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Abstract— We identify a class of mechanical systems for
which a globally exponentially stable reduced order observer
can be designed. The class is characterized by (the solvability of)
a set of partial differential equations and contains all systems
that can be rendered linear in (the unmeasurable) momenta
via a (partial) change of coordinates. It is shown that this class
is larger than the one reported in the literature of observer
design and linearization. We also prove that, under very weak
assumptions, the observer can be used in conjunction with an
asymptotically stabilizing full state–feedback Interconnection
and Damping Assignment Passivity–Based Controller, preserv-
ing stability.

Caveat Emptor: This paper is a shortened version of the
technical note [1] which can be obtained upon request from
the authors.

I. INTRODUCTION

In this paper, we are interested in the problems of obser-
vation and output feedback control of n degree of freedom
underactuated mechanical systems modeled in Hamiltonian
form as(

q̇
ṗ

)
=
[

0 In
−In 0

]( ∂H
∂q
∂H
∂p

)
+
(

0
G(q)

)
u, (1)

where q ∈ Rn, p ∈ Rn are the generalized positions and
momenta respectively, u ∈ Rm is the input, G is an n×m full
rank matrix with m ≤ n. Further, the Hamiltonian function
H : Rn × Rn → R is the total energy of the system given
as

H (q , p) =
1
2

p>M−1 (q)p + V (q), (2)

where M = M> > 0 is the mass matrix and V is the
potential energy function. We consider q to be measurable,
p to be unmeasurable and assume that there exists a full state
feedback controller that stabilizes a desired equilibrium point
(q?, 0).

The problems of velocity reconstruction and position
feedback stabilization (either regulation or tracking) of me-
chanical systems are of great practical interest and have
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henceforth been extensively studied in the literature. Since
the publication of the first result in the fundamental paper
[2] in 1990, many interesting solutions have been reported—
we refer the reader to the recent books [3], [4], [5] for an
exhaustive list of references.

The contributions of this paper are:
• Identification, in terms of two sets of partial differential

equations (PDEs) depending on the inertia matrix M ,
of the class of systems for which we can construct
a globally (exponentially) convergent reduced order
observer for p.

• Proof that solvability of the first set of PDEs is equiv-
alent to the existence of a change of coordinates of the
form (q, P ) = (q, T >(q)p), with T : Rn → Rn×n full
rank, that renders the system linear in the unmeasurable
states. We also prove that the results reported in the
control literature on linearization, either in the context
of observer design or not, are particular cases of our
result and that the new characterization covers a larger
class of practical examples.

• Proof of a separation principle for the proposed observer
when used in conjunction with a full state feedback
regulator designed following the Interconnection and
Damping Assignment Passivity–Based Control method-
ology [6], [7].

The remaining part of the paper is organized as follows.
In Section II we present the observer design methodology
and identify—in terms of two key assumptions that yield
the two sets of PDEs—the class of systems for which we
can generate a stable observer error dynamics. In section
III, we discuss the system theoretic interpretation of the first
assumption, that turns out to be equivalent to the aforemen-
tioned “partial” linearization (via change of coordinates) of
the dynamics. In Section IV, we consider some well known
physical examples for which the PDE’s occurring in the first
and second assumptions are solvable and hence construct
reduced-order observers for them. In section V, we present
a separation principle for IDA–PBC with the proposed ob-
server. We wrap up the paper with some concluding remarks
and future work in Section VI.

II. IMMERSION AND INVARIANCE OBSERVERS:
GENERAL CONSTRUCTIVE PROCEDURE

A. Problem Formulation and Proposed Approach

In this note we adopt the observer design framework
proposed in [8], which follows the Immersion and Invariance
(I&I) principles first articulated in [9]—see [5] for a tutorial
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account of this method and its applications. In the context
of observer design the objective of I&I is to generate
an attractive invariant manifold, defined in the extended
state-space of the plant and the observer. This manifold
is defined by an invertible function in such a way that
the unmeasurable part of the state can be reconstructed by
inversion of this function. We thus introduce the definition
of an I&I observer for the system (1), which is a particular
case of the one given in [8], see also [10].

Definition 1: The dynamical system

η̇ = α(q, η), (3)

with η ∈ Rn, is called an I&I observer for the system (1) if
there exists a full rank matrix T : Rn → Rn×n and a vector
function β : Rn → Rn, such that the manifold

M := {(η, q, p) : β(q) = η+T >(q)p} ⊂ Rn×Rn×Rn (4)

is invariant and attractive.1 In this way, an asymptotic esti-
mate of p, which we will denote by p̂, is given by

p̂ = T −>(β − η).

B. Definition of the Class of Mechanical Systems

Given a inertia matrix M , we introduce the following
assumptions.

Assumption 1: There exists a full rank matrix T : Rn →
Rn×n such that, for i ∈ n̄ := {1, . . . , n},

Bi(q) + B>i (q) = 0,

where the matrices Bi : Rn → Rn×n are defined as

Bi :=
n∑

j=1

[Ti, Tj]T >j (T T >)−1M−1

+
1
2
T >ij T

∂

∂qj
(T −1M−1T −>)T >,

(5)

where Ti = T ei and Tij = e>i T ej , with ei, i ∈ n̄ being
the Euclidean basis vector and [Ti, Tj] is the standard Lie
bracket.2

Assumption 2: There exists a matrix P : Rn → Rn×n

satisfying the following two conditions:
(i) The matrix inequality

A(q) +A>(q) ≥ εIn, (6)

holds, uniformly in q, for some ε > 0, where

A(q) := P(q)[T >(q)M(q)]−1. (7)

1We recall that the set M is invariant if (η(0), q(0), p(0)) ∈ M ⇒
(η(t), q(t), p(t)) ∈ M for all t ≥ 0. It is said to be globally attractive if,
for all (η(0), q(0), p(0)), the distance of the state vector to the manifold
asymptotically goes to zero, i.e., limt→∞ dist{(η(t), q(t), p(t)),M} = 0.

2The standard Lie bracket of two vector fields Ti, Tj is defined as

[Ti, Tj] =
∂Tj

∂q
Ti −

∂Ti

∂q
Tj

(ii) The rows of P , denoted Pj , satisfy the integrability
condition

∂Pj

∂q
=
(
∂Pj

∂q

)>
, j ∈ n̄. (8)

Assumption 1 defines a set of PDEs given by (5), that have
to be solved for the unknown T . Further, for a given T , the
matrix P of Assumption 2 can be computed from the solution
of the PDEs (8), subject to the inequality constraint (6).
Although the assumptions look quite technical and cryptic,
we will show in the sequel that Assumption 1 is equivalent to
the well–known property of linearizability (via partial change
of coordinates) of the system dynamics.

C. I&I Observer

Proposition 1: If the matrices T and P satisfy Assump-
tions 1 and 2, the dynamical system

η̇ = P(T >M)−1(β − η) + T >(
∂V
∂q
−Gu) (9)

p̂ = T −>(β − η) (10)

with
∂β

∂q
= P, (11)

is a globally exponentially convergent reduced order observer
for (1)—with the estimation error verifying

|p̂(t)− p(t)|2 ≤ exp−εt |p̂(0)− p(0)|2,

where | · | is the Euclidean norm.

Proof: We consider the manifold M and differentiate
its off–the–manifold coordinate z = β − η − T >p to obtain

ż = β̇ − η̇ − T >ṗ− Ṫ >p

= −P(T >M)−1z + T > ∂

∂q
(
1
2
p>M−1p)− Ṫ >p

where we have made use of (1), (9), (10) and (11). We now
define

DT (q, p) := T > ∂

∂q
(
1
2
p>M−1p)− Ṫ >p (12)

and shall prove that Assumption 1 is equivalent to con-
dition, DT = 0. We first see that, ∂

∂q ( 1
2p
>M−1p) =

∂
∂q ( 1

2p
>T T −1M−1T −TT >p), which further equals

n∑
i=1

ei{p>[
∂T
∂qi
T −1M−1 +

1
2
T ∂

∂qi
(T −1 M−1T −T)T >]p}.

(13)
We now compute

Ṫ >p =
n∑

i=1

(
∂T >

∂qi
p)(e>i T )T −1M−1p. (14)

We next note that, if we define

J :=
n∑

i=1

{(T >ei)(p>
∂T
∂qi

)− (p>
∂T
∂qi

)>(e>i T )}, (15)
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then some simple computations leads to

e>j J ek = p>[Tj, Tk]. (16)

Finally, substituting (13), (14), (16) in (12) and performing
some simplifications leads to

DT =
n∑

i=1

eip
>Bip, (17)

where we have invoked the definition of Bi given in (5).
Hence, each element of the vector DT is a quadratic form
in p, which becomes zero for all p if and only if Assumption
1 is satisfied.

Now, with the integrability condition (8) of Assumption 2
and (11), the error dynamics reduces to

ż = −P(T >M)−1z. (18)

The manifold M is clearly positively invariant. To establish
global exponential attractivity of M consider the Lyapunov
function V (z) = 1

2 |z|
2. Condition (6) ensures that V̇ ≤

−εV , which proves the global exponential convergence to
zero of z, hence of p̂− p—with exponential rate ε.

Remark 1: It is clear that, if T >M + MT > 0, As-
sumption 2 is satisfied with P = In. The design parameter
P gives us an extra degree of freedom when this is not
the case. Also, it is obvious from the proof above that we
can replace (6) by QA + A>Q ≥ εIn, for some constant
matrix Q ∈ Rn×n, Q = Q> > 0. In this case, we should
take as Lyapunov function for the observer error dynamics
Ṽ (z) = 1

2z
>Qz.

III. SYSTEM THEORETIC INTERPRETATION OF
ASSUMPTION 1

As shown in the proof of Proposition 1, the role of
Assumptions 1 and 2 in the stability analysis of the observer
error dynamics is clear: they ensure, respectively, that the dis-
turbance term DT identically vanishes and that the dynamics
of z is stable. However, both assumptions seem to be only
motivated by the chosen (I&I) framework and the (Lyapunov)
analysis technique and are, furthermore, quite cryptic—that
stymies the physical interpretation of the class. Nevertheless,
in this section we will show that Assumption 1 is precisely
identifying the class of mechanical systems for which a
change of coordinates of the form (q, P ) = (q, T >(q)p),
renders the system linear in the unmeasurable states. We
also discuss some particular selections of T that, either have
been been reported in the literature, or are useful to verify
Assumption 2.

A. Assumption 1 is Equivalent to (Partial) Linearization

Proposition 2: The dynamics of the system (1) expressed
in the coordinates (q, P ), where P = T >(q)p, is linear in
P if and only if Assumption 1 holds, in which case, the
dynamics becomes

q̇ = M−1T −>P,
Ṗ = −T >

(
∂V
∂q −Gu

)
.

(19)

Proof: The equation for q̇ follows trivially from the
definition of P . Now, Ṗ can be expressed as

Ṗ = Ṫ >p+ T >ṗ

= −DT − T >(
∂V

∂q
−Gu), (20)

where we used (12) to get the second equation. From (20)
we see that the dynamics is linear in P ,3 if and only if
Assumption 1 holds or equivalently DT = 0. Further, under
Assumption 1, the dynamics expressed in the coordinates
(q, P ) takes the form (19).

To streamline the presentation in the sequel we find it
convenient at this point to recall the Lagrangian model of
the mechanical system (1)

M (q)q̈ + C (q , q̇)q̇ +
∂V
∂q

= G(q)u, (21)

where C(q, q̇)q̇ is the vector of Coriolis and centrifugal
forces with the ik–th element of the matrix C : Rn×Rn →
Rn×n being defined by Cik(q, q̇) =

∑n
j=1 C

k
ij(q)q̇j . Further,

Ckij : Rn → R are the Christoffel symbols of the second kind
of the inertia matrix M given by

Ckij(q) :=
1
2

[
∂Mik

∂qj
+
∂Mjk

∂qi
−
∂Mij

∂qk
], ∀ i, j, k ∈ n̄, (22)

where Mij is the ij–th element of M . We further recall the
well–known fact that

∂

∂q
(
1
2
q̇>Mq̇) = (C − Ṁ)q̇. (23)

See [11] for other important properties of mechanical sys-
tems that are relevant in control applications.

B. T = M−1: A Strong Condition for (Partial) Lineariz-
ability

Proposition 3: Consider the parameterized vector DT de-
fined in (12). The following statements are equivalent:
(i) Assumption 1 holds with T = M−1, that is, DM−1 =

0.
(ii) The Christoffel symbols of the second kind of the inertia

matrix M , defined in (22), are all equal to zero.
(iii) The Coriolis and centrifugal forces C(q, q̇)q̇ are equal

to zero.
Proof: Define the vector function D̃T (q, q̇) :=

DT (q,M(q)q̇). Proceeding from (12), we will now express
this function in terms of the matrices C and M

D̃T = T > ∂

∂q
(
1
2
q̇TMq̇)− Ṫ >Mq̇,

= [T >C − d

dt
(T >M)]q̇, (24)

where, to obtain the second identity, we have used (23).
Hence, D̃M−1 = M−1Cq̇, which is zero iff Cq̇ = 0.

Remark 2: The choice T = M−1 or equivalently the case
where there are no Coriolis or centrifugal forces acting on the

3We recall that, as shown by (17), DT is quadratic in p—hence also
quadratic in P .
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system,4 is clearly of limited practical interest and is given
here only to illustrate one particular physical interpretation
of Assumption 1.

C. T T > = M−1: A Weaker Condition for (Partial) Lin-
earizability

In this subsection we propose—as suggested in [8], [12]—
to take T = T where, T : Rn → Rn×n satisfies
T (q)T>(q) = M−1(q). We now prove that Assumption 1,
in this case, is strictly weaker than the absence of Coriolis
and centrifugal forces and, furthermore, has a nice geometric
interpretation.

Proposition 4: Consider the factorization TT> = M−1

and the parameterized vector DT defined in (12). The
following statements are equivalent:

(i) Assumption 1 holds with T = T , that is, DT = 0.
(ii) For all i ∈ n̄, the n × n matrices

∑n
j=1[Ti, Tj]T>j are

skew symmetric, where Ti := Tei.
Proof: Evaluating the matrices Bi defined in (5) for

T = T and noting that the second right term vanishes, we
get

Bi =
n∑

j=1

[Ti, Tj]T>j (25)

Referring to (17) we easily see the equivalence between (i)
and (ii).

D. Condition (ii) of Proposition 4 is Strictly Weaker than
Commutativity of the Columns of T

A sufficient condition for (ii) to hold is clearly that, for
all i, j ∈ n̄, [Ti, Tj] = 0—when it is said that the columns of
T commute. However, we show in the next subsection that
(for n ≥ 3) this condition is not necessary.

The case when the columns of T commute has been
extensively studied in analytical mechanics and has a deep
geometric significance—stemming from Theorem 2.36 in
[13]. It is widely accepted that this condition is quite
restrictive and a natural question is whether the skew–
symmetry condition (ii) of Proposition 4 is strictly weaker
than commutativity. In this subsection we show that this is
indeed the case for n ≥ 3.

Before presenting the result we find it convenient to recall
the following well–known fact of Riemannian geometry that
has been exploited, in the context of linearization, in the
control literature in [14], [15].

Fact 1: Given an inertia matrix M . The following state-
ments are equivalent:

i) There exists a matrix T verifying TT> = M−1 and
such that [Ti, Tj] = 0, for all i, j ∈ n̄.

ii) There exists a vector function Q : Rn → Rn such that

∂Q
∂q

= T−1 (q). (26)

4Note, however, that Cq̇ = 0 does not imply that the inertia matrix M
is constant.

iii) The Riemann symbols (that can be computed directly
from M with the formulas given on page (4D-7) of
[16]) vanish identically.

If the conditions of Fact 1 are satisfied, the system is said
to be Euclidean [14], where the qualifier stems from the
fact that the dynamics expressed in the coordinates (Q,P )
reduces to a “linear double integrator” of the form

Q̇ = P, Ṗ = −∂Ṽ
∂Q

+ T>Gu,

where Ṽ (Q) := V (QI(Q)), with QI : Rn → Rn a right
inverse of Q(q), that is, Q(QI(x)) = x for all x ∈ Rn. We
next state the following proposition.

Proposition 5: For a given inertia matrix M , the fact that
there exists a factorization TT> = M−1 such that the
matrices Bi defined in (25) are skew–symmetric does not
imply that the system is Euclidean for n ≥ 3. On the other
hand, for n ≤ 2 both conditions are equivalent.

Proof: First, we prove that for n ≤ 2 commutativity is
equivalent to skew–symmetry. For n = 1 the equivalence is,
of course, trivial. For n = 2 this can be easily shown using
the fact that all 2 × 2 skew–symmetric matrices are of the

form
[

0 α
−α 0

]
, α ∈ R.

The first claim of the proposition will be established
constructing an inertia matrix whose Riemann symbols are
not all zero, but for which we can find a factorization that
satisfies the skew–symmetry condition. Towards this end, set
n = 3 and consider

M−1 =

 1 + q2
2 0 q2

√
1 + q2

2

0 (1 + q2
2)2 0

q2

√
1 + q2

2 0 1 + q2
2

 . (27)

We now compute the Riemann symbols, defined in page
(4D-7) of [16] as

Rijlk :=
1
2

[
∂2Mik

∂qj∂ql
+
∂2Mjl

∂qi∂qk
− ∂2Mil

∂qj∂qk
−
∂2Mjk

∂qi∂ql

]
+

n∑
a,b=1

(M−1)ab
[
CajlC

b
ik − CailCbjk

] (28)

where Ckij are the Christoffel symbols of the second kind
as defined in (22) and (M−1)ij is the ij-th element of the
inertia matrix inverse. After some computations we verify
that R1212, R1323, R2323 6= 0 for all q and R1223 6= 0 for
q2 6= 0, and hence we conclude from Fact 1 that the system
is not Euclidean.

On the other hand, it can be easily verified that the matrix
M−1 admits a factorization TT> = M−1 with

T =

 sin(q1)q2 cos(q1)q2 1
(1 + q2

2) cos(q1) −(1 + q2
2) sin(q1) 0√

1 + q2
2 sin(q1)

√
1 + q2

2 cos(q1) 0

 . (29)

Computing the Lie brackets with the vectors Ti we obtain

[T1, T2] = T3, [T2, T3] = T1, [T3, T1] = T2. (30)

Hence, each of the matrices B1 = [T1, T2]T>2 + [T1, T3]T>3 ,
B2 = [T2, T1]T>1 + [T2, T3]T>3 , B3 = [T3, T1]T>1 +
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[T2, T3]T>3 are skew symmetric as desired. This completes
the proof.

Remark 3: The non-Euclidean system presented in the
previous section is a mathematical example used to show
that the condition (ii) of Proposition 4 is strictly weaker
than commutativity of the columns of T . The kind of
physical systems that fall under such class is currently under
investigation.

Remark 4: It is important to underscore the limited ap-
plicability of the the “linearization” procedure for Euclidean
systems, which requires the solution of the PDE (26). Indeed,
in contrast with (some of) the PDEs that we encounter in
the current paper, this PDE has no free parameters and its
explicit solution may be even impossible. This happens in the
case of the classical cart–pole system which is Euclidean but,
as shown in [14], equation (26) leads to an elliptic integral of
the second kind that does not admit a closed form solution.

IV. PHYSICAL EXAMPLES

The technical note [1] contains a constructive algorithm
for computing P from (6), (8) for some special choices of
T . We now illustrate the observer design on three physical
systems which are Euclidean where, in each case, the com-
putation of P has been done by following the algorithmic
procedure.

A. Inverted Pendulum on a Cart [6]
The inertia matrix M of the well–known inverted pendu-

lum on a cart system and its corresponding lower triangular
Cholesky factorization, TT> = M−1 are given as,

M =
[

1 ∗
b cos q1 m3

]
,

T =

 √
m3√

m3−b2 cos2 q1
0

−b cos q1√
m3

√
m3−b2 cos2 q1

1√
m3

 .
We can easily check that the columns of T commute thus
satisfying Assumption 1. We now set P as

P =
[

Λ11 0
0 Λ22

]
+
[

0 0
∂φ2
∂q1

0

]
,

where Λii > 0 and φ2 is a smooth function of q1. We notice
that P trivially satisfies (ii) of Assumption 2, and A = PT
is lower triangular with strictly positive diagonal entries. Our
strategy is to make the off-diagonal terms in A to equal zero,
which ensures that equation (6) is satisfied. We accordingly
solve, A21 = 0 to obtain, φ2 = Λ22b

m3
sin(q1). Thus, we get

β =
[

Λ11q1

Λ22(q2 + b
m3

sin(q1))

]
. (31)

B. 3-Link Underactuated Planar Manipulator [17]
This is a 3-DOF underactuated mechanical system with

inertia matrix M and lower triangular Cholesky factorization,
TT> = M−1 given as,

M =

 1 ∗ ∗
−m3Lsinq1 mx ∗
m3L cos q1 0 my

 ,

T =


1
F 0 0

m3L
mxF sin q1

1√
mx

0
−m3L
myF cos q1 0 1√

my

 ,
where F (q) :=

√
1 − m2

3 L2

my
cos2 q1 − m2

3 L2

mx
sin2 q1 . We

can easily check that the columns of T commute and thus
the system is Euclidean. We set P as

P =

 Λ11 0 0
∂φ2
∂q1

Λ22 0
∂φ3
∂q1

+ ∂ψ32
∂q1

q2 ψ32 Λ33

 ,
where Λii > 0 and φ1, φ2, ψ32 are smooth functions of
q1. We notice that P satisfies (ii) of Assumption 2 and A =
PT is lower triangular with strictly positive diagonal entries.
We now proceed to make the off-diagonal terms in A to
equal zero in order to satisfy (6). We accordingly solve in
the order A32 = 0, A31 = 0, A21 = 0 to obtain ψ32 = 0,
φ3 = Λ33m3L

my
sin q1 and φ2 = Λ22m3L

mx
cos q1 respectively.

We then integrate P to obtain

β =

 Λ11q1

Λ22(q2 + m3L
mx

cos q1)
Λ33(q3 + m3L

my
sin q1)

 .
C. Planar Redundant Manipulator with one elastic degree
of freedom [18]

This is a 4-DOF underactuated mechanical system whose
inertia matrix depends on two coordinates and is given as,

I + M̄ ∗ ∗ ∗
M̄ M̄ ∗ ∗

M̄
L s(q1 + q2) M̄

L s(q1 + q2) M̃ +m ∗
− M̄L c(q1 + q2) − M̄L c(q1 + q2) 0 M̃ +m

 ,
where s(·) = sin(·), c(·) = cos(·) and M̄ = M̃L2. We now
compute the lower triangular cholesky factorization, TT> =
M−1 (q) as

1√
I

0 0 0

− 1√
I

√
M̃+m√
M̃mL

0 0

0 −
√

M̃
m

1√
M̃+m

s(q1 + q2) 1√
M̃+m

0

0
√

M̃
m

1√
M̃+m

c(q1 + q2) 0 1√
M̃+m


We can check that the columns of T commute among each
other thus satisfying Assumption 1. We let the matrix P be
given as,

P =


Λ11 0 0 0
∂φ2
∂q1

∂φ2
∂q2

+ Λ22 0 0
∂φ3
∂q1

∂φ3
∂q2

Λ33 0
∂φ4
∂q1

+ ∂ψ43
∂q1

q3
∂ψ43
∂q2

q3 + ∂φ4
∂q1

ψ43 Λ44

 ,
where Λii > 0 and each of the functions φ2, φ3, φ4, ψ43

depend smoothly on both q1 and q2. We note that P satisfies
(ii) of Assumption 2 and A = PT is lower triangular. We
now proceed to make the off diagonal terms in A equal zero
and the diagonal entries as strictly positive. From A21 = 0,
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we get ∂φ2
∂q1

= ∂φ2
∂q2

and from A22 > 0, we get ∂φ2
∂q1

> 0.
Thus, we let φ2 = k(q1 + q2) where k > 0. We now solve
A43 = 0 to obtain ψ43 = 0. We then solve A42 = 0 to get
φ4 = − M̃LΛ44

M̃+m
sin(q1 + q2) + g(q1). Finally, from A41 = 0,

we get ∂φ4
∂q1

= ∂φ4
∂q2

and hence we can set g = 0. We next

solve A32 = 0 to obtain φ3 = − M̃LΛ33

M̃+m
cos(q1 +q2)+f(q1).

Next, from A31 = 0, we get ∂φ3
∂q1

= ∂φ3
∂q2

and hence we can
set f = 0. We finally get

β =


Λ11q1

Λ22q2 + k(q1 + q2)
Λ33(q3 − M̃L

M̃+m
cos(q1 + q2))

Λ44(q4 − M̃L
M̃+m

sin(q1 + q2))

 .
V. A SEPARATION PRINCIPLE FOR IDA–PBC DESIGNS

WITH I&I OBSERVERS

In this section we establish a separation principle for the
combination of the IDA-PBC proposed in [7] (see also [6]),
with the I&I observer derived in Section 2. In particular,
we prove that under very weak conditions, the measurement
of momenta, p, required in IDA-PBC, can be replaced by
its observed signal, p̂, preserving asymptotic stability of the
desired equilibrium.

For the sake of brevity we do not review here the IDA–
PBC methodology, but only give the key equations needed
for our analysis. We refer the reader to [6] and [7] for
additional details. The objective in IDA–PBC is to assign
to the closed–loop an energy function of the form

Hd(q , p) =
1
2

p>M−1
d (q)p + Vd(q)−Vd(q?)

where Md = M>
d > 0 , Vd are the desired inertia matrix

and potential energy function, respectively, and q? is the
desired position. This is achieved imposing the closed–loop
dynamics(

q̇
ṗ

)
=
[

0 M−1 Md

−MdM−1 J2 −GKvG>

]( ∂Hd
∂q
∂Hd
∂p

)
,

(32)
where Kv = K>v > 0 is a damping injection matrix and
J2 (q , p) is a skew–symmetric matrix having each element of
the form p>αi(q) where, αi : Rn → Rn, i = 1, . . . , n2 (n−
1), are free functions.

If q? = arg minVd(q) then (q?, 0) is a stable equilibrium
of the closed loop with Lyapunov function Hd clearly ver-
ifying Ḣd = −p>M−1

d GKvG>M−1
d p ≤ −c1 |p̄|2 , where,

to simplify the notation in the sequel, we define the function
p̄(q, p) := G>(q)M−1

d (q)p and use the convention of
denoting with ci a (often unspecified) positive constant—
in this case c1 := λmin{Kv}. Stability will be asymptotic if
p̄ is a detectable output for the closed–loop system (32).

The full–state measurement IDA–PBC law is given by

u = (G>G)−1G>
(
∂H

∂q
−MdM

−1 ∂Hd

∂q
+ J2M

−1
d p

)
−Kvp̄,

(33)

which, as shown in [6], may be written in the form

u(q, p) = u0(q) +

 p>A1(q)p
...

p>Am(q)p

−Kvp̄, (34)

where the vector u0 : Rn → Rn and the matrices Ai :
Rn → Rn×n are functions of q. As will be shown below,
establishing boundedness of Ai, i = 1, ...m, will be critical
for our analysis. We next introduce the following assumption.

Assumption 3: The matrices ∂M
∂qi

, ∂Md

∂qi
and G are

bounded.
Proposition 6: Consider the system (1) and define the

position feedback controller as u = u(q, p̂) with p̂ an
estimate of p generated by the I&I observer (10). Assume
p̄(q, p) is a detectable output for the closed–loop system
(32) and that Assumptions 1 and 2 are satisfied. Then there
exists a neighborhood of the point (q?, 0, β(q?)) such that
all trajectories of the closed–loop system starting in this
neighborhood are bounded and satisfy

lim
t→∞

(q(t), p(t), η(t)) = (q?, 0, β(q?)).

Furthermore, if Assumption 3 holds and the full state–
feedback controller (34) ensures global asymptotic stability
then the neighborhood is the whole space R3n, thus bound-
edness and convergence are global.

Proof: To carry out the proof we will write the
overall system as a cascade connection of the observer error
subsystem ż = −Az and the full state–feedback dynamics
(32). For, we notice that u(q, p̂) = u(q, p)+χ(q, p, z) where
we have defined

χ :=
m∑
i=1

[
z>T −1AiT −>z + z>T −1(Ai +A>i )p

]
ei

−KvG>M−1
d T −>z .

(35)

The overall system can be written in the cascaded form(
q̇
ṗ

)
=
[

0 M−1 Md

−MdM−1 J2 −GKvG>

]( ∂Hd
∂q
∂Hd
∂p

)

+
[

0
G

]
χ

ż = −Az (36)

From the discussion above we have that the system with χ =
0 is asymptotically stable. Furthermore, the disturbance term
is such that G(q)χ(q, p, 0) = 0. Invoking well–known results
of asymptotic stability of cascaded systems [19] completes
the proof of local asymptotic stability.

To complete the global claim we invoke the fundamental
result of [20], see also [21], and see that the proof will be
completed if we can establish boundedness of the trajectories
(q(t), p(t)). Computing the time derivative of Hd along the
trajectories of (36) we get the bound

Ḣd ≤ −c1|p̄|2 + |p̄||Gχ|. (37)

Comparing (33) with (34), we observe that the matrices Ai
will be bounded if Assumption 3 holds. Further, from the
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IDA–PBC procedure we know that J2 satisfies the so–called
kinetic energy PDE

G⊥[MdM
−1 ∂

∂q
(p>M−1

d p)− ∂

∂q
(p>M−1p)]

= 2G⊥J2M
−1
d p,

(38)

and hence by comparing in this equation the terms which
are quadratic in p and the form of J2, we can obtain, under
Assumption 3, the bound ‖J2‖ ≤ c2|p|, where ‖ · ‖ is the
matrix norm induced by the Euclidean norm.

From the previous discussion we get the bound |Gχ| ≤
|z|(c2 + c3|p|), which replaced in (37) yields

Ḣd ≤ −c1|p̄|2 + |p̄||z|(c2 + c3|p|). (39)

Now, invoking standard Young’s inequality arguments we
get |p̄||z| ≤ c1

c2
|p̄|2 + c2

4c1
|z|2, which upon replacement in

(39) yields Ḣd ≤ c22
4c1
|z|2 + c5|z||p|2, where we have used

the bound of |p̄| ≤ c4|p| to define c5 := c3c4. Now, let us
consider the non-negative function

W (q, p, z) := Hd(q, p) +
c22

4c1ε
V (z),

where V (z) = 1
2 |z|

2, which as shown in the proof of
Proposition 1 verifies V̇ ≤ −εV . Evaluating the derivative
we get

Ẇ ≤ c5|z||p|2 ≤ c6|z|W, (40)

where we have used the bounds W ≥ Hd ≥ 1
2λmax(Md)|p|2

to obtain the last inequality. Since z is clearly an integrable
function, invoking the Comparison Lemma [22], we im-
mediately conclude boundedness of W and, consequently,
boundedness of the trajectories (q(t), p(t)) and complete the
proof.

VI. CONCLUDING REMARKS AND FUTURE WORK

We have identified in this paper a class of mechanical
systems for which a globally exponentially stable reduced
order observer can be designed. The class is characterized
by (the solvability of) a set of PDEs and contains all systems
that can be rendered linear in (the unmeasurable) momenta
via a (partial) change of coordinates P = T (q)p. It is also
shown that this class is larger than the one reported in the
literature of observer design and linearization. We also prove
that, under a very weak assumption, the observer can be used
in conjunction with an asymptotically stabilizing full state–
feedback IDA–PBC preserving stability. To the best of our
knowledge, this is the strongest, and more general, result
of position feedback stabilization of mechanical systems
reported to date.

Several open questions are currently under investigation:
• Similar to the well–known characterization of Euclidean

systems in terms of the Riemann symbols, it would be
interesting to derive necessary and sufficient conditions
on M to verify the skew-symmetry assumption of
Proposition 4.

• It is possible to show that the skew-symmetry condition
of Proposition 4, using the Cholesky factorization, is

not verified for manipulators with more than one ro-
tational joint. However, it is not clear whether other
factorizations may exist of it or whether they can be
handled imposing the weaker Assumption 1, that is, by
considering a general T .

• The solvability of the PDEs arising in Assumption 1 for
a general T is a widely open question. These PDEs are,
in general, nonlinear and quite involved.
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