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Abstract— In the field of robotics the energy spent for
actuation is always an issue. It is often the case that some
desired motions cannot be achieved by the robot due to
limitations in actuation power. We suggest a simple solution to
the problem: complement the actuators by some configuration
of mechanical springs which delivers a torque profile that is
well-tuned for the desired robot motion. As a result, the control
effort for the original actuator will be reduced. In this case
study we consider an underactuated planar two-link robot
for experimental demonstration of the concept. The virtual
holonomic constraints approach serves as analytical tool to
parameterize, plan, and stabilize desired periodic motions.

Index Terms— Motion Planning, Virtual Holonomic Con-
straints, Springs, Underactuated Mechanical Systems

I. INTRODUCTION

Motion planning and feedback controller design are key
issues in robotics. The application area of todays robots
is broad: it covers manipulation tasks for standard robot
arms, legged locomotion of mechanically sophisticated ma-
chines, robotic prosthetics and exoskeletons, etc. Naturally,
the achievable performance of feedback controlled robots
depends to a large extent on the power of available actu-
ators. However, the actuators are normally chosen according
to constraints in the construction, such as limited space,
minimal mass, and power consumption. It means that many
motions planned analytically based on appropriate models
and confirmed throughout simulations might not be realizable
in experiments. There are always some desired motions that
require actuation power which is hardly feasible for the
robot. That is why we are interested to answer the following
question. Is it possible to improve the actuation range by
introducing some passive mechanical elements in parallel to
the original actuator?

Springs are simple mechanical devices that offer great
functionality at low cost. They are commonly applied in
machines to exert force, to provide flexibility, and to store
or absorb energy [4]. Therefore, springs are particularly
attractive to be used as complementary source of torque.
The main task is to design a spring configuration that gives a
torque profile somewhat close to the one that is required for a
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particular motion. As a result, the original actuator is mainly
stabilizing this motion while the springs generate most of the
nominal torque required.

This paper shows how to take advantage of mechanical
springs to complement a comparably weak DC motor. The
aim is to generate periodic motions of an underactutated
planar two-link robot, the so-called Pendubot. Motion plan-
ning and control design of underactuated systems is clearly
more challenging compared to the case when all degrees
of freedom are actuated. Here, the main objective is to
reduce the control efforts by augmenting the actuation with
contributive spring torques. The Pendubot and the installed
spring assembly are depicted in Fig. 1. Corresponding system
dynamics as well as properties of the spring assembly are
presented in Section II and Section III.
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Fig. 1. Pendubot with spring assembly from Umeå University. The robot
was designed and built by A. Sandberg and S. Elmå.

The virtual holonomic constraints approach, recently de-
veloped in [6], is used in Section IV and Section V as
analytical tool to parameterize, plan, and stabilize desired
periodic motions for the Pendubot. The underlying theory
has been already applied in [1]. However, in this paper the
focus lies on the contribution of springs complementary to
the actuator which plays a role in the motion planning as well
as in the feedback control action. Experimental results for a
particular periodic motion are finally shown in Section VI
and conclusions are drawn in Section VII.
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II. PENDUBOT DYNAMICS

The dynamics of the planar two-link manipulating robot
with actuation only on first link q1 and a non-actuated link
q2 is given by [8]

M(q)

[
q̈1

q̈2

]
+ C(q, q̇)

[
q̇1

q̇2

]
+G(q) =

[
τ
0

]
(1)

with the inertia matrix

M(q) =

[
p1 + p2 + 2p3 cos(q2) p2 + p3 cos(q2)

p2 + p3 cos(q2) p2

]
,

the matrix corresponding to Coriolis and centrifugal forces

C(q, q̇) =

[
−p3 sin(q2)q̇2 −p3 sin(q2)(q̇1 + q̇2)
p3 sin(q2)q̇1 0

]
,

and the gravitational torque vector

G(q) =

[
p4 cos(q1) + p5 cos(q1 + q2)

p5 cos(q1 + q2)

]
.

The physical model parameters, given in Table I, are com-
bined to

p1 = m1r
2
1 +m2l

2
1 + Jc1 = 0.0319 kg m2

p2 = m2r
2
2 + Jc2 = 0.0092 kg m2

p3 = m2l1r2 = 0.01 kg m2

p4 = (m1r1 +m2l1)g = 1.2954Nm
p5 = m2r2g = 0.3915Nm .

Lengths, masses, and distances to the respective centers
of mass are measured, while corresponding inertias are
identified experimentally.

TABLE I

PHYSICAL PARAMETERS OF THE SETUP

Parameter First Link Second Link
Length l1 = 0.25 m l2 = 0.25 m
Mass m1 = 0.374 kg m2 = 0.232 kg
Distance to CoM r1 = 0.198 m r2 = 0.172 m
Inertia about CoM Jc1 = 0.0027 kg m2 Jc2 = 0.0023 kg m2

Gravitational constant g = 9.81 m/s2

Spring assembly r1 = r4 = 0.045 m , r2 = r3 = 0.03 m
L0 = 0.055 m

The actuator in our setup is quite weak, with a maximum
torque of 0.22Nm, compared to the rather big masses to
be accelerated. We will clearly face performance problems
for some desired motions. Therefore, a spring assembly is
installed in parallel to the motor to enhance the overall
actuation. However, the spring configuration must be well-
tuned for a particular motion.

III. SPRING ASSEMBLY

Numerous compression springs can be installed in the
spring assembly as shown in Fig. 2. The torque about
the first link joint that is delivered by the individual
springs on the bottom {c1B , c2B , c3B , c4B} and on the top
{c1T , c2T , c3T , c4T } is computed as follows

τc(ϕ) =

⎧⎪⎪⎨
⎪⎪⎩

τc1T
(ϕ) + τc2T

(ϕ)
+τc3B

(ϕ) + τc4B
(ϕ)

}
for ϕ < 0

−τc1B
(ϕ)− τc2B

(ϕ)
−τc3T

(ϕ)− τc4T
(ϕ)

}
for ϕ > 0 ,

(2)
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Fig. 2. Front view at the spring assembly.

where for i = 1..4

τci{B,T}
(ϕ)=Fi{B,T} cos

(
|ϕ|+ arccos

(
L0−sin(|ϕ|)ri

si{B,T}

))
ri

Fi{B,T}(ϕ) = ci{B,T}(L0 − si{B,T})

siB(ϕ) =
√
(L0 − sin(|ϕ|)ri)2 + (ri(1− cos(ϕ)))2

{s1T = s4B , s2T = s3B , s3T = s2B , s4T = s1B} .

In the coordinate system of the Pendubot, the angle ϕ is
given by

ϕ = π/2 + q1 .

The generated torque w.r.t. the angle ϕ is shown in Fig. 3
exemplified for a configuration of some standard springs
[3] c1B = c4B = 471N/m and c2B = c3B = 471N/m,
respectively. Note that installing the same springs at the top
of the spring assembly instead of the bottom results in the
same torque function.
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Fig. 3. Generated torque of two standard springs with a constant of
471 N/m when symmetrically installed on the inner or outer lever.

It is clear that the dynamics of our original system
(1) changes by installing some springs acting on the first
link. It is basically the same as introducing an additional
potential torque, i.e. the gravitational torque vector changes
accordingly to

Gc(q) = G(q)−

[
τc(q1)
0

]
. (3)

This fact does not influence motion planning for our mechan-
ical system, presented in the next section, but it necessarily
plays some role in the feedback control action.
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IV. MOTION PLANNING

A. Concept of Virtual Holonomic Constraints

The virtual holonomic constraints approach is a generic
tool for motion planning and control, especially for under-
actuated systems. The main idea is to reparameterize any
somewhat coordinated motion as a geometric function of the
generalized coordinates. If this function is preserved by some
control action along solutions of the closed-loop system1, it is
called virtual holonomic (geometric) constraint. In particular,
one has to chose a coordinate or possibly a scalar function
of coordinates (for instance path length) as an independent
variable θ that parameterizes the motion with respect to time.
Then, the virtual holonomic constraint takes the form⎡

⎢⎢⎢⎣
q1

q2

...
qn

⎤
⎥⎥⎥⎦ = Φ(θ) =

⎡
⎢⎢⎢⎣

φ1(θ)
φ2(θ)

...
φn(θ)

⎤
⎥⎥⎥⎦ (4)

with n = dim q. Note that the function (4) can be shaped
either by observation of some real motion or by some
analytical design procedure.

Suppose that there exists a control law u∗ for the con-
trolled input torques B(q)u of the underactuated Euler–
Lagrange system that makes the virtual holonomic constraint
(4) invariant, then, the overall closed-loop system can be
represented by reduced order dynamics2 of the form

α(θ) θ̈ + β(θ) θ̇2 + γ(θ) = 0 . (5)

Hence, solutions of that virtually constrained system define
achievable motions of the robot with precise synchronization
given by (4). It means that the whole motion is parameterized
by the evolution of the chosen configuration variable θ.
The smooth functions α(θ), β(θ) and γ(θ) of the reduced
dynamics (5) can be computed as follows from [6, Prop. 2]:

α(θ) = B⊥M (Φ(θ)) Φ′(θ)

β(θ) = B⊥
[
C (Φ(θ),Φ′(θ)) Φ′(θ) +M (Φ(θ)) Φ′′(θ)

]
γ(θ) = B⊥G (Φ (θ)) ,

where B⊥ is associated with the non-actuated coordinate of
the given system—in case of the Pendubot B⊥ =

[
0 1

]
.

Note that the reduced order dynamics (5) is always inte-
grable, provided α(θ) �= 0, which is an useful property.
Specifically, the integral function

I(θ, θ̇, θ0, θ̇0) = θ̇2 − exp

{
−2

∫ θ

θ0

β(τ)

α(τ)
dτ

}
θ̇2
0

+

θ∫
θ0

exp

{
−2

∫ θ

s

β(τ)

α(τ)
dτ

}
2 γ(s)

α(s)
ds

(6)

1Provided that initial conditions q0 are chosen to satisfy the constraint.
2The dimension depends on the degree of underactuation; the differential

equation is scalar in the case of underactuation degree one where dim q −
dim u = 1.

preserves its zero value along a solution θ(t) of (5), initiated
at (θ(0), θ̇(0)) = (θ0, θ̇0) [7]. Note that (6) can serve as a
measure of distance to a desired trajectory for the reduced
system [5].

Eventually, one can also compute the nominal control
input u∗ required to render a desired solution θ = θ∗(t) of (5)
assuming perfectly imposed virtual holonomic constraints:

B(q)u = [M(q)q̈ + C(q, q̇)q̇ +G(q)]| q = Φ(θ)

q̇ = Φ′(θ)θ̇

q̈ = Φ′′(θ)θ̇2 + Φ′(θ)θ̈ .

(7)

B. Periodic Motions of the Pendubot

The procedure to find periodic motions of the Pendubot
is described next. The first step is to define some virtual
holonomic constraint (4), e.g. polynomial function of some
order. Defining a linear relation between the coordinates q1

and q2, and choosing q2 as the independent parameterization
variable θ gives us

Φ(θ) =

[
q1

q2

]
=

[
q10 + k(θ − q20)

θ

]
. (8)

For such a choice, existence of small periodic orbits of (5)
around a chosen equilibrium (q10, q20) has been proved in
[7] and is discussed in [1] for the Pendubot.

Let us focus on periodic motions about the downward-
downward equilibrium of the Pendubot, i.e.(

q10 = −
π

2
, q20 = 0

)
. (9)

Such type of oscillation has an apparent resemblance to
a swing leg motion during human walking gaits—as an
abstraction of the swinging leg, one can view the upper leg
being actuated at the hip joint while the lower leg is not or
at most weakly actuated by the knee. With the choice of

k = 0.4 (10)

in the linear relation of the virtual holonomic constraint (8),
we obtain closed trajectories for the reduced dynamics (5)
around the equilibrium (9) as shown in Fig. 4a. All these
periodic orbits represent achievable motions of the Pendubot
with certain amplitude and period. Not all of those, however,
could be easily stabilized by the present actuator. The torque
required for any desired motion is simply computed by (7).
The torque profiles associated to solutions of the reduced
dynamics (depicted in Fig. 4a) are shown in Fig. 4b with
respect to the actuated angle q1—this representation can be
advantageously used to shape the complementary actuation
torques of the spring assembly.

Considering the necessary torques for achievable motions
requires also a closer look at the available actuation power. In
our setup there is a saturation level for the maximum torque
of the motor

τmax = 0.22Nm ,

i.e. not all motions depicted in Fig. 4 are feasible. Let
us choose the following time periodic solution of (5) with
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(b) Required torques w.r.t. the actuated angle q1 for various
solutions of the reduced dynamics. Saturation levels of the
actuator are shown as well.

Fig. 4. Virtually constrained periodic motions of the Pendubot about the
downward-downward equilibrium with (q10 = −π

2
, q20 = 0) and k = 0.4.

The bold line represents the desired motion.

virtual holonomic constraints (8)–(10)

θ∗(t) :

{
(θ∗(0), θ̇∗(0)) = (0.65 rad, 0 rad/s)
T = 1.1336 s .

(11)

that can be still performed within the available actuation
power (see bold line in Fig. 4).

The main task now is to tune the passive elements of the
spring assembly (see Section III) for the particular trajectory
defined by (11). We aim at reducing the control effort on the
original actuator by contributive spring torques.

C. Contribution of Springs to the Required Torque

A qualitative plot of torques generated by standard com-
pression springs is already shown in Fig. 3. There are various
configurations for the spring assembly and we have to select
one that gives a reasonable curve close to the required torque
τ∗ for the desired periodic motion given by (11). Choosing
some standard springs from [3]

c1B = c4B = 471N/m (12)

gives such function τc in the interval of q1 relevant for the
motion. Since the springs become part of the control input
to the first link, the motor will only have to give a reduced
torque

τred = τ∗ − τc . (13)

In Fig. 5a it can be seen that the reduced motor torque
is much less than the required torque for the motion by

introducing the springs as additional actuator. Looking at the
absolute mechanical power (see Fig. 5b) that was used over
one period it becomes even more obvious that there has been
a remarkable reduction of energy expenditure to

PN
red,T

=

∫ T

t=0
|τred q̇1∗| dt∫ T

t=0
|τ∗ q̇1∗| dt

= 26% .
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(b) Reduced mechanical power versus originally required
one w.r.t. the actuated angle q1.

Fig. 5. Reduction of torque and mechanical power for the desired motion
by introducing additional spring actuators.

D. Generic Motion Planning Procedure with Subsequent
Spring Selection

Let us summarize the procedure of parameterizing a
particular motion and the subsequent selection of springs by
the following steps:

1. Find a virtual holonomic constraint (4) for synchroniza-
tion among the generalized coordinates (analytically or
by observation).

2. Choose a desired trajectory of the reduced order closed-
loop dynamics (5).

3. Compute the nominal torque associated to the desired
trajectory (7).

4. Select or design mechanical springs that contribute to
the required actuation torque.

Of course, the whole motion-planning procedure is based
on the assumption that virtual constraints can be imposed on
the system dynamics by a feedback control action. This will
be briefly discussed in the next section.
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V. CONTROL CONCEPT WITH SPRINGS

The design step following the motion planning is the
synthesis of a feedback controller with the objective to
achieve contraction to the desired trajectory and to diminish
effects of disturbances, uncertainties in modeling, errors in
parameter estimates, etc. Here, we suggest a controller that is
designed based on a transverse linearization along the desired
trajectory. The derivations for the feedback control law are
shown in the Appendix, where the controlled torque is given
as

τk = f(q, q̇, v) .

Recall that the dynamics of the Pendubot (1) changes
in terms of (3) by installing some springs acting on the
first link. In fact, the torque τc that is generated by springs
can be interpreted as mechanical feedback. It means that
the controlled torque τ to the original dynamics is now
composed by

τ = τc + τk . (14)

A general schematic of the control concept with springs
is depicted in Fig. 6. Eventually, we expect a significant
reduction of mechanical power to be delivered by the motor
when the actuation is complemented by some well-tuned
springs.
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Fig. 6. Schematic of the control concept with mechanical feedback from
springs.

VI. EXPERIMENTAL RESULTS

The experiment is carried out with a real-time platform
of the type dSPACE 1104. The angular positions q1 and q2

of the two links are measured by encoders with resolutions
of 4096 and 3600 pulses per revolution, respectively. The
angular velocities are estimated as ˆ̇q1 and ˆ̇q2 based on second
order high-gain linear observers [2]. In order to apply the
feedback control law (see Appendix) for our desired periodic
motion (11), one has to find a stabilizing solution of the
dynamic Riccati equation. Such R(t) was found for the
weighting matrices

Q = diag(1, 1, 0.1) and Γ = 1 .

Since there are frictional torques present in the real setup,
one has to apply a friction compensation scheme. While there
is significant friction in the first link joint, mostly induced
by the motor, the friction in the second link joint is assumed
to be negligible. In our case we use a a static map with
estimated Coulomb and viscous properties:

τF = FCsign(ˆ̇q1) + FV
ˆ̇q1 ,
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(a) Periodic oscillations in the angular positions q1 and q2 (for
10 periods).
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(b) Achieved phase portrait for the desired solution θ of the
reduced dynamics (time span 30 s).
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(c) Achieved virtual holonomic constraint (time span 30 s).
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Fig. 7. Experimental results of virtually constrained oscillations generated
by a reduced torque from the motor utilizing the spring assembly with the
standard constants c1B = c4B = 471 N/m.
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where the levels of Coulomb friction are different for positive
and negative velocities

FC =

{
FCp for ˆ̇q1 > 0

FCn for ˆ̇q1 < 0 .

The following values were identified in experiments:

FCp = 0.021Nm , FCn = 0.014Nm , FV = 0.002Nm s .

In Fig. 7 the experimental results are shown. The controller
was able to stabilize the desired virtually constrained motion
(11) utilizing the springs (12) as additional actuator. The
applied motor torque shows a hysteresis behavior around
the ideally reduced torque which is due to the presence of
friction, model uncertainties, delay, etc. However, the springs
reduce the motor torque significantly. In fact, the desired
motion could not even be achieved in praxi without springs
because of the saturation levels of the motor.

VII. CONCLUSIONS

In this paper we demonstrated the use of mechanical
springs as passive actuators in concert with a comparably
weak DC motor to generate periodic motions of an underac-
tutated planar two-link robot. The main objective of reducing
the control efforts with contributive spring torques was
shown. The virtual holonomic constraints approach serves
as analytical tool to parameterize, plan, and stabilize desired
motions. The suggested control design procedure is based on
a transverse linearization along a desired trajectory. During
the motion planning process one can realize a feasible range
of motions within given saturation levels of the actuators.
By installing a suitable configuration of springs that gives
approximately the required torque for the desired motion, it
is possible to reduce the control effort and consequently the
power consumption of the original actuator significantly. This
claim was verified in experiments for a particular periodic
motion.

APPENDIX

SUGGESTED STABILIZING CONTROLLER

The key procedure to derive the stabilizing controller for the Pendubot
is presented below. The method is based on a transverse linearization along
a desired trajectory proposed in [6], [5].

Let us introduce new independent coordinates for the Pendubot (1):

y = q1 − φ1(θ) and θ ,

where zero value of y satisfies the virtual holonomic constraints defined in
(4) and (8). The first and second time derivatives of y and θ are related to
the original coordinates q and their time derivatives as follows

q̇ = L(θ, y)

[
ẏ

θ̇

]
, q̈ = L(θ, y)

[
ÿ

θ̈

]
+ L̇(θ, y)

[
ẏ

θ̇

]

where L(θ, y) =

[
1 φ′1(θ)
0 1

]
.

Hence, the dynamics of y can be written as

ÿ = R(y, θ, ẏ, θ̇) + N(y, θ) τ = v

where

R = [1, 0] L−1 M−1(q)

(
−C(q, q̇)q̇ −G(q)− L̇

[
ẏ

θ̇

])∣∣∣∣ q = Φ(θ)

q̇ = L

[
ẏ

θ̇

]

N = [1, 0] L−1M−1(q)
∣∣
q=Φ(θ)

and the feedback transformation

τ = N−1(y, θ)
[
v −R(y, θ, ẏ, θ̇)

]
(15)

results in a virtual control variable v.
Differentiating the integral function (6) along the trajectories of (5), one

obtains dynamics transversal to solutions θ(t) [6], [5]

d
dt

I(·) = 2θ̇
α(θ)

[
gy(·)y + gẏ(·)ẏ + gv(·)v − β(θ)I(·)

]
ÿ = v .

Eventually, the controller design can be based on the linearization along
a desired solution θ∗(t)—a linear time-variant comparison system called
transverse linerarization:

d
dt

z = A(θ∗(t), θ̇∗(t))z + b(θ∗(t), θ̇∗(t))v
z = [δI, δy, δẏ]T

with the time-variant periodic matrix functions

A(θ(t), θ̇(t)) =

⎡
⎣ a11(θ, θ̇) a12(θ, θ̇) a13(θ, θ̇)

0 1 0
0 0 0

⎤
⎦

bT (θ(t), θ̇(t)) =
[

b1(θ, θ̇) 0 1
]

a11(θ, θ̇) = −
2θ̇β(θ)
α(θ)

, a12(θ, θ̇) =
2θ̇gy(θ,0)

α(θ)

a13(θ, θ̇) =
2θ̇gẏ(θ,θ̇,0)

α(θ)
, b1(θ, θ̇) =

2θ̇gv(θ)
α(θ)

.

Exponential orbital feedback stabilization will be achieved using a solution
of the continuous time-periodic dynamic Riccati equation

Ṙ(t) + A(t)T R(t) + R(t)A(t) + Q = R(t)B(t)Γ−1B(t)T R(t)

with appropriately chosen weighting matrices Q ≥ 0 and Γ > 0. In order to
use such stabilizing solution R(t) for any θ(t) close to the desired trajectory
θ∗(t), we have to introduce an operator Pt, that is, projecting points of the
phase plane (θ, θ̇) onto a curve C∗ defined by (θ∗, θ̇∗) of the reduced
system:

Pt : [θ, θ̇] → C∗

C∗ =
{
[θ∗(t), θ̇∗(t)], t ∈ [0, T ]

}
.

Another operator
T∗ : C∗ → [0, T ]

gives the corresponding time stamp from [0, T ] for the point of the curve
C∗. The feedback control law

v(t) = −Γ−1 b(θ, θ̇)T R
(
T∗

(
Pt([θ, θ̇])

)) ⎡
⎣ I

y
ẏ

⎤
⎦ (16)

guarantees convergence for the nonlinear system within a vicinity of the
desired trajectory [6], [5].
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