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Abstract— We consider a communication system consisting
of two encoders communicating with a single receiver over
a noiseless channel. The two encoders make distinct partial
observations of a discrete-time Markov source. Each encoder
must encode its observations into a sequence of discrete vari-
ables. The sequence is transmitted over a noiseless channel
to a receiver which attempts to reproduce the output of the
Markov source. The system must operate in real-time, that is,
the encoding at each encoder and decoding at the receiver must
be performed without any delay. The goal is to find globally
optimal real-time encoding and decoding strategies to minimize
an expected distortion metric over a finite time horizon. We
determine qualitative properties of optimal real-time encoding
and decoding strategies. Using these properties, we develop a
sequential decomposition of the problem of finding globally
optimal real-time encoding and decoding strategies. Such a
sequential decomposition reduces the complexity of the global
optimization problem.

I. INTRODUCTION

A multi-terminal communication system with two en-
coders communicating with a single receiver over a noiseless
channel is considered. The two encoders make distinct partial
observations of a discrete-time Markov source. Each encoder
must encode its observations into a sequence of discrete
variables. This sequence is transmitted over a noiseless
channel to a receiver which attempts to reproduce the output
of the Markov source. The system must operate in real-time,
that is, the encoding at each encoder and decoding at the
receiver must be performed without any delay. Both encoders
and the receiver have perfect recall, i.e, they remember
all of their past observations and actions. The goal is to
find globally optimal encoding and decoding strategies to
minimize an expected distortion metric over a finite time
horizon. The problem is motivated by applications such
as sensor networks, transportation networks and networked
control systems where the communication system is a part
of a larger system that requires strict bounds on delays in
information transmission.

The key features of the problem are : a) The real-time con-
straint on information transmission; and b) The presence of
multiple encoders with different but correlated information.

The real-time constraint on information-transmission dis-
tinguishes our problem from the information-theoretic prob-
lem of distributed source coding ([11-13],[14 and references
therein]). Information-theoretic approaches deal with encod-
ing and decoding of long sequences that are asymptotically
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typical. Encoding long sequences introduces delays and this
feature is distinctly different from our real-time constraint.

Point-to-point communication systems under the real-time
constraint have been investigated in [1], [2], [10], [6], [5].
The structure of real-time encoders and decoders for the
broadcast system under the real-time constraint on informa-
tion transmission and for a real-time variation of the Wyner-
Ziv problem was investigated in [10]. In this paper, we con-
sider a multi-terminal communication system; furthermore,
our model is different from the broadcast system and the
real-time variation of the Wyner-Ziv problem investigated in
[10].

The main feature of a multi-terminal problem that distin-
guishes it from a point to point communication problem is
the presence of coupling among the encoders, (that is, each
encoder must take into account what other encoders are do-
ing). This coupling arises because of the following reasons -
1) The encoder’s observations are correlated with each other.
2) Even if the encoders’ observations were independent,
the encoding problems remain coupled because the receiver
wants to minimize a non-separable distortion metric. That
is, the distortion metric cannot be decomposed into separate
functions that depend only on one encoder’s observations and
actions. The nature of optimal strategies strongly depends on
the nature and extent of the coupling among the encoders.
In this paper, we consider two encoders, a general distortion
metric and a simple model of correlation between the two
encoders’ observations (described in Section II).

The main contributions of this paper are : 1) The determi-
nation of structural properties of optimal real-time encoding
and decoding strategies, and 2) A sequential decomposition
of the problem of finding globally optimal encoding and
decoding strategies for the model under consideration. Such
a decomposition reduces the complexity of finding globally
optimal real-time encoding and decoding strategies.

The rest of this paper is organized as follows. In Section II,
we formulate the problem for a specific source model. In
Section III, we present results on the structure of optimal
real-time encoders and decoders. In Section IV, we present
a method for sequentially determining globally optimal real-
time encoding and decoding strategies. We conclude in
Section V.
Notation: Throughout this paper, we denote random variables
by capital letters. We use superscripts to refer to sequences
of random variables. Thus, V t refers to V1, V2, ...Vt. In case
of two superscripts, the first refers to the encoder number
for which the variable is being considered and the second
refers to the sequence. Thus X1,t indicates the sequence
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II. PROBLEM FORMULATION

A. The Model
We consider a finite state discrete time Markov source.

We assume that the source can be in one of finitely many
“modes”. The random variable A ∈ A denotes the mode
of the source. In any given mode, the source produces
two Markov chains, X1

t and X2
t , which are conditionally

independent given A. We assume that the mode A does not
change during the time horizon under consideration. Thus,
the state of the source at a time t is given as:

Xt := (X1
t , X

2
t , A) (1)

where Xi
t ∈ X i, i=1,2 and A ∈ A. X i, i = 1, 2 and A are

finite spaces. The state space of the source is X = X 1 ×
X 2 ×A
The evolution of the Markov source is given in terms of the
statistics of the initial state and the transition probability as:

Pr(X1
1 , X

2
1 , A) =Pr(X1

1 , X
2
1/A).P r(A)

=Pr(X1
1/A).P r(X2

1/A).P r(A) (2)

Pr(X1
t+1, X

2
t+1, A

′
/X1

t , X
2
t , A)

= Pr(X1
t+1/X

1
t , A).P r(X2

t+1/X
2
t , A).δ(A

′
, A) (3)

At each time t, the first encoder observes X1
t and A, and

the second encoder observes X2
t and A. Thus, each encoder

gets a perfect observation of the underlying source mode and
it observes one of the two conditionally independent Markov
chains. The two encoders produce Z1

t and Z2
t that belong to

finite alphabets Z1 and Z2, respectively. Both encoders must
encode in real time hence the encoded symbols at time t are
functions of observations available till time t only. Thus,

Zit = f it (X
i,t, A) (4)

for i=1,2 where Xi,t = Xi
1, X

i
2, ..., X

i
t . The encoders’

outputs at time t, (Z1
t , Z

2
t ), are transmitted to a receiver over

a noiseless channel. A perfect memory receiver must produce
estimates X̂t of the state of the source Xt in real time, i.e,

X̂t = gt(Z1,t, Z2,t) (5)

where Zi,t = Zi1, Z
i
2, ..., Z

i
t , i = 1, 2.

A non-negative distortion function ρt(Xt, X̂t) measures the
instantaneous distortion between the source and the estimate
at time t. The overall performance of the system is the
expected total distortion over a finite time-horizon, T.

B. The Optimization Problem

Given the source statistics, the encoding alphabets, the
time horizon T, and the distortion function ρt(Xt, X̂t), the
objective is to find globally optimal encoding and decoding
functions f1,T , f2,T , gT so as to minimise

J(f1,T , f2,T , gT ) = E[
T∑
t=1

ρt(Xt, X̂t)], (6)

where we use the notation f i,t for f i1, f
i
2, ..., f

i
t and gt for

g1, ..., gt.
Remark: Since the state space of the source, the encoding
alphabets and the time horizon are all finite, the num-
ber of possible real-time encoding and decoding strategies
(f1,T , f2,T , gT ) is finite. Therefore, an optimal strategy
(f̃1,T , f̃2,T , g̃T ) always exists.

C. Features of the Problem

The problem formulated in this paper is a dynamic team
problem. Dynamic team problems are difficult because they
are, in general, non-convex functional optimization problems.
We would like to develop a methodology that reduces
the complexity of determining an optimal solution to our
problem. For that matter, we wish to obtain a sequential
decomposition of the optimization problem. The fundamental
difficulty in obtaining such a decomposition is the discovery
of an information state appropriate for performance evalua-
tion [9]. This difficulty is a fundamental conceptual issue
for any decentralized optimization problem. We wish to
identify an information state that is not only appropriate for
performance evaluation but also has a time-invariant domain,
that is, the space in which this state lies does not keep
increasing with time. Such an information state would be
applicable to both finite as well as infinite time horizon
problems.

Identifying structural properties of optimal real-time en-
coding and decoding strategies could lead to the discovery of
information states with a time-invariant domain. Therefore,
we proceed as follows. In Section III, we present structural
properties of optimal strategies. We use these structural
results in Section IV to identify an information state for the
global optimization problem of Section II.B that is appro-
priate for performance evaluation and has a time-invariant
domain. We show how such an information state leads to a
sequential decomposition of the global optimization problem.

III. STRUCTURAL PROPERTIES OF AN OPTIMAL DESIGN

As shown in Appendix I, for any arbitrary but fixed
encoding rules, the decoder can be assumed to have the
following structure without any loss of optimality:

X̂t = τ(ψt) (7)

where
ψt = Pr(Xt/Z

1,t, Z2,t, f1,t, f2,t) (8)

and
τ(ψ) = arg min

a∈X

∑
x∈X

ψ(x)ρt(x, a) (9)
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Note that for a fixed z1,t, z2,t, the
Pr(Xt/Z

1,t, Z2,t, f1,t, f2,t) depends only on the encoding
rules used.
We now prove a structural result for the encoders in two
steps. In the first step (Theorem 1), we establish a result
similar to those proven in Theorem 1 in [1] and Theorem
1 in [2]. A drawback of this result is that the domain of
the optimal real-time encoding rule is changing (increasing)
with time. We wish to have (if possible) optimal real-time
encoding rules whose domain does not change with time.
This consideration motivates the structural result we obtain
in Theorem 2, where we show the existence of optimal
real-time encoding rules whose domain is time-invariant.
The result of the second step is similar to that of [2].
However, the presence of two encoders with different
but correlated information does not permit us to use the
methodology adopted in [2] to achieve the second structural
result.

A. First structural Result
Theorem 1 : There is no loss of optimality if one restricts

attention to encoders of the form :

Zit = f it (X
i
t , A, Z

i,t−1) (10)

for i=1,2.
Proof : Consider an arbitrary decoding rule
X̂t = gt(Z1,t, Z2,t) and an arbitrary encoding rule
Z2
t = f2

t (X2,t, A) for the second encoder. We will show
that the first encoder can use encoding rules of the form
Z1
t = f1

t (X1
t , A, Z

1,t−1) without any loss of optimality.

Define V1 := (X1
1 , A)

and Vt := (X1
t , A, Z

1,t−1), for t = 2, 3..T.
Then Vt is a conditionally Markov process given the Z1

t s
since

Pr(Vt+1/V
t, Z1,t) =Pr(X1

t+1, A, Z
1,t/X1,t, A, Z1,t)

=Pr(X1
t+1, A, Z

1,t/X1
t , A, Z

1,t) (11)

=Pr(X1
t+1, A, Z

1,t/Vt, Z
1
t )

=Pr(Vt+1/Vt, Z
1
t ) (12)

where the equality in (11) holds because of the Markovian
nature of X1

t when conditioned on A.
As seen by the first encoder, the cost function of this

system (with second encoder’s and decoder’s rules fixed) can
be written as:

J(f1,T , f2,T , gT ) = E[
T∑
t=1

ρt(Xt, X̂t)] =
T∑
t=1

E[ρt(Xt, X̂t)]

=
T∑
t=1

E[E[ρt(Xt, X̂t)/X1,t, A, Z1,t]]

(13)

=
T∑
t=1

E[E[ρt((X1
t , X

2
t , A),

gt(Z1,t, Z2,t))/X1,t, A, Z1,t]] (14)

where (13) follows from the smoothing property of con-
ditional expectation and (14) by direct substitution. In the
inner expectation of (14), the only random quantities are X2

t

and Z2,t since the rest appear in the conditioning variables.
Since the second encoder’s rule has been fixed, Z2,t itself
is a function of X2,t and A. Thus the only randomness in
the inner expectation is due to X2,t which conditioned on
A is independent of the first encoders private observations
X1,t and actions Z1,t. Therefore, the above expectation can
be written as:

J(f1,T , f2,T , gT ) =
T∑
t=1

E[E[ρt((X1
t , X

2
t , A),

gt(Z1,t, Z2,t))/X1
t , A, Z

1,t]] (15)

=
T∑
t=1

E[ρ̂t(X1
t , A, Z

1,t)]] (16)

=
T∑
t=1

E[ρ̂t(Vt, Z1
t )]] (17)

In (16), we have expressed the inner conditional expectation
as a function of the conditioning random variables.
Hence, the optimal encoding problem from the first encoder’s
point of view is to find the optimal control actions Z1

t for the
controlled Markov chain Vt when the cost function is of the
form in (17). It is a well known result of Markov decision
theory (see [3], Chapter 6) that there is an optimal control
law of the form :

Z1
t = f1

t (Vt) (18)

or equivalently,

Z1
t = f1

t (X1
t , A, Z

1,t−1) (19)

We can repeat the same argument for the second encoder
to establish the same structural result for the second encoder.

B. Second structural Result

As mentioned before, the structural result of equation (10)
suffers from the drawback that the domain of the encoding
rules f it , (X i ×A ×Zi,t−1), i = 1, 2, keeps increasing with
time. We prove a second structural result for the encoders
that is free from this drawback.

In the proof of Theorem 1, we fixed the second encoder
and the decoder to arbitrary rules and considered the problem
of selecting optimal encoding rules of the first encoder. This
simpler problem is a classical centralized decision making
problem allowing us to use results from Markov decision
theory to obtain the first structural result.

To further refine this result, we will keep the second
encoder fixed to an arbitrary rule (of the from in (10)) and
consider the problem of finding an optimal encoding rule
of the first encoder and an optimal decoding rule for the
decoder. Because of the first structural result on the encoder
and the structural result of the decoder, we will only consider
encoding rules of the form Zit = f it (X

i
t , A, Z

i,t−1) and a
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decoding rule that uses the receiver’s belief on the source at
time t, (ψt), to make the estimate X̂t. Note that the receiver’s
belief on source depends on the received messages and the
encoding functions used (equation (8)).

We are now looking for optimal strategies for the first en-
coder and the decoder. This is a decentralized team problem
since the two decision makers - the first encoder and the
decoder- make decisions based on different information. We
analyze this problem as follows:
Step 1: We convert the above decentralized team problem
into a centralized stochastic control problem.
Step 2: We show that the centralized stochastic control
problem is a Partially Observed Markov Decision Process
(POMDP).
Step 3: We identify an information state for the resulting
POMDP and use it to deduce the second structural result.
Below, we elaborate on these steps.

Step 1: We observe that the first encoder and the decoder
have some information that they both know in common.
At time t, they both know Z1,t−1. We now formulate the
original decentralized problem as a centralized problem from
the perspective of an agent that knows just the common
information Z1,t−1. We call this fictitious agent the “pre-
encoder”. The system can now be described as follows :
Based on Z1,t−1, the pre-encoder selects a pre-encoding
function w1

t : X 1 ×A −→ Z1 . Once w1
t is selected, the

encoder observes X1
t and A and uses w1

t to find

Z1
t = w1

t (X
1
t , A) (20)

The decoder receives Z1
t and Z2

t and updates its belief on
the source (ψt) using the fixed second encoding rule f2

t and
the pre-encoding rule w1

t . (See Appendix II for the receiver’s
belief). Once the decoder forms ψt, it selects the estimate X̂t

according to the function τ in equation (9). The system incurs
a distortion cost ρt(Xt, X̂t). The pre-encoder’s information
changes to Z1,t.

Viewed in this way, the original decentralized problem is
now a centralized with the pre-encoder as the only decision
maker. Once w1

t has been selected, the encoder and the
decoder simply carry out fixed transformations.

Step 2: We proceed to analyse the pre-encoder’s optimiza-
tion problem. For that matter, we define:

R1 :=(X1
1 , A) (21)

Rt :=(X1
t , A, ξ

1
t−1) (22)

where
ξ1t−1 = Pr(Xt−1/Z

1,t−1, w1,t−1) (23)

for t=2,3..T, and proceed as follows. We first obtain
functional relations among different random variables of
interest in Claims 1 and 2 below. These relations are used
to prove that Rt is a controlled Markov chain and the
instantaneous cost of the system depends on Rt and w1

t

(Lemmas 1 and 2 below).

Claim 1: ξ1t = Ft(Z1
t , w

1
t , ξ

1
t−1) = F̂t(Rt, w1

t ), t=2,3,..,T,
where Ft, F̂t are deterministic functions.

Claim 2: ψt = Ht(X2,t, Rt, w
1
t ),t=1,2,..,T, where Ht are

deterministic functions.
For the proofs of Claim 1 and Claim 2, we refer the reader
to [15].
Lemma 1 : Rt is a controlled Markov chain with w1

t as
control action.
Proof :

Pr(Rt+1/R
t, w1,t) (24)

= Pr(X1
t+1, A, ξ

1
t /X

1,t, A, ξ1,t−1, w1,t) (25)

= Pr(X1
t+1, A/X

1,t, A, ξ1,t, w1,t).

P r(ξ1t /X
1,t, A, ξ1,t−1, w1,t) (26)

= P (X1
t+1, A/X

1,t, A, ξ1,t, w1,t, Rt)

.P r(ξ1t /X
1,t, A, ξ1,t−1, w1,t, Rt) (27)

=Pr(X1
t+1, A/ξ

1
t , w

1
t , Rt).P r(ξ

1
t /w

1
t , Rt) (28)

=Pr(X1
t+1, A, ξ

1
t /w

1
t , Rt) (29)

=Pr(Rt+1/Rt, w
1
t ) (30)

The equality in (27) follows because the variables in condi-
tioning determine Rt exactly, so its inclusion in the condi-
tioning does not alter the probability. In the first term of (28),
because of the Markovian nature of source, one only needs
X1
t and A in the conditioning (X1

t and A are present in Rt)
while in the second term of (28) one only needs w1

t and Rt in
the conditioning because of Claim 1. Equation (30) proves
the lemma. Thus Rt is a conditional Markov chain given w1

t .

Lemma 2 : For a fixed f2,t of the form in (10) and a
decoder of the form in (7), the cost function can be written
as :

J(f1,T , f2,T , gT ) =
T∑
t=1

E[ρ∗t (Rt, w
1
t )] (31)

where ρ∗t is a deterministic function.
Proof : The cost function can be written as :

J(f1,T , f2,T , gT ) = E[
T∑
t=1

ρt(Xt, X̂t)]

=
T∑
t=1

E[ρt(Xt, X̂t)]

=
T∑
t=1

E[ρt(Xt, τ(ψt)]] (32)

=
T∑
t=1

E[ρt(X1
t , X

2
t , A, τ(Ht(X2,t, Rt, w

1
t )]] (33)

=
T∑
t=1

E[ρ̂t(X2,t, Rt, w
1
t )] (34)
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where equality in (33) follows because of Claim 2, and ρ̂t
in (34) is simply a different representation of the composite
function in (33). The expectation in (34) can be evaluated
as: ∑

x2,t∈(X 2)t

Pr(x2,t/A).ρ̂t(x2,t, Rt, w
1
t ) (35)

= ρ∗t (Rt, w
1
t ) (36)

where we have used the conditionally independent nature of
the source to get the first term in the summation in (35), and
(36) follows because Pr(X2,t/A) is a known statistic. Thus
we can write (34) as:

=
T∑
t=1

E[ρ∗t (Rt, w
1
t )] (37)

which proves the lemma.

The optimization problem from the pre-encoder’s perspec-
tive can now be seen as follows. There is an underlying
controlled Markov chain Rt for which the pre-encoder has to
find the optimal control actions w1

t (Lemma 1). The expected
cost of an action (w1

t ) at time t is E[ρ∗t (Rt, w
1
t )]. At time

t, the Markov chain is in state Rt, the pre-encoder takes an
action w1

t and makes an observation Z1
t which depends only

on the state Rt and the action w1
t . The state then changes

to Rt+1 with the transition statistic depending only on Rt
and w1

t . This is a typical partially observed Markov decision
problem.

Step 3: From Markov decision theory (see [3], [7]), we
know that πt = Pr(Rt/Z1,t−1, w1,t−1) is an information
state appropriate for performance evaluation and there is an
optimal policy for the pre-encoder of the form:

w1
t = Gt(πt) (38)

We now argue that ξ1t−1 is an equivalent information state.
To show that, we need to show that a) πt can be obtained
from ξ1t−1. b) ξ1t can be obtained from the ξ1t−1, the action
(w1
t ) at time t and the observation (Z1

t ) at time t ; and c)
ξ1t−1 is a function of the pre-encoder’s previous observations
(Z1,t−1) and actions (w1,t−1),
By (23), ξ1t−1 is a function of the pre-encoder’s previous
observations (Z1,t−1) and actions (w1,t−1), and Claim 1 es-
tablishes the required update, that is, ξ1t = F (Z1

t , w
1
t , ξ

1
t−1).

Consider πt = Pr(Rt/Z1,t−1, w1,t−1)

= Pr((X1
t , A, ξ

1
t−1)/Z

1,t−1, w1,t−1) (39)

Given Z1,t−1, w1,t−1, ξ1t−1 is known exactly, hence (39) can
be written as :

πt = Pr((X1
t , A)/Z1,t−1, w1,t−1) (40)

=
∑
x∈X

Pr((X1
t , A)/Xt−1 = x).

P r(Xt−1 = x/ξ1t−1, Z
1,t−1, w1,t−1) (41)

=
∑
x∈X

Pr((X1
t , A)/Xt−1 = x).ξ1t−1(x) (42)

where (41) uses the Markov property of the source. Observe
that the first term in (42) is a known source statistic and
the second term depends only on ξ1t−1 . Thus, πt is a
deterministic function of ξ1t−1.
Hence, ξ1t−1 is an equivalent information state. Therefore,
there exists an optimal control law of the form :

w1
t = G1

t (ξ
1
t−1). (43)

We can now state the desired structural result for the en-
coders.

Theorem 2: With a decoder of the form X̂t = τ(ψt), there
is no loss in optimality in restricting attention to encoders
of the form:

Zit = f it (X
i
t , A, ξ

i
t−1) (44)

where ψt = Pr(Xt/Z
1,t, Z2,t, f1,t, f2,t)) and ξit−1 =

Pr(Xt−1/Z
i,t−1, f i,t−1), i = 1, 2.

Proof : By Theorem 1, one can restrict attention to encoders
of the form:

Zit = f it (X
i
t , A, Z

i,t−1) (45)

Consider a fixed encoding rule of the second encoder of the
form in (45). Then, by Step 3 above (equation 43), there
exists an optimal selection rule of the first pre-encoder of
the form :

w1
t = G1

t (ξ
1
t−1)

With this selection rule, the encoded symbol at time t is given
as :

Z1
t =w1

t (X
1
t , A)

=G1
t (ξ

1
t−1)(X

1
t , A) (46)

=f1
t (X1

t , A, ξ
1
t−1) (47)

where (47) is simply another representation of (46). Thus,
there exists an optimal encoder of the form in (44) for
the first encoder. Consequently, one can restrict attention
to encoders of the form in (44) for the first encoder. Now
observe that any encoder of the form in (44) is also of the
form Zit = f it (X

i
t , A, Z

i,t−1). Hence with the first encoder
as in (44), we can repeat the same argument for the second
encoder.
Therefore, by only considering encoders of the form Zit =
f it (X

i
t , A, ξ

i
t−1), we do not lose optimality.

C. Discussion

It is worthwhile to compare our results with those obtained
in [2] for a communication system with a single encoder.
The results in [2] are also true for a system with a noiseless
channel and no feedback. The key result in [2] is a structural
result on the encoder (Theorem 1 of [2]). With the help
of this result, the authors have been able to formulate the
problem of finding optimal real-time encoding and decoding
rules as a centralized optimization problem with receiver as
the only control agent. For this centralized problem they
present an optimal solution by a dynamic program. This
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optimal solution has the structural property that the authors
proposed in their Theorem 2 of [2].
Our first structural result in Theorem 1 is analogous to
Theorem 1 in [2]. However, in spite of this result, we
cannot formulate the problem of finding optimal encoding
and decoding rules as a centralized optimization problem
because of the following reason.
An essential feature of any centralized problem is that all
decisions at time t must be made on the basis of the same
information. In Theorem 2 of [2], the two decisions to be
made at time t (a pre-encoding function at the encoder and
the source estimate at the decoder) are both based on the
same information which is the encoded symbols sent till
time (t-1). This is crucial for the centralized formulation
proposed in [2]. Now note that in the problem we consider
in this paper, the two pre-encoding functions (w1

t , w
2
t ) and

the source estimate are based on different information. In
particular, w1

t is selected on the basis of Z1,t−1 and w2
t on

the basis of Z2,t−1. This fact of making different decisions
based on different information is unavoidable in our problem,
and it gives our problem its decentralized nature. It must be
emphasized here that the fact that the receiver knows the
information of both encoders (Z1,t−1 and Z2,t−1) does not
alter the decentralized nature of the problem. Even though
the receiver can choose w1

t and w2
t , it must do so on the basis

of different information - Z1,t−1 and Z2,t−1, respectively.
The mere fact that these two decisions could be made at the
same location (the receiver) does not remove their informa-
tional separation, and even from the receiver’s perspective,
the problem is still equivalent to one with two separate agents
making decisions based on separate information.
The fact that our problem cannot be viewed as a centralized
optimization problem has two important implications :
a) Firstly, we had to introduce an imaginary pre-encoder
that essentially represents the common information between
the receiver and one encoder. This enabled us to identify a
structural result similar to Theorem 2 in [2].
b) More importantly, the decentralized nature of the problem
makes the task of finding globally optimal real-time encoding
and decoding functions considerably more difficult than in
[2]. The main difficulty is the identification of an informa-
tion state that is sufficient for performance evaluation [9].
This difficulty is a fundamental conceptual issue for any
decentralized optimization problem. Since there are multiple
agents (the encoders and the decoder) taking actions based
on different information, the usual information states from
Markov decision theory [3] are not appropriate for our
problem.
In the next section, we present an information state that
is sufficient for performance evaluation and has a time-
invariant domain. We then present the resulting sequential
decomposition of the global optimization problem.

IV. GLOBAL OPTIMIZATION

The structural results presented in Section III allow us
to restrict the space in which one must look for optimal
encoding and decoding rules. Now, we want to find globally

optimal strategies. Note that for any choice of encoding
strategies, the decoder’s structural result of (7) and (8)
gives us the optimal decoder. Hence, we are looking for
globally optimal encoding strategies f1,T , f2,T of the form
in equation (44) that along with the corresponding optimal
decoder of (7) give the best performance.
We propose a sequential decomposition of the problem since
it reduces the complexity of the optimization problem. For
that matter, we need to determine an information state appro-
priate for performance evaluation. Motivated by the approach
in [4] and [5], we consider the problem from the point of
a fictitious designer who has to select the strategies f1

t and
f2
t , t = 1, 2..T , without having access to any observations.

An information state appropriate for performance evaluation
for this designer should satisfy conditions of sequential
update and sufficiency for cost evaluation. Specifically, if
θt is an information state, then we want :

θt+1 = Tt(θt, f1
t , f

2
t ) (48)

and
E[ρt(Xt, X̂t)] = Ct(θt, f1

t , f
2
t ) (49)

If we can find an information state that satisfies (48) and (49),
then we can transform the original optimization problem,
formulated in II A and II B, into an equivalent deterministic
functional optimization problem, namely,
Select f1,T , f2,T to minimize

T∑
t=1

Ct(θt, f1
t , f

2
t ) (50)

subject to ,for t=1,..,T-1,

θt+1 = Tt(θt, f1
t , f

2
t ) (51)

For this problem the optimal strategies f1,T , f2,T can be
determined as follows.
Theorem 4: For the functional optimization problem de-
scribed by the equations (50) and (51), the optimal encoding
functions f1

t , f
2
t are given by the following optimality equa-

tions:

VT+1(θ) = 0 (52)

Vt(θ) = inf
f1

t ,f
2
t

[Ct(θ, f1
t , f

2
t ) + Vt+1(Tt(θt, f1

t , f
2
t ))] (53)

for t =1,2..,T, where f it ∈ F it and F it is the set of functions
of the form Zit = f it (X

i
t , A, ξ

i
t−1)

Proof : For the system in (50) and (51), a standard dynamic
programming argument results in the above optimality equa-
tions. The optimal actions (f1

t , f
2
t ) for the information state

θ at time t minimize the instantaneous cost Ct(θ, f1
t , f

2
t ) and

the future cost to go Vt+1(Tt(θt, f1
t , f

2
t )). This is a standard

result (see [8], Chapter 2).
To proceed further we start with the following Claim.

Claim 3: ψt = B̂t(Xt, ψt−1, ξ
1
t−1, ξ

2
t−1, f

1
t , f

2
t ), where B̂t

are deterministic transformations.
Proof : See Appendix III.
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We now present an information state for the designer.
For that matter, we define:

θt = Pr(Xt−1, ξ
1
t−1, ξ

2
t−1, ψt−1) (54)

for t=2,3..T, and θ1 = Pr(X0) , where X0 is a arbitrary
fixed initial state of the Markov source before the start of
time.

We show that θt satisfies (48) and (49). Thus, from the
arguments above, one can use the result of Theorem 4
to sequentially determine the optimal encoding functions
f1,T , f2,T .
Lemma 3 : θt = Pr(Xt−1, ξ

1
t−1, ξ

2
t−1, ψt−1) satisfies equa-

tions (48) and (49).
Proof : By definition,

θt+1 =Pr(Xt, ξ
1
t , ξ

2
t , ψt)

Using Claim 1 and Claim 3, we can write :

(ξ1t , ξ
2
t , ψt) = Qf

1
t ,f

2
t (Xt, ξ

1
t−1, ξ

2
t−1, ψt−1) (55)

where the transformation Qf
1
t ,f

2
t is derived from the

transformations F̂t and T̂t of Claim 1 and Claim
3.(Qf

1
t ,f

2
t (Xt, ξ

1
t−1, ξ

2
t−1, ψt−1) gives F̂t(X1

t , A, f
1
t ),

F̂t(X2
t , A, f

2
t ) and T̂t(Xt, ψt−1, ξ

1
t−1, ξ

2
t−1, f

1
t , f

2
t )). Hence,

θt+1 = Pr(Xt, ξ
1
t , ξ

2
t , ψt)

= Pr(Xt, Q
f1

t ,f
2
t (Xt, ξ

1
t−1, ξ

2
t−1, ψt−1)) (56)

= T̃t(Pr(Xt, ξ
1
t−1, ξ

2
t−1, ψt−1), f1

t , f
2
t ) (57)

where (57) simply states that the probability of a function of
random variables can be obtained from the joint probability
of the random variables and the function1. Therefore,

θt+1 = T̃t(
∑
x∈X

Pr(Xt/Xt−1 = x).

P r(Xt−1 = x, ξ1t−1, ξ
2
t−1, ψt−1), f1

t , f
2
t ) (58)

= T̃t(
∑
x∈X

Pr(Xt/Xt−1 = x).θt(x, ξ1t−1, ξ
2
t−1, ψt−1)

, f1
t , f

2
t ) (59)

Since Pr(Xt/Xt−1 = x) is given by the known statistical
description of the source, (59) implies

θt+1 = Tt(θt, f1
t , f

2
t ) (60)

Now, consider

E[ρt(Xt, X̂t)] = E[ρt(Xt, τ(ψt))] (61)

The expectation in (61) is a function of the joint distribution
of Xt and ψt which is a marginal of Pr(Xt, ξ

1
t , ξ

2
t , ψt).

Hence,

E[ρt(Xt, X̂t)] =C̃t(Pr(Xt, ψt)) (62)

=Ĉt(Pr(Xt, ξ
1
t , ξ

2
t , ψt)) (63)

=Ĉt(θt+1) (64)

=Ct(θt, f1
t , f

2
t ) (65)

1For the specific form of T̃t, see [15]

where the equality in (65) is a consequence of (61).

(For the specific form of the functions Tt and Ct, we refer
the reader to [15].)

V. CONCLUSION

We have discovered the structure of optimal real-time
encoders and decoders for the multi-terminal communication
system considered in this paper. The structure of the Markov
source, the nature of encoders’ observations and the noiseless
nature of the channel are critical in obtaining the results of
Section III for the following reasons. In general, to determine
its encoding rule at any time t, each encoder must form a
belief about the information of the other encoder and the
receiver’s information. The conditional independence of X1

t

and X2
t on A allows each encoder to use only the value of the

random variable A to form a belief about the other encoder’s
information. The noiseless nature of the communication
channel allows each encoder at any time t to use the value
of the random variable A and its previous transmissions (up
to time t-1) to form its belief on the receiver’s information.
These considerations lead to the structural results of Theorem
1 and Theorem 2. The structural result of Theorem 2 plays
an important role in identifying an information state that has
a time-invariant domain and is appropriate for performance
evaluation. Such an information state is appropriate for
obtaining a sequential decomposition of the finite horizon
global optimization problem (considered in this paper) as
well as of the corresponding infinite horizon problem.

The problem of global optimization is significantly more
difficult than the one considered in [2] because of the
following reason. The presence of two encoders with differ-
ent information implies that encoding decisions have to be
necessarily based on different information. It is this fact that
makes our problem decentralized. Decentralized optimization
problems are considerably more challenging than centralized
problems and the information states appropriate for them
are more complicated than their centralized counterparts. We
presented an information state for the global optimization
problem and obtained a methodology that allows us to
sequentially determine globally optimal real-time encoding
and decoding strategies. The results of this paper can be
extended to multi-terminal systems consisting of N encoders,
communication with one receiver by noiseless channels,
general distortion metrics and Markov sources of the form
Xt := (X1

t , X
2
t , ..., X

N
t , A), where A does not change with

time and conditioned on A, X1
t , X

2
t , ..., X

N
t form indepen-

dent Markov chains.

APPENDIX I
STRUCTURAL RESULT FOR THE DECODER

Observe that with fixed encoding rules, minimizing

J(f1,T , f2,T , gT ) = E[
T∑
t=1

ρt(Xt, X̂t)]

is equivalent to minimizing E[ρt(Xt, X̂t)] for each t. This
can be minimized by minimizing E[ρt(Xt, X̂t)/Z1,t, Z2,t]
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for each Z1,t, Z2,t. The structural property of the decoder
then follows from the definition of ψt and τ in (8) and (9).

APPENDIX II
RECEIVER’S BELIEF UPDATE

By definition,

ψt := Pr(Xt/Z
1,t, Z2,t, f1,t, f2,t)

By Bayes’ rule,

ψt = Pr(Xt, Z
1
t , Z

2
t /Z

1,t−1, Z2,t−1, f1,t, f2,t)/∑
x∈X

Pr(x, Z1
t , Z

2
t /Z

1,t−1, Z2,t−1, f1,t, f2,t) (66)

We can write the numerator as:

Pr(Z1
t , Z

2
t /Xt, Z

1,t−1, Z2,t−1, f1,t, f2,t).

P r(Xt/Z
1,t−1, Z2,t−1, f1,t, f2,t)

= Pr(Z1
t /Xt, Z

1,t−1, w1
t ).P r(Z

2
t /Xt, Z

2,t−1, f2
t ).∑

x∈X
Pr(Xt/Xt−1 = x).

P r(Xt−1 = x/Z1,t−1, Z2,t−1, f1,t−1, f2,t−1) (67)

The last term on the right side of the above equation is simply
ψt−1. Thus, the receiver can update its belief on the source
based on the pre-encoding function (w1

t ) used at time t and
the fixed rule of the second encoder (f2

t ).

APPENDIX III
PROOF OF CLAIM 3

By definition,

ψt(y) =Pr(Xt = y/Z1,t, Z2,t, f1,t, f2,t)

=Pr(Xt = y/Z1,t, Z2,t, f1,t, f2,t, ξ1t−1, ξ
2
t−1) (68)

We can introduce ξ1t−1, ξ
2
t−1 in the conditioning in (68) since

they are functions of the conditioning variables. By Bayes’
rule, we have

ψt(y) = Pr(Xt = y, Z1
t , Z

2
t /Z

1,t−1, Z2,t−1, f1,t, f2,t,

ξ1t−1, ξ
2
t−1)/∑

x∈X
Pr(Xt = x, Z1

t , Z
2
t /Z

1,t−1, Z2,t−1, f1,t.f2,t, ξ1t−1, ξ
2
t−1)

We can write the numerator as:

Pr(Z1
t , Z

2
t /Xt = y, Z1,t−1, Z2,t−1, f1,t, f2,t, ξ1t−1, ξ

2
t−1).

P r(Xt = y/Z1,t−1, Z2,t−1, f1,t, f2,t, ξ1t−1, ξ
2
t−1) (69)

= Pr(Z1
t , Z

2
t /Xt = y, f1

t , f
2
t , ξ

1
t−1, ξ

2
t−1).∑

x∈X
Pr(Xt = y/Xt−1 = x).

P r(Xt−1 = x/Z1,t−1, Z2,t−1, f1,t, f2,t, ξ1t−1, ξ
2
t−1) (70)

The first term in (70) is because of the structural result of
the encoders and the second by the Markov nature of the
source. Observe that the first term in (70) is either 1 or 0,
the first term in the summation is the source statistic known

apriori and the second term in the summation is ψt−1(x).
Therefore, (70) is equal to

1[Z1
t =f1

t (y1,a,ξ1
t−1),Z

2
t =f2

t (y2,a,ξ2
t−1)]

.∑
x∈X

Pr(Xt = y/Xt−1 = x).

P r(Xt−1 = x/Z1,t−1, Z2,t−1, f1,t, f2,t, ξ1t−1, ξ
2
t−1) (71)

where y = (y1, y2, a) The same holds true for each term
in the summation in the denominator of (66). Since Zit is
simply f it (X

i
t , A, ξ

i
t−1), the indicator function in the above

expression is
1[f1

t (X1
t ,A,ξ

1
t−1)=f

1
t (y1,a,ξ1

t−1),f
2
t (X2

t ,A,ξ
2
t−1)=f

2
t (y2,a,ξ2

t−1)]

and we conclude that ψ1
t is a function of

Xt, f
1
t , f

2
t , ξ

1
t−1, ξ

2
t−1, ψt−1.That is,

ψt = B̂t(Xt, ψt−1, ξ
1
t−1, ξ

2
t−1, f

1
t , f

2
t ) (72)
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