to be tested. Moreover, the solutions of the LMIs

and algebraic inequalities give rise directly to impulsive

controllers for a CDN under which GEIC is achieved.

II. PRELIMINARIES AND PROBLEM FORMULATION

Let Rn denote the n-dimensional Euclidean space. Let

R+ = [0,+∞), Z = {0,1,2, · · · ,}, and ‖ · ‖ be the Euclidean

norm in Rn. Let I be the identity matrix, and matrix X >

(≥,<,≤) 0 means that X is a symmetric positive defi-

nite (positive semi-definite, negative definite, negative semi-

definite) matrix. Denote by λmax(·)
(

λmin(·)
)

the maximum

(minimum) eigenvalue of matrix (·).
Consider the uncertain CDN consisting of N non-identical

nodes (n−dimensional dynamical systems) with coupling

time-delays:

ẋi = fi(t,xi)+gi(x1(t −hi), · · · ,xN(t −hi)), i = 1, · · · ,N, (1)

where x = (xT
1 ,xT

2 , · · · ,xT
n )T ∈ RnN , xi = (xi1,xi2, · · · , xin)

T ∈
Rn represents the state vector of the ith node; fi : R+×Rn →
Rn is a smooth vector function; gi : RnN → Rn is a smooth

vector function representing the coupling of the ith node;

hi is some nonnegative constant which represents the time-

delay of the signal transmitted from the network to the ith

node, where the coupling time-delay hi satisfies 0≤ hi ≤ τ for

some constant τ > 0 and i = 1,2, · · · ,N. We call the system

(1) an uncertain network based on the fact that there are

uncertainties in functions fi,gi, i = 1,2, · · · ,N. In this paper,

we make the following assumptions:

Assumption 2.1. Assume that fi(t,xi) = Aixi + f̃i(t,xi),
where Ai ∈ Rn×n is an interval matrix with Ai ∈ N[Ai1 ,Ai2 ],
where N[Ai1 ,Ai2 ] =

{

(ai j)∈ Rn×n : ui j ≤ ai j ≤ vi j

}

for known

matrices Ai1 = (ui j)n×n and Ai2 = (vi j)n×n, and function f̃i

satisfies ‖ f̃i(t,s1)− f̃i(t,s2)‖ ≤ Li‖s1−s2‖, for some positive

constant Li > 0 and for all t ∈ R+.

It should be noticed that when the network (1) achieves

consensus, namely, when the states x1(t) = · · · = xN(t) =
s(t) as t → ∞, the coupling terms should vanish: i.e.,

gi(s,s, · · · ,s) = 0, i = 1,2, · · · ,N. Thus, we give the following

assumption on function gi:

Assumption 2.2. Assume that gi(x1, · · · ,xN) = ∑N
j=1 Bi jx j +

g̃i(x1, · · · ,xN), where Bi j ∈ Rn×n is an interval matrix with

Bi j ∈ N[Bi j1
,Bi j2

], where Bi j1
,Bi j2

are known matrices, and

matrices Bi j and function g̃i satisfy:

N

∑
j=1

Bi j = 0, i = 1,2, · · · ,N; (2)

and g̃i(s,s, · · · ,s) = 0, and for some constants Mi j ≥ 0,

‖g̃i(x1, · · · ,xN)− g̃i(y1, · · · ,yN)‖ ≤
N

∑
j=1

Mi j‖x j − y j‖. (3)

Problem formulation: Let s(t) be a given measurable

smooth vector function satisfying s(t) ∈ Rn for any t ∈ R+.

The aim of this paper is to design an impulsive hybrid control

scheme for the CDN (1) such that the consensus among

the node states xi(t) (i = 1,2, · · · ,N) and goal s(t) can be

achieved.

Consider the CDN (1) under impulsive consensus control:

ẋi = fi(t,xi)+gi +ui(t,xi,s), i = 1,2, · · · ,N, (4)

where {ui(t,xi,s), i = 1,2, · · · ,N} is the impulsive hybrid

controller as shown in Fig.1, where Cik ∈ Rn×n,k ∈ Z, are

impulsive control gain matrices to be designed, and {tk,k ∈
Z} are the impulsive instances satisfying 0 ≤ t0 < t1 < t2 <

· · · , with supk∈Z{tk+1 − tk} < ∞ and limk→∞ tk = ∞.

S

s

?

?m−

+

?

?

xi

6

gi(x(t − τ))
impulsive hybrid controller

-xi

Si Cik

ṡ− fi(t,s)ui

6

¾· · ·b
t = tk

b
t 6= tk

· · · ¾

· · · Transmission Channel of CDN · · ·

Fig.1. Impulsive consensus scheme of Si.

Fig.1 depicts the entire impulsive control scheme for the

consensus (“impulsive consensus scheme” for short) between

the known signal s(t) and the CDN (1) with coupling time-

delays, where Si stands for the i-th node, S is objective vector

function s(t), and gi is the delay network coupling of the i-

th node, i = 1,2, · · · ,N. In this control scheme, the control

signal is input into the CDN as: at impulsive instance tk, the

impulse signal (Cik − I)(xi(tk)− s(tk)) is input into the node

Si, and at other non-impulse times t 6= tk, the signal ṡ− fi(t,s)
containing the goal signal is input into the node Si of CDN.

By Fig.1, (4) is equivalent to the following system:

ẋi = fi(t,xi)+gi + ṡ− fi(t,s), t ∈ [tk, tk+1),

∆xi(tk) = x(tk)− x(t−k ) = (Cik − I)(xi(tk)− s(tk)),

t = tk, k ∈ Z, i = 1,2, · · · ,N. (5)
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Define the consensus errors as ei(t) := xi(t)− s(t), then,

by Assumptions 2.1-2.2, one has an error dynamical system:

ėi = Aiei + f̂i +
N

∑
j=1

Bi je j(t −hi)+ ĝi, t ∈ [tk, tk+1),

∆ei = (Cik − I)ei(t), t = tk,k ∈ Z, i = 1, · · · ,N, (6)

where f̂i = f̂i(t,xi,s) = f̃i(t,xi)− f̃i(t,s), ĝi = ĝi(x(t−hi),s) =
g̃i((x1(t −hi), · · · ,xN(t −hi))− g̃i(s(t −hi), · · · ,s(t −hi)).
Remark 2.1. It should be noticed that (1) represents a

more general dynamical network than that considered in the

literature in the following senses:

(i) The nodes in network (1) are non-identical, i.e., functions

fi (i = 1,2, · · · ,N) can be different. Moreover, if the given

function s(t) satisfies ṡ = fi(t,s), i = 1,2, · · · ,N, i.e., s(t)
is the same solution of single node, then, the impulsive

consensus scheme is to make all states of the non-identical

nodes approach the same solution s(t). If all the functions fi

are the same: fi = f , and the given vector function s(t) is a

solution of system ẏ = f (t,y), then the consensus problem is

the synchronization problem discussed in the literature, for

examples, see [20-27].

(ii) In the literature for study of complex dynamical net-

works, see examples [20-27], the coupling coefficient ma-

trices have the form Bi j = cCi jΓ, where c > 0 denotes the

coupling strength, Γ = diag{r1,r2, · · · ,rn} and C = (Ci j)N×N ,

are the linking matrices of network nodes. However, only a

single time delay τ is considered in the literature. In this

paper, the multi time delays is involved.

(iii) The matrices and functions are considered as interval

matrices and uncertain functions satisfying some conditions.

By [34], for any X ∈ N[X1,X2], it can be formulated as:

X = X0 +∆X = X0 +EΣF, (7)

where X0 = 1
2
(X1 + X2),H = 1

2
(X2 − X1) = (hi j)n×n,

E · ET = diag{∑n
j=1 h1 j, · · · ,∑

n
j=1 hn j}, FT · F =

diag{∑n
j=1 h j1, · · · ,∑

n
j=1 h jn}, Σ ∈ Σ∗ = {Σ ∈ Rn2×n2

:

Σ = diag(ε11, · · · ,εnn), |εi j| ≤ 1; i, j = 1,2, · · · ,n}.
Assumption 2.3. For interval matrices Ai,Bi j, there exist

known matrices E,FAi
,Fi j, such that for any Σ ∈ Σ∗,

[

∆Ai ∆Bi j

]

= EΣ
[

FAi
Fi j], i, j = 1,2, · · · ,N. (8)

Definition 2.1. The error system (6) is said to be robustly

globally asymptotically stable (RGAS) if, for any initial con-

dition: φ ∈ C[[t0 − τ, t0],R
nN ], for any Ai ∈ N[Ai1 ,Ai2 ],Bi j ∈

N[Bi j1
,Bi j2

], and for any h j with 0 ≤ h j ≤ τ , the trivial

solution of (6) is globally asymptotically stable (GAS).

Definition 2.2. The error system (6) is said to be robustly

globally exponentially stable (RGES) with decay rate α if,

for any initial condition: φ ∈C[[t0 −τ, t0],R
nN ], for any Ai ∈

N[Ai1 ,Ai2 ],Bi j ∈N[Bi j1
,Bi j2

], and for any h j with 0 ≤ h j ≤ τ ,

the trivial solution is globally exponentially stable (GES),

i.e., for some positive numbers α > 0,K > 0,

‖e(t)‖ ≤ K‖φ‖τ e−α(t−t0)
, t ≥ t0, (9)

where φ(t) = (φ T
1 (t), · · · ,φ T

N (t))T ∈ RnN ,φi(t) ∈ Rn, and

‖φ‖2
τ = ∑N

i=1 ‖φi‖
2
τ , with ‖φi‖τ = supt0−τ≤t≤t0

{‖φi(t)‖}.

Definition 2.3. The error system (6) is said to be quasi-

RGES with decay rate α if, for any initial condition: φ ∈
C[[t0 −τ, t0],R

nN ], for any Ai ∈ N[Ai1 ,Ai2 ],Bi j ∈ N[Bi j1
,Bi j2

],
and for any time-delays h j with 0 ≤ h j ≤ τ , there exist two

positive numbers: α > 0,K > 0, such that

‖e(t)‖ ≤ K‖φ‖τ e−α(k−t0)
, t ∈ [tk, tk+1),k ∈ Z. (10)

Definition 2.4. The impulsive consensus scheme (5) is said

to achieve global exponential impulsive consensus (GEIC)

with speed rate α if, for any initial condition φ , the error

system (6) is RGES with decay rate α . If the error system

(6) is quasi-RGES with decay rate α , then the network (1) is

said to achieve quasi-GEIC with speed rate α . If the system

(6) is RGAS, then we say the network (1) can achieve global

impulsive consensus (GIC).

Remark 2.2. (i) For the impulsive instances {tk,k ∈Z}, tk →
∞ if and only if k → ∞; thus, Definition 2.3 is well-defined.

(ii) In the GEIC or quasi-GEIC scheme, the consensus speed

or consensus time can be estimated by using the speed rate,

while in the GIC scheme it fails to do the estimation.

III. GEIC CRITERIA

In this section, GEIC criteria for network (1) will be

established. Due to space limitations, we include only an

outline for the results. The details are presented in [39].

By Assumption 2.3, we denote: A = A0 +EAΣFA, and Bi j =
Bi j0 +EΣFi j, where Σ ∈ Σ∗.

Theorem 3.1. Let Assumptions 2.1-2.3 be satisfied. Suppose

∆sup , supk∈Z{tk − tk−1} < ∞ and that there exist positive

definite matrices Pi ∈ Rn×n and constants εi j > 0, ε̃i j > 0,εi >

0, α̂i > 0, i, j = 1,2, · · · ,N, such that

(i) there exist positive constants νi > 0,µi > 0 such that

νiI ≤ Pi ≤ µiI, i = 1,2, · · · ,N; (11)

(ii) for k ∈ Z, i = 1,2, · · · ,N, the following LMIs hold:



















Ψi(A0)− α̂iPi PiBi10
· · · PiBiN0

PiE FT
Ai

BT
i10

Pi −εi1I · · · 0 0 FT
i1

...
...

. . .
...

...
...

BT
iN0

Pi 0 · · · −εiNI 0 FT
iN

ET Pi 0 · · · 0 −ε−1
i I 0

FAi
Fi1 · · · FiN 0 −εiI



















< 0

where Ψi(A0) = PiA0 + AT
0 Pi + 2Li

√

µi

νi
Pi +

∑N
j=1 Mi j ε̃

−1
i j ‖Pi‖I;

(iii) for any k ∈ Z, the following inequality holds:

βk , max
1≤i≤N

{

λmax

(

P−1
i CT

ik
PiCik

)}

< 1; (12)

(iv) there exists a positive integer m ∈ Z such that tk−m ≤
tk−τ < tk+1−m for any k ≥ m,k ∈Z, and the discrete system:

z(k +1) = Jk(m)z(k), k ∈ Z, (13)
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is GES with decay rate σ > 0, where

Jk(m) =















0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · 0 1

αk+1−m αk+2−m αk+3−m · · · αk−1 α̃k















,

where α̃k−1 = βkep∆k +αk−1, αk− j = p2∆k− j+1ep∆k− j+1 , j =
1,2, · · · ,m, and p = p1 + p2, p1 = max1≤i≤N{α̂i}, p2 =

max1≤i≤N

{

∑N
j=1

ε̂ ji

vi

}

, where ε̂i j = εi j +Mi j ε̃i j‖Pi‖.

Then, the error system (6) is quasi-RGES with decay rate

α , 1
2
σ . Moreover, if there exist k1 ≥ k0,k1 ∈Z and positive

constant γ > 0 such that supk≥k1
{ tk

k
} ≤ γ , then (6) is RGES

with decay rate α , σ
2γ , and hence the CDN (1) can achieve

GEIC with the given state s(t) with speed rate α .

Proof. Let Lyapunov-Krasovskii functional V be:

V (e(t)) = V1(t) + V2(t), where V1(t) = ∑N
i=1 eT

i (t)Piei(t),
V2(t) = ∑N

i=1 ∑N
j=1 ε̂ ji

∫ t
t−h j

eT
i (s)ei(s)ds, for some constants

λi j > 0, i, j = 1,2, · · · ,N.

Claim 1: For t ∈ [tk, tk+1), k ∈ N, by condition (i) and

Schur Complement Theorem [43], we claim

V (e(t)) ≤V (e(tk))e
p(t−tk). (14)

Claim 2: Let: W (k) = (w1(k),w2(k), · · · ,wm(k))T , k ∈ Z,

where w1(k) = V (e(tk+1)),w2(k) = V (e(tk+2)), · · · ,wm(k) =
V (e(tk+m)). Then, we claim W (k−m) ≤ z(k), k ≥ m−1.

Claim 3: If the comparison system (13) is GES with decay

rate σ > 0, then we claim ‖e(t)‖ ≤ K̂‖φ‖τ e
− σ

2γ (t−t0)
, t ≥ t0,

where K̂ > 0 is some constant.

By Claims 1-3, we conclude that the result is true. ¤

Corollary 3.1. Suppose that τ ≤ tk −tk−1 for any k ∈Z, i.e.,

m = 1 in Theorem 3.1, and that there exist positive definite

matrices Pi ∈ Rn×n and constants εi j > 0, ε̃i j > 0,εi > 0, α̂i >

0, i, j = 1,2, · · · ,N, k ∈ Z, such that (i)-(iii) of Theorem 3.1

hold, while (iv) of Theorem 3.1 is replaced by:

(iv*) there exists a positive constant σ > 0 such that

ln(βk + p2τ)+(p+σ)(tk − tk−1) ≤ 0, (15)

where βk, p1, p2, p are defined in Theorem 3.1.

Then, the error system (6) is RGES with decay rate α , σ
2

and thus the CDN (1) can achieve GEIC with the given state

s(t) with speed rate α .

Remark 3.1. From Corollary 3.1, if τ ≤ tk − tk−1 for any

k ∈ Z, we get the maximum estimations of time-delay τ∗

and the interval of impulses as follows:

τ∗ ≤ sup
k∈Z

{e−(p+σ)(tk−tk−1) −βk

p

}

, (16)

∆sup ≤ sup
k∈Z

{− ln(βk + p2τ)

p+σ

}

. (17)

Corollary 3.2. Suppose ∆sup , supk∈Z{tk − tk−1} < ∞ and

that there exist positive definite matrices Pi ∈ Rn×n and

constants εi j > 0, ε̂i j > 0,εi > 0, α̂i > 0, i, j = 1,2, · · · ,N, such

that (i)-(iii) of Theorem 3.1 hold, while (iv) of Theorem 3.1

is replaced by

(iv**) there exists a positive integer m > 1 such that tk−m ≤
tk − τ < tk+1−m for any k ≥ m,k ∈ Z, and

J(m) ,















0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · 0 1

a a a · · · a a+b















. (18)

satisfies the spectrum radius of matrix J(m) conditions:

ρ(J(m)) < e−σ , where σ > 0 is some positive constant, a =
p2∆supep∆sup , b = βep∆sup , β = supk∈Z

{

λmax

(

P−1
i CT

ik
PiCik

)}

,

and p, p1, p2 are defined in Theorem 3.1.

Then, the error system (6) is quasi-RGES with decay rate

α , 1
2
σ . Moreover, if there exist k1 ≥ k0,k1 ∈Z and positive

constant γ > 0 such that supk≥k1
{ tk

k
} ≤ γ , then (6) is RGES

with decay rate α , σ
2γ , and hence the CDN (1) can achieve

GEIC with the given state s(t) with speed rate α .

IV. IMPULSIVE CONSENSUS CONTROL DESIGN

In this section, by using the obtained results, we design

impulsive control gain matrices for the CDN (1) such that

GEIC can be achieved.

Theorem 4.1. Assume ∆sup , supk∈Z{tk−tk−1}< ∞ and that

conditions (i)-(ii) of Theorem 3.1 still hold, while conditions

(iii)-(iv) are changed to the following (iii′)-(iv′):

(iii′) there exist positive constants 0 < βi < 1, i =
1,2, · · · ,N, such that the following LMIs hold:





Ω1 Ω2 Y T
i

ΩT
2 −I 0

Yi 0 −Pi



 ≤ 0, (19)

where Ω1 = Pi +Y T
i +Yi −βiPi, Ω2 = PiE +Y T

i E;

(iv′) let βk = max1≤i≤N{βi}, k ∈Z, then the condition (iv)

of Theorem 3.1 holds.

Then, under impulsive control gain matrices
{

Cik = I +
P−1

i Yi, i = 1,2, · · · ,N,k ∈ Z
}

, the error system (6) is quasi-

RGES with decay rate α = 1
2
σ . Moreover, if there exist k1 ≥

k0,k1 ∈Z and positive constant γ > 0 such that supk≥k1
{ tk

k
}≤

γ , then system (6) is RGES with decay rate α , σ
2γ , and thus

the CDN (1) can be achieved GEIC with the given state s(t)
with speed rate α .

Corollary 4.1. Assume the conditions (i)-(ii) of Theorem 3.1

and condition (iii*) of Theorem 4.1 hold. Then, under impul-

sive control gain matrices
{

Cik = I+P−1
i Yi, i = 1,2, · · · ,N,k∈

Z
}

, condition (iv*) implies that the CDN (1) can achieve

GEIC with speed rate σ
2

; condition (iv**) implies that the

CDN (1) can achieve GEIC with speed rate σ
2

; and (iv***)

implies that (6) is RGAS and the CDN (1) can achieve GIC.

In the following, one example is given for illustration.

Example 4.1. Use the chaotic Colpitts’ oscillator as nodes

of the CDN. The Colpitts’ oscillator is described by:

ẏ = A0y+ϕ(y) (20)

where y =





y1

y2

y3



, A0 =





0 α 0

−σ −γσ −σ
a1β β 0



, and ϕ(y) =

(0,0,a3βy3
1)

T , in which α,β ,σ ,a1,γ,a3 ∈R. It is known that

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeA12.2

2261



with parameters α = 2.4, β = 2.2, σ = 1, γ = 0.252, a1 = 1,

and a3 = −0.2, the oscillator (20) is chaotic.

Suppose that the CDN (1) is given by

ẋi = Aixi +ϕ(xi)+
N

∑
j=1

Bi jx j(t −hi), i = 1, · · · ,N, (21)

where xi = (xi1,xi2,xi3)
T , with matrix Ai ∈ N[A,A], where

A = (ai j)3×3 =





−0.5 α −0.5 −0.5

−σ −0.5 −γσ −0.5 −σ −0.5

a1β −0.5 β −0.5 −0.5



 ,

A = (ai j + 1)3×3; and Bi j satisfy: Bi j = Bi j1
= Bi j2

,

i, j = 1,2, · · · ,N, Bii =





0.5 0.5 0

0 0.5 0.2

0 0 −0.5



 , Bi,i+1 =





−1.0 −0.3 0

0 0.25 −0.1

0 0 1.0



 , Bi,i+2 =





0.5 −0.2 0

0 −0.75 −0.1

0 0 −0.5



,

BN−1,N+1 = BN−1,1, BN−1,N+2 = NN−1,2, BN,N+1 = BN1,

BN,N+2 = BN2.

Suppose the goal s(t) is the solution of Lorenz system:

ṡ = Ls+ ϕ̃(s) (22)

where s =





s1

s2

s3



, L =





−b1 b1 0

b2 −1 0

0 0 −b3



, ϕ(s) =

(0,−s1s3,s1s2)
T , in which b1,b2,b3 ∈ R. It is well-known

that with parameters b1 = 10, b2 = 28, b3 = 8
3
, the Lorenz

system (22) is chaotic.

It is easy to show for any matrix A ∈ N[A,A], A is

not a stable matrix. In the following, by using Theorem

3.1, we design impulsive control gain matrices Kik − I, i =
1, · · · ,10,k ∈ Z and the impulsive instances tk,k ∈ Z such

that the system in form of (4) can achieve GEIC.

By [42], we get that

∥

∥

∥

∂ϕ(y)
∂y

∥

∥

∥
≤ 5.28, which im-

plies that Li = 5.28, i = 1,2, · · · ,10. Choosing εi j =
1,εi = 1, νi = 1,µi = 2, we solve the LMIs in (ii)

of Theorem 3.1, for i = 1,2, · · · ,10, getting α̂i = 6,

and Pi =





1.5437 0.3646 0.1371

0.3646 1.4298 0.1290

0.1371 0.1290 1.1520



 . Then, by solving

the LMIs in (iii′) of Theorem 4.1, we get that βk =

0.01, and Yi =





−1.5328 −0.3546 −0.1330

−0.3546 −1.4215 −0.1264

−0.1330 −0.1264 −1.1502



 . Thus,

we get p1 = 6, p2 = 10,βk = 0.01, Kik − I = P−1
i Yi =





−0.9944 0.0054 0.0024

0.0054 −0.9957 0.0012

0.0023 0.0011 −1.0004



 . Moreover, there exists

σ = 0.01 such that (19) in Corollary 3.1 holds. By Remark

3.2, we get τ∗ < 0.0619 and ∆sup ≤ 0.1107. Thus, we can

design the impulsive controllers {Kik xi, tk} as:

Case 1: If τ ≤ tk − tk−1, k ∈ Z, then, let: t0 = 0, tk −
tk−1 = 0.1, k ∈ Z, and Kik , i = 1,2, · · · ,10, are chosen as

above. Therefore, by Theorem 4.1, the impulsive controllers

{Kik ei, tk} can achieve GEIC for all node states xi(t) (i =
1,2, · · · ,10) and the dynamical goal s(t). Moreover, the

consensus speed rate is α = 1
2
σ = 0.005.

Case 2: If there is m > 1 such that tk−m ≤ tk−τ < tk+1−m, k ∈
Z, then, by Corollary 3.2, we design the impulsive con-

trollers. For example, let τ = hi = 0.05, and m = 2, then

by Corollary 3.2, the impulsive instances can be set as:

t0 = 0, tk − tk−1 = 0.03, k ∈ Z. Therefore, by Corollary 3.2,

the impulsive controllers {Kik ei, tk} can achieve GEIC for

all node states xi(t) (i = 1,2, · · · ,10) and the dynamical

goal s(t). Moreover, the consensus speed rate is α = 1
2γ σ =

0.0045.

In simulation, let τ = hi = 0.05, tk+1 − tk = 0.03,k ∈ Z,

and, without loss of generality, xi(t) = 0 whenever t < 0,

and xi(0) 6= 0, i = 1,2, · · · ,N. The matrices Ai ∈ N[A,A] are

set as: A1 = A2 = A3 = Ã1, A4 = A5 = A6 = Ã2, A7 = A8 = Ã3,

and A9 = A10 = Ã4, where Ã2 = Ai0 , Ã3 = A, Ã4 = A, where

Ã1 = A+Rand(3,3),Ãi0 = A0.
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Fig.2. Exponential consensus error properties (with speed rate

0.0045) of ek1(t),k = 1,2, · · · ,10.
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Fig.3. Exponential consensus error properties (with speed rate

0.0045) of ek2(t),k = 1,2, · · · ,10.

0 5 10 15 20 25 30 35 40 45 50
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

t× 10
−1

e 13
−−

e 10
,3

−1.5e
−0.0045t

1.5e
−0.0045t
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0.0045) of ek3(t),k = 1,2, · · · ,10.
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Fig.6. The phase figure of the network under impulsive control.

In Figs. 2-4, one can see the consensus properties of the

goal state si of the Lorenz system (22) and node states xli,

l = 1,2, · · · ,10, i = 1,2,3, of the network. In Figs.5-6, one

can see the whole consensus properties of Lorenz system

(22) and the network with coupling delay τ .
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