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Abstract—We show that almost controllability can
be also obtained by means of singularly perturbed
state feedbacks which are approximations of Propor-
tional and Derivative (PD) state feedbacks.

I. Introduction

With the seminal papers of Brunovsky [3] and Morse
[11] began the structural study of linear systems. They
made it possible to tackle control problems from a very
formal point of view, and to understand how systems
structures play a deep role in the solvability of such
control problems.

In particular [11] is one of the key papers about
structure and geometric approach. More precisely, some
important structural properties can be interpreted in
terms of the (A,B)–Invariant and Controllability Sub-
spaces, which are related with the maps of the state space
representations of the systems. In a very simplistic way,
these subspaces tell us which are the parts of the system,
which can be made unobservable (made invariant inside
of the kernel of the output map) by state feedback, and
for some part with assignable dynamics. This was the
starting point for a systematic study of the structure
of linear systems. In the important works of Wonham
[17] and Marro [2] the principal results of the geometric
approach are summarized.

A second milestone occurred with Willems’ introduc-
tion of the Almost (A,B)–Invariant and Almost Con-
trollability Subspaces, which are related with the maps
of the state space representations of the systems [14],
[15], [16]. These subspaces are useful when non exact
solutions are looked for. Almost invariance and almost
controllability have been connected with the use of high
gain state feedback, as approximations of distributional
state feedbacks.

The aim of this paper is to show that almost control-
lability can be also obtained by means of singularly per-
turbed state feedbacks [9] which are approximations of
PD state feedbacks [10]. For this, in Section II is recalled
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the class of systems which we are going to deal with;
we use the behavioral approach [12], since it clarifies
the action of the involved control laws. In Sections III
and IV are presented some basic properties of almost
controllability subspace. In Section V we give another
interpretation of an almost controllability subspace in
terms of PD state feedbacks. And thus, in Section VI
we interpret the almost controllability subspace in terms
of a singularly perturbed state feedback. In Section VII a
simple example is used to illustrate the basic ideas. And
in Section VIII we conclude.

II. Systems

1) Input/State System : An input/state system, Σi/s =“
R+,U × Xfed, Bexp

[A,B]

”
, is a dynamical system defined by

the state space representation [12]:

dxf/dt = Axf + Bu (1)

where u ∈ U ≈ Rm is the input variable and
xf ∈ Xfed ≈ Rnf is the state variable; in this paper
it is assumed that the input map B is monic. From
the Kronecker theory [6], the associated pencil, [λI−A],
λ ∈ C, only contains finite elementary divisors (integral
actions), fed. The exponential behavior, Bexp

[A,B]
, is:1

Bexp
[A,B] =

n
(u, xf ) ∈ Lloc

1 (R+,U × Xfed)
˛̨
∃ x0 ∈ Xfed

s.t. xf (t) = eAtx0 +
R t

0
eA(t−τ)Bu(τ)dτ

o
Sometimes the input variable is decomposed into two
components, u ∈ U and q ∈ Q ≈ Rν ; the first one is free
to be used as a controller signal (called controller input
or simply input) and the second one is behaving at will
(called disturbance input or simply disturbance). In this
case we write Σi/s =

“
R+,

ˆ
U ×Q

˜
×Xfed, Bexp

[A,[B S]]

”
, being

the state space representation: dxf/dt = Axf +Bu+ Sq.
It is also usual to add to the state space repre-

sentation (1) an output variable, y ∈ Rp, by means of
an output equation: y = Cxf +Du. In this case, we get
an input/state/output system, Σi/s/o =

“
R+,U × Xfed × Y,

Bexp
[A,B,C,D]

”
. The exponential behavior is:

Bexp
[A,B,C,D] =

n
(u, xf , y) ∈ Lloc

1 (R+,U × Xfed × Y)
˛̨

∃ (u, xf ) ∈ Bexp
[A,B] s.t. y(t) = Cxf (t) +Du(t)

o
1Lloc

1 (R+, Rm) stands for the locally integrable functions v :

R+ →W.
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The smooth exponential behaviors are defined as:2eBexp
[A,B]

= Bexp
[A,B]

∩ C∞(R+,U × Xfed) and eBexp
[A,B,C,D]

=

Bexp
[A,B,C,D]

∩ C∞(R+,U × Xfed × Y). If D = 0, we write
Bexp

[A,B,C]
and eBexp

[A,B,C]
.

2) Input/State Distributional System : In [13] is
considered the input/state distributional system (see
also [7], [8]; for the singular systems case see [4]):3bΣi/s =

“
Test,U × X , bBexp

[A,B]

”
, U ≈ Rm and X ≈ Rnf , with

state space representation (1), where the space of ad-
missible inputs is:4bU =

n
û ∈ Dist(Test,U)| û = u− + û+, u− ∈ Lloc

1 (R,U),

supp u− ⊂ R−, and û+ ∈ Dist+(Test,U)
o

The exponential distributional behavior, bBexp
[A,B]

, is:

bBexp
[A,B] =

n
(û, x̂f ) ∈ Dist(Test,U × Xfed)

˛̨
∃ û ∈ bU &

x0 ∈ Xfed s.t. x̂f = x− + x̂+,

x− = eAt1R−(t)x0 −
R 0

t
eA(t−τ)B(τ)u−dτ,

x̂+ = eAt1R+(t)x0 +
R t

0
eA(t−τ)B(τ)û+dτ

o
3) Regular Input/Descriptor System : A

regular input/descriptor system, Σi/d =
“

R+,U×ˆ
Xfed ×X∞

˜
, eBexp

[A,B]
⊕ eBpol

[N,Γ]

”
, is a dynamical system

defined by the descriptor space representation (expressed
in its Weierstrass form) [6]:

dxf/dt = Axf +Bu ; Ndx∞/dt = x∞ − Γu

x =
ˆ
xTf xT∞

˜T (2)

where u ∈ U ≈ Rm is the input variable and
x ∈ Xd = Xfed ⊕Xied ≈ Rnf+n∞ is the descriptor variable.
Its associated pencil [6], [λN − I], λ ∈ C, only contains
infinite elementary divisors (derivative actions), ied. The
polynomial behavior, eBpol

[N,Γ]
, is:

eBpol
[N,Γ] =

n
(u, x∞) ∈ C∞(R+,U × Xied)

˛̨
x∞(t) = Γu(t)+

n∞−1P
j=1

N jΓ dj

dtj
u(t)

o
In the general case, the input/descriptor systems are

systems with behavioral equation Edx/dt = Ax+ Bu, where
its associated pencil, [λE− A], can be singular, even
rectangular, having four types of structural invariants
[6]: (i) fed, (ii) ied, (iii) row minimal indices (variable
internal structure), rmi, and (iv) column minimal indices
(algebraic restrictions on the descriptor variable), cmi. In
this general case, the behavior can be specified by using
the differential inclusion theory, as e.g. in [5].

If we add to (2) an output variable, y ∈ Rp, by
means of the output equation: y =

ˆ
C Θ

˜
x, we get

a Σi/d/o =
“

R+,U×
ˆ
Xfed ×X∞

˜
× Y, eBexp

[A,B,C]
⊕ eBpol

[N,Γ,Θ]

”
.

The polynomial behavior is:eBpol
[N,Γ,Θ] =

n
(u, x∞, y∞) ∈ C∞(R+,U × Xied × Y)

˛̨
∃ (u, x∞) ∈ eBpol

[N,Γ] s.t. y∞(t) = Θxf (t)
o

2C∞(R+,W) is the space of infinitely differentiable functions v :

R+ →W.
3Test is the space of test functions.
4Dist is the space of distributions.

III. Almost Controllability Subspaces

Let us write the definition and some geometric char-
acterizations of the almost controllability subspaces:

Definition 1 ([14]): A subspace Ra ⊂ Xfed is said to
be an almost controllability subspace if ∀ x0, x1 ∈ Ra, ∃
T > 0 such that ∀ ρ > 0 ∃ xf ∈ Bexp

[A,B]
with the properties

that xf (0) = x0, xf (T ) = x1 and sup
t∈R+

inf
x′∈Ra

‖xf (t)− x′‖ ≤ ρ.

Let K be a subspace of Xfed, then the subspace S∞K
is the limit of the non decreasing almost controllability
subspace algorithm:

S0 = {0} ; Sµ+1 = K ∩ (ASµ + Im B), µ ∈ Z∗+ [ACSA]

Corollary 2 ([14], Corollary 1.23 of [13]): A subspace
Ra of Xfed is an almost controllability subspace if and
only if there is a mapping F : Xfed → U and a chain
{Bi}ki=1 in Im B such that Ra = B1 +AFB2 + · · ·+Ak−1

F Bk.
Moreover, there exist a k ∈ Z∗+ ∪ {0}, k ≤ dimRa, a chain
{Bi}ki=1 in Im B and a mapping F ∗ : Xfed → U such that

Ra = B1 ⊕AF∗B2 ⊕ · · · ⊕Ak−1
F∗ Bk (3)

B1 = Ra ∩ Im B (4)
dimBi = dim Ai−1

F Bi

= dimSi − dimSi−1 , i ∈ {1, . . . , k} (5)

where the Si are the steps of [ACSA] with K = Ra.
Theorem 3 ([14], Theorem 1.24 of [13]): Let K be a

subspace of Xfed and R∗a,K be the supremal almost con-
trollability subspace contained in K. Then:

R∗a,K =
n
x0 ∈ K

˛̨
∀ ρ > 0 ∃ xf ∈ Bexp

[A,B], xf (0) = x0,

such that xf (T ) = 0 and d∞ (xf ,K) ≤ ρ
o

Moreover, R∗a,K = S∞K .
The following Lemma gives a nice space decomposi-

tion, in terms of a suitable feedback, which will enable
us to get some important structural conclusions:

Lemma 4 ((Lemma 1.15 of [13])): Let K be a sub-
space of Xfed. There are subspaces X1, X2 and X3 of Xfed
and U1, U2 and U3 of U, a linear mapping F ∗ : Xfed → U,
an integer k ≤ dimK and integers ri, such that:

1) S∞K = X1 ⊕X2,
2) Xfed = X1 ⊕X2 ⊕X3,
3) AF∗X1 ⊂ X1 ⊕X2,
4) BUi ⊂ Xi, i ∈ {1, 2, 3}
5) When applying the state feedback u = F ∗xf + u∗ to

(1), then under the decompositions Xfed = X1 ⊕X2 ⊕X3

and U = U1 ⊕ U2 ⊕ U3, the state space representation is:

dxf/dt = AF∗xf +Bu∗ (6)

AF∗ =

24 A11 A12 A13

A21 A22 A23

0 A32 A33

35 , B =

24 B1 0 0
0 B2 0
0 0 B3

35 (7)

where:5

5These geometric properties directly follow from the
matricial expressions of Trentelman. For example, for item
a): Ker [A21 B2]

T = {0} implies X2 = Im A21 + Im B2 and
dimX2 = rank A21 + rank B2 implies X2 = Im A21 ⊕ Im B2.
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(a) X2 = Im A21 ⊕ Im B2,
(b) Let A21 = PA21A21, where PA21 is the natural projec-

tion on Im A21 along Im B2, then X1 = A−1
11 Im B1 ⊕Ker A21

and Im A21 ≈ Im B1.
(c) The associated pencil,

»
λI−A11 −B1

A21

–
, λ ∈ C,

only contains ied, namely the standard controllable triple
(A21, A11, B1) is prime.
Morse [11] introduced the prime systems, which roughly
speaking are controllable and observable systems, rep-
resented by a (C,A,B) state space form. Moreover,
his Theorem 3.1 shows that there exists a state
feedback F such that:6 (A+BF ) ∼ BDM{A1, . . . , Am},
B ∼ BDM{B1, . . . , Bm}, and C ∼ BDM{C1, . . . , Cm}; where:

Ai =

264 0 1 0 · · · 0
· · · · · · ·
0 · · · · 0 1
0 · · · · · 0

375 , Bi =

26664
0
.
..
0
1

37775 , CTi =

26664
1
0
...
0

37775
(8)

IV. Distributional Input and High Gain
Feedback

Let K be a subspace of Xfed and let x0 ∈ S∞K be an
initial condition for (6), namely xf (0) = VS∞K x0, where
VS∞K : S∞K → Xfed is the insertion map.

In [15] the supremal almost controllability sub-
space contained in K, S∞K , is related with the abil-
ity of bringing instantaneously any initial condi-
tion, x0 ∈ S∞K , to zero by means of a suitable dis-
tributional input û∗ ∈ bU. Indeed, in [13] is proposed
the distributional control law (recall Corollary 2):7

û∗ = −α1δBu1 −
Pk−1
i=1 αi+1δ

(i)Bui+1 ∈ bU; where the αi ∈ R
and the ui ∈ B−1Bi are such that VS∞K x0 =

Pk
i=1 αiA

i−1
F∗ Bui.

Leading to (û∗, x̂f ) =
`
û∗, eAF∗ t1R− (t)VS∞K x0

´
∈ bBexp

[AF∗ ,B]
.

In [13], it is shown how to approximate, in the
generalized limit sense, the distributional control
law, û∗ ∈ bU, by a sequence of smooth inputs,
u∗n(t) = −α1ϕn(t)Bu1 −

Pk−1
i=1 αi+1diϕn(t)/dtiBui+1 ∈ eU,

n ∈ Z∗+; where the ϕn are non negative C∞ functions
of unit area, with supp ϕn ⊂ [0, 1/n] and ϕn(0) = 0

and diϕn(0)/dti = 0, i ∈ [|1, k|]. Leading to (u∗n, x
∗
f,n) =“

u∗n, eAF∗ tVS∞K x0 −
` R t

0 eAF∗ (t−τ)ϕn(τ)dτ
´
VS∞K x0 −

Pk
j=1`

ϕn(t)αjA
j−1
F∗ Buj +

Pk
i=j+1 di−jϕn(t)/dti−jαiA

j−1
F∗ Buj

´”
∈eBexp

[AF∗ ,B]
, n ∈ Z∗+; with the property that for every

ρ ∈ R∗+ there exist T ∈ R∗+ and N ∈ Z∗+, such that
x∗f,n(T ) = 0 and d∞

`
xf,n,S∞K

´
≤ ρ, for every n ≥ N .

Furthermore, following [15], the next Theorem shows
that the distributional control law is also approximated
by a sequence of high gain state feedbacks:

Theorem 5 (Theorem 2.35 of [13]): Let Ra be
an almost controllability subspace and F ∗ :

Xfed → U be a mapping satisfying (3)–(5). Let

6BDM denotes block diagonal matrix.
7The generalized derivatives, ψ(i), i ∈ Z∗+, of ψ ∈ Dist are

defined by: < ϕ,ψ(i) >= (−1)i < diϕ/dti, ψ > for all ϕ ∈ Test.
The Dirac delta distribution, δ, is defined as < ϕ, δ >= ϕ(0),
ϕ ∈ Test. The successive generalized derivatives of δ are
< ϕ, δ(k) >= (−1)kdkϕ(0)/dtk, ϕ ∈ Test.

x0 ∈ Ra be an initial condition for the state space
representation (6) and let

˘
Ln
¯
, n ≥ N , N ∈ Z+,

be a sequence of subspaces8 generated by the
sequences of vectors

˘
x1,j(n, ūj), . . . , xk,j(n, ūj)

¯
,

where x1,j(n, ūj) =
`
I− (1/n)AF∗

´−1
Būj , xi+1,j(n, ūj) =`

I− (1/n)AF∗
´−1

AF∗xi,j(n, ūj), i ∈ [|1, k|], and Būj ∈˘
Bi
¯k
i=1

; such that the map
`
I− (1/n)AF∗

´
is invertible and

x0 ∈ Ln, for all n ≥ N . Let a sequence of friends mappings
of the Ln, Fn : Ln → U, such that Fnxi,j(n, ūj) = −niūj .
Then for all ρ > 0 there exists a N ∈ Z∗+ such that
d∞

`
xf ,Ra

´
≤ ρ, xf ∈ Bexp

[AF∗+BFn, B]
, for all n ≥ N .

V. Smooth Input and PD Feedback

In the proof of Lemma 4, Trentelman [13] comments
that given xf,2 ∈ C∞(R+,X2) and u3 ∈ C∞(R+,U3) the dy-
namic constraints, dxf,2/dt = A21xf,1 + A22xf,2 + A23xf,3

+ B2u2 and dxf,1/dt = A11xf,1 + A12xf,2 + A13xf,3 + B1u1,
yield unique solutions xf,1 ∈ C∞(R+,X1), u1 ∈ C∞(R+,U1),
and u2 ∈ C∞(R+,U2). So this comment suggests us to
decompose the system into three particular subsystems:
a) one whose aim of the manifest behavior, (u1, y1), is
to lead the state trajectory to zero, b) another whose
manifest behavior, (u2, y2), obeys for getting the state
trajectory to zero, and c) a subsystem initially at rest,
which is perturbed and in a pre-specified finite time
comes back to zero.

A. Decomposition into Subsystems

Let us decompose (6)–(7) in three subsystems:
a) Master subsystem: Σi/d/o =

“
R+,

ˆ
U1 × (X2 ×X3)

˜
×
ˆ
X1 × {0}

˜
× Im A21, eBexpˆ

A11,[B1 [A12 A13]],A21

˜ ⊕ {0}”,
dxf,1/dt = A11xf,1 +B1u1 +

ˆ
A12 A13

˜ » xf,2
xf,3

–
x1 = xf,1 ; y1 = A21x1

(9)

where: (a) u1 is the controller input variable, (b) y1

is a virtual output variable, and (c)
h
xTf,2 xTf,3

iT
is

considered as a measurable disturbance input variable.
Note that, this subsystem is controllable, observable, and
with no invariant zeros.

b) Slave subsystem: Σi/d/o =
“

R+,
ˆ
(Im A21)× U2×

X3

˜
×
ˆ
X2 × {0}

˜
× Im A32, eBexp

[A22,[W2 A23],A32]
⊕ {0}

”
,

dxf,2/dt = A22xf,2 +W2

»
y1

u2

–
+A23xf,3

x2 = xf,2 ; y2 = A32x2

(10)

where: (a) W2 = [VA21 B2], VA21 : Im A21 → X2 is the inser-
tion map, (b)

ˆ
yT1 uT2

˜T is a virtual controller input
variable, (c) y2 is a virtual output variable, and (d) xf,3

is considered as a measurable disturbance input variable.
Note that W2 is an isomorphism.

8The Ln are (A, B)–invariant subspaces which tend to Ra.
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c) Almost decoupled subsystem: Σi/d/o =
“

R+, [U3,

X2]×
ˆ
X3 × {0}

˜
×A−1

33 Im B3, eBexp
[A33,[B3 A22],P3]

⊕ {0}
”
,

dxf,3/dt = A33xf,3 +B3u3 +A32xf,2
x3 = xf,3 ; y3 = P3x3

(11)

where: (a) u3 is the controller input variable, (b) y3

is a virtual output variable, and (c) xf,2, is considered
as a measurable disturbance input variable. As we con-
sider that the initial conditions for (6) are contained in
S∞K = X1 ⊕X2, namely xf,3(0) ≡ 0, we can assume without
lost of generality that the pair (A33, B3) is controllable.
Thus, if we select as output map, a natural projection
P3 : X3 → A−1

33 Im B3, then the standard controllable triple
(P3, A33, B3) is prime. So this subsystem is also control-
lable, observable, and with no invariant zeros.

B. Invertible PD–Feedback

Lemma 6: Let a system, Σi/d/o =
“

R+,
ˆ
U ×Q

˜
×
ˆ
Xfed×

{0}
˜
× Y, eBexp

[A,[B S],C]
⊕ {0}

”
, where (C,A,B) is a

prime standard controllable triple. There then
exists a PD–feedback, u = FDdxf/dt+ FP xf + Fdq + g,
g ∈ C∞(R+,G), which inverts the system, namely
Σi/d/o =

“
R+,

ˆ
G ×Q

˜
×
ˆ
{0} × Xied

˜
× Y, {0} ⊕ eBpol

[N,[Γ S],Θ]

”
.

Furthermore, eBpol

[N,[Γ S],Θ]
=
n

((g, q), x∞, y) ∈ C∞(R+,
ˆ
G ×Q

˜
×Xied × Y)

˛̨
∃ ((g, q), x∞) ∈ eBpol

[N,[Γ S]]
s.t. y(t) = g(t)

o
.

Proof: Since the standard controllable triple (C,A,B)

is prime, there then exist bases for U, Y, and Xfed, and a
linear map F ∗ : Xfed → U such that [11]:

dxf/dt = AF∗xf +Bu+ Sq, x = xf , y = Cx
AF∗ = BDM

˘
A1, . . . , Am

¯
, B = BDM

˘
B1, . . . , Bm

¯
C = BDM

˘
C1, . . . , Cm

¯
, S =

ˆ
ST1 · · · STm

˜T
(12)

where Ai, Bi, and Ci are as (8). Then, with the PD–
feedback u = BTdxf/dt− Cxf + g −BTSq, g(0) = y(0), we
get Ndx∞/dt = x∞ − Γg + Sq, x = x∞, y = Θx, N = ATF∗ ,
Γ = CT , and Θ = C; i.e. (g, x∞) ∈ eBpol

[N,Γ]
. Finally, for

i ∈ {1, . . . ,m} and t > 0, we have:

yi(t) = CieAitxf,i(0) + Ci
tR

0

eAi(t−τ)
“
Bi
`
BTi

d
dτ
xf,i(τ)−

yi(τ) + gi(τ)−BTi Sq(τ)
´

+ Siq(τ)
”

dτ

dκiyi(t)/dt
κi = BTi dxf,i(t)/dt− yi(t) + gi(t)−BTi Sq(t)

+Ci
“Pκi−1

i=1 Ai−1
i Sid

κi−iq(t)/dtκi−i +Aκi−1
i Sq(t)

”
= dκiyi(t)/dt

κi − yi(t) + gi(t)

�

C. Almost Decoupling PD–Feedback

Based on Lemma 6, let us propose the PD control law:

u1 =
`
BT1 d/dt−A21

´
xf,1 + h1 −BT1

`
A12xf,2 +A13xf,3

´
W2

»
h1

u2

–
=
`
d/dt−A22 − I

´
xf,2 −A23xf,3 + h2

u3 =
`
BT3 d/dt− P3

´
xf,3 −BT3 A32xf,2

h2(t) =

(
xf,2(0)e−(t/T )2

‹`
1−(t/T )2

´
, 0 ≤ t < T

0, t ≥ T
(13)

h2 ∈ C∞(R+,X2) is taken from the Section 2.4 of [12]; this
function satisfies h2(0) = xf,2(0) and h2(t) = 0 for all t ≥ T .

Let us note that the closed loop system satisfies:

1) The master subsystem satisfies xf,1 =
`
Γ1h1+

S12xf,2 + S13xf,3
´

+
Pn1−1
i=1 N i

1di/dti
`
Γ1h1 + S12xf,2+

S13xf,3
´

and y1 = h1. Then the slave subsystem satisfies
xf,2 ≡ h2, thus xf,2(t) = 0 ∀ t ≥ T .

2) The almost decoupled subsystem satisfies y3 = 0 and
xf,3 = S3xf,2 +

Pn3−1
i=1 N i

3di/dtiS3xf,2. Then xf,3(t) = 0 for
t = 0 and ∀ t ≥ T .

3) Now, in view that h2(t) = 0, xf,2(t) = 0, and xf,3(t) = 0

∀ t ≥ T , then it also holds xf,1(t) = 0 ∀ t ≥ T .
4) Finally, since we are dealing with C∞ functions, then

for any ρ > 0, there exists a sufficiently small T > 0, such
that

‚‚xf,3‚‚∞ ≤ ρ.
We have proved in this way the following result:
Theorem 7: Let x0 ∈ S∞K be an initial condition

for (6). For any ρ > 0 there exist a PD–feedback,
u∗ = FDdxf/dt+ FP xf + h, h ∈ C∞(R+,U), and a finite time,
T > 0, such that the trajectory (u∗, xf ) ∈ eBpol

[AF∗ ,B]
satisfies

d∞
`
xf ,S∞K

´
≤ ρ and xf (t) = 0 for all t ≥ T .

VI. Smooth Input and Singularly Perturbed
Feedback

A. Singularly Perturbed Coupling Filter

Lemma 8: Let a prime system, Σi/s/o =
“

R+,ˆ
U ×Q

˜
×Xfed × Y, eBexp

[AF∗ ,[B S],C]

”
, described by (12);

where q and the diq/dti, i ∈ {1, . . . , κ} with κ =

max{κ1, . . . , κm}, are bounded.
1) There then exists a singularly perturbed

control law, u = Fεxf + Fdq +Kεḡ, ḡ = x̄f + g, x̄f (t) =

− ε
R t
0 e−β(t−τ)Kεy(τ)dτ , g ∈ C∞(R+,G), x̄f ∈ C∞(R+,Rm),

such that for any trajectory, ((x̄f + g, q), xf , y) ∈eBexp
[(AF∗+BFε),[BGε (S+BFε)],C]

, holds:9

y(t) = g(t) +O(
√
ε), for all t ≥ t∗ (14)

for β = O(1/ε) and where t∗ = O(ε ln(1/
√
ε)).

2) Moreover, If ε and β are chosen as in Theorem
10 of [10], then the gain margins of the characteristic
functions of the Hurwitz stable closed loop system, `i(ω),
i ∈ {1, . . . ,m}, are lower bounded:

Gain Margin(`i(ω)) ≥ O((1/ε)κ+2) (15)

where κ = min{κ1, . . . , κm}.
3) Furthermore, let the set of trajectories

of the Hurwitz stable closed loop system˘
((x̄f + g, q), xf , yε) | ε = 1/η, η ∈ Z∗+

¯
and let ((g, q), x∞, y)

the trajectory of the behavior, eBpol

[N,[Γ S],Θ]
, obtained with

the invertible PD–feedback of Lemma 6, if ε and β are
chosen as in Corollary 11 of [10], then:

lim
ε→0

(g, yε) = (g, y) in the sense of Lloc
1 (R∗+,Rm) (16)

9O(ϕ(ε)) means: ∃ ε∗ > 0 & K > 0 s.t. |f(ε)| ≤ Kϕ(ε) ∀ ε ∈ (0, ε∗)

& ϕ(ε) > 0; g +O(ϕ(ε)) means: g + f(ε) with f(ε) = O(ϕ(ε)).
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Proof: Let us consider the following singularly per-
turbed control law:
u(t) = K−1

ε

`
F εxf (t) + x̄f (t) + g(t)

´
−BTSq(t), g(0) = y(0)

dx̄f/dt = −βx̄f − εKεy
Kε = BDM

˘
εκ1 , εκ2 , . . . , εκm

¯
F ε = BDM

˘
a1,ε, a2,ε, . . . , am,ε

¯
ai,ε =

ˆ
−bBi,κi −εbBi,κi−1 · · · −εκi−1bBi,1

˜
(17)

where the coefficients bBi,j are those of the Butterworth
polynomials ∆B,i(s):

∆B,i(s) =
`
sκi + bBi,1sκi−1 + · · ·+ bBi,κi−1s + bBi,κi

´
=8<:

Qκi
2
j=1

`
(s + sin θj,κi)

2 + cos2 θj,κi
´
, for κi even

(s + 1)
Q (κi−1)

2
j=1

`
(s + sin θj,κi)

2 + cos2 θj,κi
´
, for κi odd

We then get (after a change of basis in Xf ):

dxf/dt = −βxf − εKεCozf ,
εdzf/dt = Boxf +Aozf +Bo(g + q̄)

y = Cozf , q̄ = O(ε)
(18)

where the matrices are the one shown in the equations
(29), (30), (4) and (5) of [10], with n = m. Then: 1) (14)
follows from Theorem 8 of [10], 2) (15) follows from
Theorem 10 of [10], and 3) (16) follows from Corollary
11 of [10]. �

B. Almost Decoupling Singularly Perturbed–Feedback
Based on the singularly perturbed control law (17)

of Lemma 8, let us propose the following Singularly
Perturbed control law:
u1 = K−1

1,ε

`
F 1,εxf,1 + x̄f,1 + h1

´
−BT1

`
A12xf,2 +A13xf,3

´
dx̄f,1/dt = −βx̄f,1 − εK1,εA21xf,1

W2

»
h1

u2

–
= −

“
A22 + 1

ε
I
”
xf,2 −A23xf,3 + 1

ε
(h2 + x̄f,2)

dx̄f,2/dt = −βx̄f,2 − ε2xf,2
u3 = K−1

3,ε

`
F 3,εxf,3 + x̄f,3

´
−BT3 A32xf,2

dx̄f,3/dt = −βx̄f,3 − εK3,εP3xf,3

h2(t) =

(
xf,2(0)e−(t/T )2

‹`
1−(t/T )2

´
, 0 ≤ t < T

0, t ≥ T
(19)

with T >> ε ln(1/
√
ε).

Let us note that the closed loop system satisfies:

1) In view of (15) the closed loop system is Hurwitz
stable and all its latent variables are bounded.

2) The master subsystem satisfies xf,1 =
`
Γ1h1+

S12xf,2 + S13xf,3
´

+
Pn1−1
i=1 N i

1
di

dti

`
Γ1h1 + S12xf,2+ S13xf,3

´
+ O(

√
ε) and y1 = h1 + O(

√
ε), for all t ≥ t∗. Then the

slave subsystem satisfies xf,2 = h2 + O(
√
ε), for all t ≥ t∗,

thus xf,2(t) = O(
√
ε), for all t ≥ T .

3) The almost decoupled subsystem satisfies y3 =

O(
√
ε) and xf,3 = S3xf,2 +

Pn3−1
i=1 N i

3
di

dti
S3xf,2 + O(

√
ε), for

all t ≥ t∗. Then xf,3(t) = O(
√
ε) for t = 0 and for all t ≥ T .

4) Now, in view that h2(t) = O(
√
ε), xf,2(t) = O(

√
ε),

and xf,3(t) = O(
√
ε), for all t ≥ T , then also holds xf,1(t) =

O(
√
ε) for all t ≥ T .

5) Finally, since we are dealing with C∞ functions, then
for any ρ > 0, there exists a sufficiently small T > 0, such
that

‚‚xf,3‚‚∞ ≤ ρ.

We have proved in this way the following result:
Theorem 9: Let x0 ∈ S∞K be an initial condition for

(6). For any ρ > 0 there exist a Singularly Perturbed–
feedback, u = (Fε + Fd)xf + Kεh − ε

R t
0 e−β(t−τ)y(τ)dτ ,

h ∈ C∞(R+ → U), and a finite time, T > 0, such that the
trajectory (u∗, xf ) ∈ eBpol

[AF∗ ,B]
satisfies d∞

`
xf ,S∞K

´
≤ ρ and

xf (t) = O(
√
ε) for all t ≥ T .

VII. Illustrative Example

Let us consider (6) and (7), with: A11 =

24 0 0 0
0 0 1
0 0 0

35,

A12 =

24 1 1 1
1 1 1
1 1 1

35, A13 =

24 1 1
1 1
1 1

35, A21 =

24 1 0 0
0 1 0
0 0 0

35,

A22 =

24 0 1 0
0 0 1
0 0 0

35, A23 =

24 1 1
1 1
1 1

35, A32 =

»
1 1 1
1 1 1

–
,

A33 =

»
0 1
0 0

–
, P3 =

ˆ
1 0

˜
, B1 =

24 1 0
0 0
0 1

35,

B2 =

24 0
0
1

35, and B3 =

»
0
1

–
. Note that:

A21 =

»
1 0 0
0 1 0

–
, VA21 =

24 1 0
0 1
0 0

35, and W2 = I3.

A. Almost Decoupling PD–Feedback

The control law (13) is:

h1 =

»
1 0 0
0 1 0

–
dxf,2

dt
−
»

1 1 0
0 1 1

–
xf,2

−
»

1 1
1 1

–
xf,3 +

»
1 0 0
0 1 0

–
h2

u1 =

»
1 0 0
0 0 1

–
dxf,1

dt
−
»

1 0 0
0 1 0

–
xf,1 + h1

−
»

1 1 1
1 1 1

–
xf,2 −

»
1 1
1 1

–
xf,3

u2 =
ˆ

0 0 1
˜ dxf,2

dt
xf,2 −

ˆ
0 0 1

˜
xf,2

−
ˆ

1 1
˜
xf,3 +

ˆ
0 0 1

˜
h2

u3 =
ˆ

0 1
˜ dxf,3

dt
−
ˆ

1 0
˜
xf,3 −

ˆ
1 1 1

˜
xf,2

The closed loop system is:

xf,1 =

24 (d/dt+ 1) 0 1
1 (d/dt+ 1) 0

d/dt (d2/dt2 + d/dt) 0

35h2

xf,2 = h2

xf,3 = −
»

0 0 0
1 1 1

–
h2

B. Almost Decoupling Singularly Perturbed–Feedback

The matrices of the control law (19) are:
K1,ε = BDM{ε, ε2}, F 1,ε = BDM{a1,ε, a2,ε}, a1,ε = [−1],
a2,ε = [−1 − ε

√
2], K3,ε = [ε2], F 3,ε = [−1 − ε

√
2].

The closed loop system is:

dx̄f,1/dt = −βx̄f,1 − εK1,εy1

εdzf,1/dt =

24 −1 0 0

0 −
√

2/2 1

0 −1/2 −
√

2/2

35zf,1 +B1(x̄f,1 + h1)

+ε

24 0 0 0 0 0
1 1 1 1 1√
2

2

√
2

2

√
2

2

√
2

2

√
2

2

35 » xf,2
xf,3

–
y1 = A21zf,1
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dx̄f,2/dt = −βx̄f,2 − ε2xf,2

εdzf,2/dt =

24 0 ε 0
0 0 ε
0 0 −1

35 zf,2 + ε

24 1 1
1 1
0 0

35xf,3
+εVA21y1 +B2B

T
2 (h2 + x̄f,2)

εh1 =
»
−1 −ε 0
0 −1 −ε

–
zf,2 − ε

»
1 1
1 1

–
xf,3

+(h2 + x̄f,2)
y2 = A32zf,2

dx̄f,3/dt = −βx̄f,3 − εK3,εy3

εdzf,3/dt =
»
−
√

2/2 1

−1/2
√

2/2

–
zf,3 +B3x̄f,3

+ε
»

1 1 1√
2/2

√
2/2

√
2/2

–
xf,2

y3 = P3zf,3

where zf,1 = (BDM{1, Tε})xf,1, zf,2 = xf,2, and zf,3 = Tεxf,3,
with Tε =

»
1 0√
2/2 ε

–
. In Fig. 1, we show somee

MATLABR simulations with a relative tolerance of
1× 10−5, a variable step and an ODE 45 (Domain–
Prince); the other parameters are set to auto. The
initial conditions are set as: zf,1(0) =

ˆ
1 1 1

˜T ,
zf,2(0) =

ˆ
1 1

˜T , zf,3(0) = 0. The parameter’s controller
were chosen as: ε = 0.01, β = 100, and T = 1.

(a)

(b)

(c)

Fig. 1. The dashed lines corresponds to the PD–feedback and
the solid lines corresponds to the singularly perturbed–feedback. (a)‚‚zf,1‚‚, (b)

‚‚zf,2‚‚, and (c)
‚‚zf,3‚‚.

VIII. Conclusion

In this paper the almost rejection of initial conditions
is studied by a PD state feedback law (see Theorem
7) u = FDdxf/dt+ (FP + F ∗)xf . It is shown that with the
tools and results from Willems [15] and Trentelman
[13] it is possible to solve this problem by means of a
PD law. This can be performed with a finite map, Fd,
and a map, Fε, parametrized in the precision positive

coefficient ε, namely (see Theorem 9) u = (Fε + Fd + F ∗)xf

− ε
R t
0 e−β(t−τ)y(τ)dτ . The β integral term, characterizing

a slow subsystem, is introduced for remaining in the
singularly perturbed framework of Kokotović [9]; also the
positive coefficient β guarantees a certain stability mar-
gin. Thus, when ε tends to zero the singularly perturbed
state feedback tends to the PD state feedback in the
sense Lloc

1 (R∗+,U) (see Corollary 11 of [10]). Let us note
that Trentelman [13] has shown that the use of high gain
state feedback to solve the almost disturbance decoupling
problem may cause certain state variables in the closed
loop system to become unacceptably large.

The synthesis procedure, introduced in this paper, sim-
plifies in a great manner the design task and makes the
application of these so important subspaces introduced
by Willems [14] more feasible. Let us note that our results
are also complementary to those of Armentano [1].
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