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Abstract— This paper studies the robust stability and stabi-
lization problems for switched linear discrete-time systems. The
parameter uncertainties in the system under consideration are
time-varying but norm-bounded, and the time delay is assumed
to be time-varying and bounded, which covers the constant
and mode-dependent constant delays as special cases. First,
sufficient conditions are derived to guarantee the stability of
the uncertain system. Then, a control law is designed so that
the resulting closed-loop system is stable for all admissible
uncertainties. A linear matrix inequality (LMIs) approach,
together with a cone complementary linearization algorithm, is
proposed to solve the above problems. A numerical example
is given to show the potential applicability of the obtained
theoretic results.

I. INTRODUCTION

The so-called switched systems, a subclass of the hybrid

systems, have attracted considerable attention in the past

years. A switched system consists of a family of subsystems

described by continuous-time or discrete-time dynamics, and

a rule specifying the switching among them. The switching

rule in such systems is usually considered to be arbitrary, and

if the switching signals are governed by stochastic processes

(for instance, Markovian chains), the corresponding system is

termed as a jump system. The studies on switched systems

are motivated by the fact that many physical systems and

man-made systems are often modeled based on a framework

exhibiting switching features, see for example, [11], [12],

[14]. Some examples include automobile dynamics with a

manual gearbox [13], stirred tank reactor [8], wind turbine

regulation [15], VSTOL aircraft [20], etc. On recent research

progress and other practical applications in the field of

switched systems, we refer readers to [16], [26] and the

references therein.

Among a large variety of references, one of the fo-

cused topics is to find non (less)-conservative conditions

to guarantee the stability of switched systems under ar-

bitrary switching signals. Many analytical approaches and

techniques regarding this issue have been reported in the

literature, see for example, [3], [6], [14], [29], [31]. Using a

common quadratic Lyapunov function (CQLF) on all subsys-

tems, the quadratic Lyapunov stability facilitates the analysis

and synthesis of switched systems. However, the obtained

results within this framework have been recognized to be
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conservative [11], [14]. A notable extension of CQLF is the

multiple Lyapunov functions (MLF) approach [3], by which

an individual decrescent Lyapunov function is constructed

for each subsystem. A switched quadratic Lyapunov function

(SQLF) method proposed in [6], actually belongs to the

MLF approach, which applies the poly-quadratic stability

technique for polytopic uncertain systems to a class of

discrete-time switched control problems. Since the SQLF is

required to be decrescent between two adjacent subsystems,

it can be viewed as a tradeoff between those conservative

methodologies (using a single Lyapunov function) and the

others, which are hard to verify numerically (see details on

the derivation of stability conditions in [6]).

On another research front line, it has been recognized that

time delays and parameter uncertainties, which often occur

in many physical processes, are great sources of instability

and poor performance. Therefore, much attention has been

devoted to the study of various systems with uncertainties

and time delays, and a great number of useful results have

been reported in the literature on the issues of robust stability,

robust H∞ control, robust H∞ filtering and so on, by

considering different types of delay or different classes of pa-

rameter uncertainties. For the analysis and synthesis of time-

delay systems, the delay-independent and delay-dependent

approaches are developed, and the delay-independent one

is generally regarded as being more conservative than the

delay-dependent one, since the time-delay information is not

used in the stability conditions or controller design [1], [19],

[22], [28], [30], [32]. In addition, it is worth mentioning

that as another important class of hybrid dynamic systems,

Markovian jump linear system (MJLS) with uncertainties and

time delays is widely studied over the past decades, see, for

example, [1], [4], [5], [10], [23]. For the discrete-time case,

the robust stability and H∞ control results are obtained in

[4], [23] for the constant time-delay case and in [1] for the

mode-dependent time delay case. For continuous-time MJLS,

the time delay is further assumed to be mode-dependent

time-varying, as done in [28]. Nevertheless, if the transition

probabilities (the switching rule) in MJLS are hard to obtain

or the Markovian chain is impossible to model, the analysis

and synthesis of the corresponding systems have to resort

to the theory of switched systems under the assumption that

the switching signal is arbitrary. Up to date, some effort have

been made to study switched systems with time delays, see

for example [24], [32], however, such existing works are still

mainly in continuous-time context or in discrete-time domain

though, the delays are considered as constant [21] or mode-

dependent [25]. The basic stability problem for discrete-time
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switched systems with time-varying delays and the different

controllers design (memory or memoryless) have not been

fully addressed yet, with or without parameter uncertainties.

Thus, in this paper, our attention is focused on the study on

robust stability and stabilization for switched linear discrete-

time systems with both time-delays and parametric uncertain-

ties. The parameter uncertainties are time-varying but norm-

bounded, and the time delay is assumed to be time-varying

and bounded, which covers the constant and mode-dependent

constant delays as special cases. By constructing a SQLF

for the underlying system, the robust stability condition is

proposed, which is dependent on upper and lower delay

bounds. This stability criterion can be formulated in terms

of linear matrix inequalities (LMIs) and easily tested using

standard numerical software. Based on this, the problem of

robust stabilization is solved designing a set of so-called

delayed or memoryless state-feedback controllers, which are

switched depending on the system modes. Since the obtained

existence conditions of desired controllers are not expressed

as strict LMI, the cone complementary linearization algo-

rithm is employed to obtain the controllers and a suboptimal

upper delay bound such that the studied switched systems

can be stabilized for all admissible uncertainties.

Notation: The notation used in this paper is fairly standard.

The superscript “T” stands for matrix transposition; R
n

denotes the n dimensional Euclidean space. In addition, in

symmetric block matrices or long matrix expressions, we use

* as an ellipsis for the terms that are introduced by symmetry

and diag{· · · } stands for a block-diagonal matrix. Matrices,

if their dimensions are not explicitly stated, are assumed to

be compatible for algebraic operations. A symmetric matrix

P > 0 (≥ 0) means P is positive (semi-positive) definite. I

and 0 represent, respectively, identity matrix and zero matrix.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a class of uncertain switched linear discrete-time

systems with time-varying delay in the state as the follows:

(Σ) : x(k + 1) = (Ai + ∆Ai(k))x(k)

+(Adi + ∆Adi(k))x(k − d(k))

+(Bi + ∆Bi(k))u(k) (1)

x(k) = φ(k), k = −dM ,−dM + 1, . . . , 0(2)

where x(k) ∈ R
n is the state vector; u(k) ∈ R

l is the

control input; {φ(k), k = −dM ,−dM + 1, . . . , 0} is a given

initial condition sequence; i denoting i(k) for simplicity, is

a piecewise constant function of time, called a switching

signal, which takes its values in the finite set I = {1, . . . , s} ,

s > 1 is the number of subsystems. As in [6], we assume

that the switching signal i is unknown a priori, but its

instantaneous value is available in real time. At an arbitrary

discrete time k, the switching signal i is dependent on k

or x(k), or both, or other switching rules; Ai, Adi and Bi

are known real constant matrices of appropriate dimensions

representing the nominal system for each i ∈ I. ∆Ai(k),
∆Adi(k) and ∆Bi(k) are real-valued time-varying matrix

functions representing the time-varying norm-bounded pa-

rameter uncertainties, which are assumed to be of the form

[

∆Ai(k) ∆Adi(k) ∆Bi(k)
]

= Gi∆i(k)
[

F1i F2i F3i

]

, ∀i ∈ I,

where ∆i(k) is a real uncertain matrix function of k satis-

fying

∆T
i (k)∆i(k) ≤ I,

and Gi, F1i, F2i and F3i are known real constant matrices

for all i ∈ I . These matrices specify how the uncertain

parameters in ∆i(k) enter the nominal matrices Ai, Adi and

Bi.

In system (Σ), the time delay d(k) is assumed to be time-

varying and satisfy dm ≤ d(k) ≤ dM , where dm and dM

are constant positive scalars representing the minimum and

the maximum delay bounds respectively for any subsystems.

Remark 1: Note that if the minimum and maximum delay

bounds in system (Σ) become identical, that is dm = dM =
d, then the time delay becomes constant. Also, if d(k)
changes only when system mode is switched, then the time

delay becomes mode-dependent constant; thus, the time-

varying delay considered here covers the previous two cases.

Remark 2: It should also be mentioned that in continuous-

time context, the time delay can be further assumed to be

mode-dependent time-varying, as done in [28]. However, the

meaning of mode-dependent delay in [28] is actually that the

delay derivative varies when the system mode changes, that

is, if the delay derivative of each modes is identical, then

the delay is mode-independent and merely time-varying. On

the contrary, due to the limitation of the classic Lyapunov-

Krasovskii technique, the time-delay difference was rarely

studied in the discrete-time context and the delay could only

be assumed time-varying as a consequence.

Remark 3: In addition, the studied systems with time-

varying delays are under arbitrary switching, yet within

linear context still. The corresponding extension to nonlinear

systems can be resort to the methods and ideas explored

in [7], [8] for references. Besides, the specific rules (cyclic

or prescribed switching) for the underlying systems can be

further considered for less conservatism over the arbitrary

switching, in the absence or presence of uncertainties, such

as [18] or [17], respectively.

The objective of this paper is to derive the robust stability

conditions and design a stabilizing state-feedback controller

for the underlying uncertain switched system (Σ). The con-

troller is considered here to be the following form

u(k) = K1ix(k) + K2ix(k − d(k)) (3)

where if K2i = 0, the stabilizing controller may be called

switched memoryless state-feedback controller (SMSFC) and

if K2i 6= 0, the controller may be called switched delayed

state-feedback controller (SDSFC). It is evident that the

former is easier to realize, but its performance should not

be better than the latter’s one, which utilizes the partial

information of time delays. Note that the switching signal
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in the designed controllers is assumed homogeneous with

the one in system (Σ).
Before ending this section, we recall the following lemmas

which will be used in the proof of our main results.

Lemma 1: [19] Assume that a ∈ R
na , b ∈ R

nb and N ∈
R

na×nb . Then, for any matrices X ∈ R
na×na , Y ∈ R

na×nb

and R ∈ R
nb×nb satisfying

[

X Y

Y T R

]

≥ 0, the following

inequality holds

−2aTN b ≤

[

a

b

]T [

X Y −N
Y T −N T R

] [

a

b

]

Lemma 2: [27] Given appropriately dimensioned matrices

Σ1, Σ2, Σ3, with ΣT
1 = Σ1. Then

Σ1 + Σ3W (k)Σ2 + ΣT
2 WT (k)ΣT

3 < 0

holds for all W (k), satisfying WT (k)W (k) ≤ I, if and only

if for some ǫ > 0

Σ1 + ǫ−1Σ3Σ
T
3 + ǫΣT

2 Σ2 < 0

III. STABILITY AND STABILIZATION FOR NOMINAL

SYSTEMS

In this section, we first consider the nominal switched

system given by

(S) : x(k + 1) = Aix(k) + Adix(k − d(k)) + Biu(k)

x(k) = φ(k), k = −dM ,−dM + 1, , 0 (4)

The following theorem presents a sufficient stability con-

dition for system (S).

Theorem 1: The unforced system (S) in (4) with u(k) ≡
0 is asymptotically stable if there exist n×n matrices Pi > 0,

Xi > 0, Yi, ∀i ∈ I, Q > 0, R > 0 such that the following

LMIs hold ∀(i, j) ∈ I × I,








−Pj 0 PjAi PjAdi

∗ −d−1
M R R (Ai − I) RAdi

∗ ∗ Λij −Yj

∗ ∗ ∗ −Q









< 0 (5)

[

Xi Yi

YT
i R

]

≥ 0 (6)

where Λij , −Pi +dMXj +Yj +YT
j +(dM −dm +1)Q.

Proof Sketch. Set

η(m) , x(m + 1) − x(m)

= (Ai − I)x(m) + Adix(m − d(m))

and one has

x(k − d(k)) = x(k) −
k−1
∑

m=k−d(k)

η(m) (7)

Then, the unforced system (S) in (4) can be transformed

into

x(k +1) = (Ai + Adi) x(k)−Adi

k−1
∑

m=k−d(k)

η(m) (8)

Choose a Lyapunov functional candidate as

V (k) = V1 + V2 + V3 + V4

V1 , xT (k)Pix(k),

V2 ,

k−1
∑

l=k−d(k)

xT (l)Qx(l),

V3 ,

−dm+1
∑

n=−dM+2

k−1
∑

l=k+n−1

xT (l)Qx(l),

V4 ,

−1
∑

n=−dM

k−1
∑

m=k+n

ηT (m)Rη(m)

where Pi, Q, R satisfy (5) and (6). Defining ∆V , V (k +
1) − V (k), together combining with Lemma 1, then the

following equality holds along the solution of (8) ∀(i, j) ∈
I × I,

∆V ≤ λT (k)Ξλ(k) (9)

where

Ξ =

[

AT
i PjAi + Λij + dM (Ai − I)

T R (Ai − I)
∗

−Yj + AT
i PjAdi + dM (Ai − I)

T RAdi

AT
diPjAdi −Q + dMAT

diRAdi

]

λ(k) =

[

x(k)
x(k − d(k))

]

By Schur complement [2], inequality (5) ensures ∆V < 0
for all nonzero x(k). Therefore, we can conclude from

the standard Lyapunov stability theory that the conditions

(5) and (6) ensure the unforced switched system (S) to

be asymptotically stable for any time-varying delay d(k)
satisfying dm ≤ d(k) ≤ dM . This completes the proof. �

Remark 4: It is well known that the reasonable construc-

tion of Lyapunov functional is very crucial to derive non

(or less)-conservative stability conditions. In the proof of

Theorem 1, we apply the SQLF approach proposed in [6]

to construct a quadratic Lyapunov functional candidate for

switched system (S) using the positive definite matrices Pi,

Q and R. Evidently, the matrices Q and R are still the

common variables among all subsystem. However, if we

further choose common variables Q and R as piecewise

variables Qi and Ri, then the condition will be hard to obtain

due to the tight coupling between Q and R and time delay

terms.

In the following theorem, we extend Theorem 1 to design

a stabilizing controller of the form (3) for switched system

(S).

Theorem 2: Consider switched system (S) in (4) . A

stabilizing state-feedback controller of the form (3) exists

if there exist n × n matrices Ji > 0, Pi > 0, Xi > 0,

Yi,∀i ∈ I, Q > 0, R > 0, Z > 0 and l × n matrices K1i
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and K2i such that (6) and the following conditions hold,








−Jj 0 Θ1i Θ2i

∗ −d−1
M Z Θ1i − I Θ2i

∗ ∗ Λij −Yj

∗ ∗ ∗ −Q









< 0 (10)

PiJi = I, RZ = I (11)

where Θ1i , Ai + BiK1i, Θ2i , Adi + BiK2i and Λij are

defined in Theorem 1.

Proof. Consider the corresponding closed-loop system

with the control (3), and we replace Ai and Adi in (5) with

Ai+BiK1i and Adi+BiK2i, respectively. Now performing a

congruence transformation to (5) via diag{P−1
j ,R−1, I, I},

we have








−P−1
j 0 Θ1i Θi

∗ −d−1
M R−1 Θ1i − I Θi

∗ ∗ Λij −Yj

∗ ∗ ∗ −Q









< 0 (12)

Then, the desired result is obtained by defining Ji ,

P−1
i ,Z , R−1. �

It should be noted that although the resulting conditions

in Theorem 2 are not strict LMI conditions due to (11),

we can cope with this nonconvex feasibility problem using

the cone complementary linearization algorithm developed

in [9], which has been proved to be efficient [19]. First, we

transform the nonconvex feasibility problem in Theorem 2

into the following nonlinear minimization problem subject

to LMI constraints.

Minimize Tr

(

s
∑

i=1

(PiJi) + RZ

)

subject to (6), (10)

and (13)
[

Pi I

I Ji

]

≥ 0,

[

Z I

I R

]

≥ 0 (13)

Thus, as discussed in [9], if the solution of the above

minimization problem is (s + 1)n, that is,

Tr
(

∑s

i=1
(PiJi) + RZ

)

= (s + 1)n

then the conditions of Theorem 2 are solvable. Although it

is yet not always possible to find the global optimal solution,

the proposed nonlinear minimization problem is easier than

the original nonconvex feasibility problem. In fact, we can

modify Algorithm 1 in [9] to solve the above nonlinear

problem as follows:

Algorithm SSC (solving for a stabilizing controller)

1 Find a feasible set (Pi,Ji,Xi,Yi,K1i,K2i,R,Q,Z,

∀i ∈ I)
0

satisfying (6), (10) and (13). Set k = 0.

2 Solve the following LMI problem

Minimize Tr





s
∑

i=1

(

PiJ
k
i + Pk

i Ji

)

+RZk + RkZ





subject to (6), (10) and (13).

3 Substitute the obtained matrix variables

(Pi,Ji,Xi,Yi,K1i,K2i,R,Q,Z, ∀i ∈ I) into (12).

If condition (12) is satisfied with
∣

∣

∣

∣

∣

Tr

(

s
∑

i=1

(PiJi) +RZ

)

− (S + 1)n

∣

∣

∣

∣

∣

< δ

for some sufficiently small scalar δ > 0, then output the

feasible solutions (Pi,Ji,Xi,Yi,K1i,

K2i,R,Q,Z, ∀i ∈ I), exit, else Step 4.

4 If k > N, where N is the maximum number of

iterations allowed, exit, else Step 5.

5 Set k = k + 1,

(Pi,Ji,Xi,Yi,K1i,K2i,R,Q,Z, ∀i ∈ I)
k

=
(Pi,Ji,Xi,Yi,K1i,K2i,R,Q,Z, ∀i ∈ I), and

go to Step 2.

The above designed algorithm aims to find a feasible

solution of desired controller for given dm and dM , then,

based on this, one can also find the suboptimal maximum

delay bound dM for given dm when a outside loop procedure

is added on.

IV. ROBUST STABILITY AND STABILIZATION FOR

UNCERTAIN SWITCHED SYSTEMS

In this section, we extend Theorem 1 and Theorem 2

in previous section to obtain the corresponding results for

uncertain switched systems (Σ).

A. Robust stability

The following theorem provides the robust stability con-

ditions for uncertain switched systems (Σ) with u(k) ≡ 0.

Theorem 3: The unforced switched system (Σ) in (1)-(2)

with u(k) ≡ 0 is robustly asymptotically stable if there exist

n × n matrices Pi > 0,Xi > 0,Yi,∀i ∈ I, Q > 0,Z
> 0, and scalars ǫi > 0 such that (6) and the following LMI

hold,∀(i, j) ∈ I × I












−Pj 0 PjAi

∗ −d−1
M R R (Ai − I)

∗ ∗ Λij + ǫiF
T
1iF1i

∗ ∗ ∗
∗ ∗ ∗

PjAdi PjGi

RAdi RGi

−Yj + ǫiF
T
1iF2i 0

−Q + ǫiF
T
2iF2i 0

∗ −ǫiI













< 0, (14)

where Λij are defined in Theorem 1.

Proof Sketch. Replace Ai and Adi in (5) with A +
Gi∆i(k)F1i and Adi + Gi∆i(k)F2i, respectively, and use

Lemma 2, one can readily conclude that if (6) and the

following inequality are satisfied, ∀(i, j) ∈ I × I








−Pj + ǫ−1
i PjGiG

T
i Pj ǫ−1

i PjGiG
T
i R

∗ −d−1
M R+ǫ−1

i RGiG
T
i R

∗ ∗
∗ ∗

PjAi PjAdi

R (Ai − I) RAdi

Λij + ǫiF
T
1iF1i −Yj + ǫiF

T
1iF2i

∗ −Q + ǫiF
T
2iF2i









< 0 (15)
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then the underlying system is robustly asymptotically stable.

By Schur compliment, (15) implies (14); thus, the proof is

completed. �

B. Robust stabilization

The existence conditions of a stabilizing state-feedback

controller for uncertain switched system (Σ) are presented

in the following theorem.

Theorem 4: Consider uncertain switched system (Σ) in

(1)-(2). A robustly stabilizing state-feedback controller of the

form (3) exists if there exist matrices Ji > 0, Pi > 0,

Xi > 0, Yi,∀i ∈ I, Q > 0, R > 0, Z > 0, l × n matrices

K1i and K2i and scalars ǫi > 0 such that (6), (11) and the

following inequality hold,∀(i, j) ∈ I × I













−Jj + ǫiGiG
T
i ǫiGiG

T
i Θ1i

∗ −d−1
M Z + ǫiGiG

T
i Θ1i − I

∗ ∗ Λij

∗ ∗ ∗
∗ ∗ ∗

Θ2i 0
Θ2i 0

−Yj (F1i + F3iK1i)
T

−Q (F2i + F3iK2i)
T

∗ −ǫiI













< 0 (16)

where Θ1i and Θ2i are defined in Theorem 2 and Λij is

defined in Theorem 1.

Proof. The result is carried out using the techniques

employed for proving Theorems 2 and 3. �

Note that if the designed controller of the form (3), where

K2i 6= 0 (SDSFC) is difficult to realize in practical applica-

tions, one can set K2i = 0 in (3) and get the corresponding

SMSFC. In addition, from (10) and (16), it is evident that

the iterative controller design procedure Algorithm SSC for

nominal switched systems (S) can be easily modified to suit

for uncertain system (S) so that a robust controller can be

designed.

V. ILLUSTRATIVE EXAMPLE

In this section, a numerical example is presented to

demonstrate the applicability of the obtained theoretic re-

sults.

Consider the uncertain switched system (Σ) in (1) and (2)

consisting of two uncertain subsystems. For subsystem 1, the

dynamics of the system is described as

A1 =

[

0.70 0
0.08 0.95

]

, Ad1 =

[

0.15 0
−0.10 −0.10

]

,

B1 =

[

−0.70
1

]

, G1 =

[

0.05
0

]

,

∆1(k) = 0.80 sin(k), F31 = 0.10

F11 =
[

0.2 0.3
]

, F21 =
[

0 −0.1
]

.

For subsystem 2, the dynamics of the system is described as

A2 =

[

0.70 0
0.08 0.90

]

, Ad2 =

[

0.14 0
−0.10 −0.05

]

,

B2 =

[

0.80
−0.50

]

, G2 =

[

0.05
−0.02

]

,

∆2(k) = 0.80 sin(k),

F12 =
[

−0.10 −0.10
]

, F22 =
[

−0.30 −0.20
]

F32 = −0.20.

Suppose the switching signal is generated randomly and

a possible case is shown in Figure 1.

Firstly, we check the robust stability of the above uncertain

switched system with u(k) ≡ 0. Assume that the minimum

bound of time-varying delay d(k) is dm = 2, then, using

Theorem 3, it is found that dM = 5, which means that the

above system is asymptotically stable for 2 ≤ d(k) ≤ 5.

Furthermore, based on the conditions in Theorem 4 and

Algorithm SSC, choosing ǫ1 = ǫ2 = 0.1, we obtain the

maximum delay bound dM = 7 by SMSFC and dM = 12 by

SDSFC, respectively, which implies that the admissible delay

bound in the evaluated system is increased upon applying

such controllers. Moreover, the better performance of the

SDSFC is demonstrated. In addition, applying the SMSFC

and SDSFC and assuming that the delay varies randomly in

2 ≤ d(k) ≤ 7 and 2 ≤ d(k) ≤ 12, respectively, we obtain the

control trajectories and the state responses of the correspond-

ing closed-loop systems in Figures 2 and 3, respectively,

for given initial condition x = [−0.5 0.3]T . It is clearly

observed from the curves that the obtained controller robustly

stabilizes the switched system against variations of uncertain

parameters under the randomly generated switching signals.

VI. CONCLUSIONS

In this paper, the robust stability and stabilization problems

are studied for switched linear discrete-time systems with

both bounded time-varying delays and norm-bounded time-

varying uncertainties. A switched quadratic Lyapunov func-

tion is constructed for the underlying system and the robust

stability criterion dependent on delay bounds is derived via

LMI formulation, which can be easily tested using standard

numerical software. Furthermore, the robust stabilization

problem is also solved by designing a set of so-called

switched delayed or memoryless state-feedback controllers.

A cone complementary linearization algorithm is employed

to obtain the controllers and a suboptimal upper delay bound

such that the underlying switched systems can be stabilized

for all admissible uncertainties. A numerical example is

included to show the effectiveness of the developed approach.
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Fig. 2. Control trajectories of two different controllers
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Fig. 3. State responses of the closed-loop systems by two different
controllers
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