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Abstract—In this paper we obtain information theoretical
conditions for tracking in linear time-invariant control systems.
We consider the particular case where the closed loop contains
a channel in the feedback loop. The mutual information rate
between the feedback signal and the reference input signal is
used to quantify information about the reference signal that is
available for feedback. This mutual information rate must be
maximized in order to improve the tracking performance. The
mutual information is shown to be upper bounded by a quantity
that depends on the unstable eigenvalues of the plant and on
the channel capacity. If the channel capacity reaches a lower
limit, the feedback signal becomes completely uncorrelated with
the reference signal, rendering feedback useless. We also find a
lower bound on the expected squared tracking error in terms
of the entropy of a random reference signal. Examples and
simulations are provided to demonstrate the results.

I. INTRODUCTION

The goal of this work is to find fundamental limitations on
feedback tracking systems in terms of information theoretical
quantities. This is important since the emerging control appli-
cations involve the presence of a constraint communication
channel in the feedback loop. Typically, control systems
have been understood as signal processing blocks or systems
interchanging energy. However, these approaches are not
appropriate for the new scenarios. That is why we suggest
that an interpretation in terms of information flow may be
more suitable for the future design of control algorithms.
Previous related work in [3], [5], [6], [13], [14], [15] and

[16] detailed some aspects of performance and limitations of
control systems in terms of information theoretic quantities.
Specifically, the work in [14] dealt with the tracking issues
without a channel in the feedback link, while [3] dealt with
disturbance rejection. A result in [14], shows that a necessary
condition for efficient tracking is that the information flow
from the reference signal to the output should be greater
than the information flow between the disturbance and the
output. We know that in the absence of noise, and without
a communication channel in the feedback loop, the mutual
information rate (or information rate) between reference
signal and the output is infinite. We know, however, that if the
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feedback signal is transmitted by means of a finite capacity
channel, the mutual information rate is upper bounded by
Cf −∑i=1max{0, log2 (|λi(A)|)}, [12].
Following the same approach of [4], we expect that the

parameters of the plant and feedback channel capacity Cf

will be related, and that there will be a trade-off between
these parameters. If by some reason this upper bound hap-
pens to be zero, then we reach a fundamental limitation
where no information of the reference signal is available for
feedback. This means that the two signals are independent,
therefore, uncorrelated, and this is exactly the condition
that implies that tracking is impossible. In other words, the
feedback signal does not provide any useful information for
the reference to be tracked.
We note that the condition for a non-zero mutual infor-

mation between the reference and the feedback signal is a
necessary condition for tracking, but not a sufficient one.
A large mutual information between the reference signal
and the feedback signal does not necessarily imply that
tracking is possible (it only implies that the signals are highly
correlated). This is expected because even in the case of a
perfect infinite capacity channel, the tracking issue requires
additional conditions to be satisfied.
These results are fundamental limitations in terms of

information quantities that any control system designer must
be aware of before trying to design a new control system.

II. NOTATION

We present next the notation used in the rest of this work.
• Let xk = {x(1),x(2), . . . ,x(k)} and yk =
{y(1),y(2), . . . ,y(k)} be sets of observations of
stochastic processes x and y. We follow the notation in
[11] where bold letters represent stochastic processes.

• Let x(k) be a time sample of the stochastic process x.
• Let xj be the “j-th” state component. For example, if
x has dimension n = 3, then xj will denote any of the
state components x1, x2 or x3.

• Let xJ denote the set of state components, xj, such
that j ∈ J. For example, if J = {1,3}, then xJ is the
set {x1,x3}.

• Let |.| denote the absolute value and det(.) denotes the
absolute value of the determinant of a matrix.
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Fig. 1. Closed-Loop System with Communication Channel in Feedback
Link.

We also define the blocks in Figure 1:

• C is the controller, which does not have any constraints
(it could be time-invariant, nonlinear, etc.).

• P is the plant to be controlled and is assumed to be dis-
crete, linear, time-invariant, with state-space realization

x(k+1) = Ax(k)+Bu(k); (1)

y(k) = Cx(k). (2)

• E is the encoder assumed to be a causal operator well
defined in the input alphabet of the channel.

• D is the decoder assumed to be well defined and
conserving equimemory with the encoder.

• The Channel block is any type of communication chan-
nel with finite capacity.

• c is the channel noise.

III. INFORMATION THEORY PRELIMINARIES

Before proceeding, we enumerate some well-known
information-theoretical properties that will be very useful
later on.
Properties 3.1: Assume that z, w, u ∈R are random vari-

ables and f (z), g(z) are real functions. All of the following
may be found in several references as [2], [4] and [9].

(a) h(z|w)≤ h(z) with equality if z and w are independent.
(b) Let z have mean μ and covariance Cov{zn}. Then

h(zn) ≤ 1
2
log2

(
(2πe)ndet(Cov{zn})

)
with equality if z has a multivariate normal distribution.

(c) h(az) = h(z)+ log2
(
|a|

)
for nonzero constant a.

(d) h(Az) = h(z)+ log2
(
det(A)

)
for nonsingular Amatrix.

(e) h(z|w) = h(z−g(w)|w).
(f) I(z;w) = I(w;z) ≥ 0.
(g) I(z;w) ≥ I(g(z); f (w)).
(h) I(z;w|u) = I((u,z);w)−I(u;w) = h(z|u)−h(z|w,u)=

h(w|u)−h(w|z,u).
(i) For any random variable z and estimate ẑ: E{(z−
ẑ)2} ≥ 1

2πe2
2h(z), with equality if and only if z is

Gaussian and ẑ is the mean of z.
(j) The variance of the error in the estimate ẑ of z

given the infinite past is lower bounded as σ2∞(z) =
limk→∞E{(z− ẑ)2(k)|(z− ẑ)(k−1)}≥ 1

2πe2
2h∞(z) with

equality if z is Gaussian.

(k) If z is an asymptotically stationary process, then

h∞(z) ≤ 1
4π

π∫
π

log2
(
2πeΦ̂z(ω)

)
dω

where Φ̂z is the asymptotic power spectral density of
z and equality holds if, in addition, z is Gaussian auto-
regressive.

IV. SIGNAL ANALYSIS

The functional dependencies among the signals involved
in the closed-loop shown in Figure 1 are the following:

y(k) = f1(rk−1,ck−1,x(0));
e(k) = f2(rk, ŷk) = r(k)− ŷ(k);
u(k) = f3(ek);
ŷ(k) = f4(yk,ck).

V. ASSUMPTIONS

The matrix A in block P in Figure 1 is assumed to
be diagonal with only unstable eigenvalues (|λi(A)| > 1)
and therefore, Ak is invertible ∀k. We assume that A has
unstable eigenvalues since it is the worst case. Since we
are considering the tracking problem, the control law is a
function of the error ek = rk − ŷk, u(k) = f3(ek). We note
for now that the output is an n-dimensional vector, but this
will be relaxed later on. In our setup f3 is not limited to
be a linear or time-invariant control law. We note that the
solution of the difference equation (1) may be written as

x(k) = Akx(0)+
k−1
∑
i=0

Ak−i−1B f3(ei). If C = I, then from the

tracking error, defined by εεε(k) = r(k)−y(k), we have

r(k)−εεε(k) = y(k) = x(k) =Akx(0)+
k−1
∑
i=0

Ak−i−1B f3(ei). (3)

We rearrange the terms as

x(0)+A−k
k−1
∑
i=0

Ak−i−1B f3(ei) = −A−k(εεε(k)− r(k)). (4)

In a tracking problem, we do not necessarily assume that
the state is bounded, since for unbounded reference signals,
the state may grow unbounded. Instead, we assume that the
closed-loop is such that the error is bounded, i.e.,

E{εεεT εεε} < ∞.

Since this implies that εεε is a second-order process, the
mean E{εεε} and the covariance Cov{εεε}= E{(εεε+E{εεε})(εεε+
E{εεε})T} must be finite. For bounded reference signals, the
condition E{εεεT εεε} < ∞ guarantees stability since by the
triangle inequality [8] we know that√

E{x2(k)} ≤
√
E{r2(k)}+

√
E{εεε2(k)}. (5)

Since the two terms on the right side of equation (5) are
finite, then we also get that

√
E{x2(k)} < ∞ and, therefore,

the system remains stable.
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VI. AUXILIARY RESULTS

We first introduce some results that will later be used
to obtain the limitations on tracking systems. Specifically,
the following result will be used to prove Lemma 6.3. Let
us consider the set Pj defined as Pj = {i ∈ N, j ≤ n : i ∈
{1,2, . . . ,n}− { j}}. The following lemma holds for stabi-
lization and is a slight modification of the result presented
in [4].
Lemma 6.1: Consider the closed-loop system in Figure

1, where the plant is a DTLI system described by equations
(1) and (2), with C = I, and A diagonal in equation (2). If
E{xPj (k)xTP j (k)} < ∞, then

lim
k→∞

I(xPj (0);e
k|rk,x j(0))
k

≥∑
i�= j

log2
(
|λi(A)|

)
.

Proof : By the chain rule expressed in Property 3.1.(h) we
expand the expression given by I(xPj (0);e

k|rk,x j) as
I(xPj (0);e

k|rk,x j(0))

=
n

∑
i�= j

I(xi(0);ek|rk,x j(0),x1(0), . . . ,xi−1(0)). (6)

Each state component may be expressed as

xi(k) = λ ki xi(0)+gi(ek); (7)

for some function gi. Therefore, each initial state component
is given by xi(0) = λ−k

i (xi(k)−gi(ek)). From the definition
of mutual information we expand the “i-th” additive term in
equation (6).

I(xi(0);ek|rk,x j(0),x1(0), . . . ,xi−1(0))
= h(xi(0)|rk,x j(0),x1(0), . . . ,xi−1(0))

−h(xi(0)|ek,rk,x j(0),x1(0), . . . ,xi−1(0)).
From the independence between x(0) and rk, ∀i ∈ Pj, the
term rk may be eliminated in the first entropy term

I(xi(0);ek|rk,x j(0),x1(0),x2(0), . . . ,xi−1(0))
= h(xi(0)|x j(0),x1(0),x2(0), . . . ,xi−1(0))

−h(xi(0)|ek,rk,x j(0),x1(0),x2(0), . . . ,xi−1(0)).
From equation (7), the term

h(xi(0)|ek,rk,x1(0),x2(0), . . . ,xi−1(0))
may be rewritten as

h(xi(0)|ek,rk,x1(0),x2(0), . . . xi−1(0))
= h(λ−k

i (xi(k)−gi(ek))|ek,rk,x1(0),x2(0), . . . xi−1(0)).
By Properties 3.1.(c), 3.1.(b) and 3.1.(a) we have that

h(λ−k
i xi(k)|ek,rk,x1(0),x2(0), . . . xi−1(0))

= h(λ−k
i xi(k)|ek,rk,x1(0),x2(0), . . . xi−1(0));

= −k log2(|λi|)+h(xi(k)|ek,rk,x1(0),x2(0), . . . xi−1(0));
≤ −k log2(|λi|)+h(xi(k));

≤ −k log2(|λi|)+
1
2
log2

(
(2πe)det(Cov{xi})

)
.

Then

I(xi(0);ek|rk,x j(0),x1(0),x2(0), . . . ,xi−1)
≥ h(xi(0)|x j(0),x1(0),x2(0), . . . ,xi−1(0))

+k log2(|λi|)−
1
2
log2

(
(2πe)det(Cov{xi})

)
.

Dividing by k and taking the limit to infinity we obtain

lim
k→∞

I(xi(0);ek|rk,x j(0),x1(0), . . . ,xi−1(0))
k

≥ log2(|λi|).
(8)

From equations (6) and (8) we have

lim
k→∞

I(xPj (0);e
k|rk,x j(0))
k

≥∑
i�= j

log2
(
|λi(A)|

)
.

�
We next focus on the tracking problem which is different
from the stabilization one treated in previous works. We first
consider the following two lemmas.
Lemma 6.2: Consider the closed-loop system in Figure 1,

where the plant is a DLTI system described by equations (1)
and (2), C = I. If E{εεε(k)εεεT (k)} < ∞, then

lim
k→∞

I(x(0);ek|rk)
k

≥∑
i
log2

(
|λi(A)|

)
.

Proof : The mutual information I(x(0);ek|rk) may be ex-
panded as:

I(x(0);ek|rk) = h(x(0)|rk)−h(x(0)|ek,rk);
= h(x(0))−h(x(0)|ek,rk);

where we have used the fact that x(0) and rk are independent.
If we focus on the quantity h(x(0)|ek,rk) and using the
properties of entropy we obtain:

h(x(0)|ek,rk)

= h(x(0)+A−k
k

∑
i=0

Ak−i−1B f3(ei)|ek,rk);

= h(−A−k(εεε(k)− r(k))|ek,rk); (9)

= h(−A−kεεε(k)|ek,rk); (10)

≤ h(−A−kεεε(k)); (11)

≤ 1
2
log2

(
(2πe)ndet(Cov{−A−kεεε})

)
; (12)

=
n
2
log2

(
2πe

)
+
1
2
log2

(
det(−A−kCov{εεε}(−A−k)T )

)
;

=
n
2
log2

(
2πe

)
+
1
2
log2

(
det(A−k(A−k)T )

)
+
1
2
log2

(
det(Cov{εεε})

)
;

=
n
2
log2

(
2πe

)
− k∑

i
log2

(
|λi(A)|

)
+
1
2
log2

(
det(Cov{εεε})

)
.

Where equation (9) is due to equation (4), equation (10)
is due to Property 3.1.(e), equation (11) is due to Property
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3.1.(a), and equation (12) is due to Property 3.1.(b). From
these simplifications we obtain

I(x(0);ek|rk)
≥ h(x(0))− n

2
log2(2πe)+ k∑

i

log2
(
|λi(A)|

)
− 1
2
log2

(
det(Cov{ εεε })

)
.

Finally, if we divide by k and take the limit as k→ ∞, we
obtain:

lim
k→∞

I(x(0);ek|rk)
k

≥∑
i

log2
(
|λi(A)|

)
.

since εεε is a second order process.

�

We note that for Lemma 6.2, we have assumed that y(k) =
x(k), i.e. the entire state is available for measurement.
However, the lemma still holds when the output is only one
component of the state vector (single output), e.g. y(k) =
x1(k). In that case, we need to guarantee that the components
of the state that do not appear in the output remain bounded.
The only component that can grow unbounded is the one
that appears in the output (in the case of an unbounded
reference signal). For example, if the plant is a third order
system (n= 3) and C =

[
1 0 0

]
, we have to guarantee that

the difference between the reference signal and the output
y= x1 must remain bounded; and that the state components
that do not appear in the output {x2,x3} remain bounded,
i.e., E{x j(k)x j(k)T} < ∞,∀ j ∈ {2,4}. Before generalizing
Theorem 6.2 we introduce the following notation:

• y= xj
• Let xȲ be the vector of state components that do not
appear in output y.

For example, if C =
[
1 0 0

]
, then x j = {x1} whereas xȲ =

{x2,x3}. We then prove the following.
Lemma 6.3: Consider closed-loop system given in Figure

1, where the plant is a DLTI system described by equation (1)
and y= qx j for some j ∈ {1, . . . ,n}, q a non-zero constant.
If E{εεε(k)εεεT (k)} < ∞ and E{xȲ (k)xTȲ (k)} < ∞, then

lim
k→∞

I(x(0);ek|rk)
k

≥∑
i
log2

(
|λi(A)|

)
.

Proof : I(x(0);ek|rk) may be expanded as

I(x(0);ek|rk) = I(x j(0);ek|rk)+ I(xȲ (0);ek|rk,x j(0)); (13)

where x j = y, and xȲ are the states that do not appear in
y. We also know that y(k) = r(k) − εεε(k) = qx j(k), then
y(k) may be expressed as y(k) = qλ kx jx j(0)+G(ek). Where
G(ek) is a function of the error ek and λ kx j is the eigenvalue
corresponding to x j. We may also expand I(x j(0);ek|rk)

using the definition of mutual information:

I(x j(0);ek|rk) = h(x j(0)|rk)−h(x j(0)|ek,rk);
= h(x j(0))−h(x j(0)|ek,rk);
= h(x j(0))

−h
(
λ−k
x j (εεε(k)− r(k)−G(ek))|ek,rk

)
.

Consider the term h
(
q−1λ−k

x j (r(k) − εεε(k) −G(ek))|ek,rk
)

which may be simplified to

h
(
q−1λ−k

x j (r(k)− εεε(k)−G(ek))|ek,rk
)

= −k log2
(
|λx j |

)
− log2

(
|q|

)
+h

(
(r(k)− εεε(k)−G(ek))|ek,rk

)
;

= −k log2
(
|λx j |

)
− log2

(
|q|

)
+h

(
εεε(k)|ek,rk

)
;(14)

≤ −k log2
(
|λx j |

)
− log2

(
|q|

)
+h

(
εεε(k)

)
; (15)

≤ −k log2
(
|λx j |

)
− log2

(
|q|

)
+
1
2
log2

(
(2πe)det(Cov{εεε})

)
; (16)

where equation (14) is due to Property 3.1.(e), equation (15)
is due to Property 3.1.(a) and equation (16) is due to Property
3.1.(b). We then have

I(x j(0);ek|rk) ≥ h(x j(0))+ k log2
(
|λx j |

)
−1
2
log2

(
|q−22πe|

)
−1
2
log2

(
det(Cov{εεε})

)
.

Dividing by k and taking the limit when k tends to infinity
we obtain

lim
k→∞

I(x j(0);ek|rk)
k

≥ log2
(
|λxY |

)
. (17)

We note that the right side of equation (13) contains the
term I(xȲ (0);ek|rk,x j(0)) but this term is bounded from
below (Lemma 6.1) since E{xȲ (k)xTȲ (k)} < ∞ is required.
Therefore

lim
k→∞

I(xȲ (0);ek|rk,x j(0))
k

≥∑
i�= j

log2
(
|λi(A)|

)
. (18)

From inequalities (17) and (18) we have

lim
k→∞

I(x(0);ek|rk)
k

≥∑
i
log2

(
|λi(A)|

)
.

�

VII. RESULTS

Using the results in Section VI, we find limitations on
tracking systems that are imposed by the presence of a
finite capacity channel. We consider the expression I(rk; ŷk)
instead of I(rk;yk). Although I(rk;yk) provides the actual
information between the output and the reference signals,
the former is easier to calculate than the later. The mutual
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information I(rk; ŷk) represents the information between the
transmitted feedback, i.e., ŷk, and the reference signal. If
this mutual information happens to be zero, all information
contained in the feedback signal about the reference signal
was lost and the error e used to generate the control signal is
useless. In fact, I(r; ŷ) measures the usefulness of feedback.
By the properties of mutual information, we have

I((rk,x(0)); ŷk) = I(rk; ŷk)+ I(x(0); ŷk|rk). (19)

From the definition of mutual information, Property 3.1.(e),
and from the fact that ek = rk− ŷk, we have

I(x(0); ŷk|rk) = h(ŷk|rk)−h(ŷk|x(0),rk);
= h(ek|rk)−h(ek|x(0),rk);
= I(x(0);ek|rk). (20)

From equation (19) and (20) we have

I((rk,x(0)); ŷk) = I(rk; ŷk)+ I(x(0);ek|rk). (21)

From equation (21) and knowing that kCf ≥ I((rk,x(0)); ŷk)
we obtain

I(rk; ŷk) ≤ kCf − I(x(0);ek|rk). (22)

By Lemma 6.2, and dividing equation (22) by k and taking
the limit as k→ ∞, we finally have

I∞(r; ŷ) ≤Cf −∑
i
log2

(
|λi(A)|

)
.

We summarize this result in the following lemma:
Lemma 7.1: Consider the closed-loop system given in

Figure 1, where the plant is a DLTI system described by
equations (1) and (2), a feedback capacity Cf in the channel.
If E{εεε(k)εεε(k)T } < ∞, then

I∞(r; ŷ) ≤Cf −∑
i

log2
(
|λi(A)|

)
.

We note from Lemma 7.1 that if the channel does not have
a minimum capacity of ∑i log2(|λi(A)|), the feedback signal
does not provide any information of the reference signal. In
other words, the advantages of feedback are completely lost
and it makes no sense to use it. Lemma 6.2 is one of the
main contributions of this work. We note that Lemma 6.3 is
needed when the output is only one of the state components
and not the whole state.

A. Limitations on the reference signals

The results of the previous sections deal with the idea of
bounding the error signal, εεε(k) = r(k)−y(k). However, it is
well known that given a plant and a particular controller,
there will be limitations on the type of signals that may
be tracked. We show next that a tracking system may be
thought of as a channel where the reference signal is the
input message, the closed-loop is a feedback channel (with
the encoder-decoder embedded) and the system output is
the received message. Under this scenario good message
estimation is synonymous with good tracking. We consider

εεε = r− y as the error estimate of the message. Note from
Property 3.1.(i), that

E{(r−y)2} ≥ 1
2πe

22h(r).

This inequality captures the idea that the greater is the
entropy of the reference signal, the larger is the error signal,
εεε . Moreover, since E{(r− y)2} is a nonnegative number,
we note that the error between the output and the reference
cannot reach zero unless the reference signal is deterministic
(h(r) =−∞). In other words, perfect tracking is not possible
and tracking gets worse for high entropy reference signals
regardless of the type or quality of the channel and the
controller. Moreover, the following result holds regardless
of the plant. Let us consider that the expected value of (εεεk)2

given the entire past εεεk−10 as k tends to infinity given by

σ2∞(r) = lim
k→∞

E{εεε2(k)|εεε(k−1)}.

From information theory, the entropy rate lower-bounds the
variance σ2∞(r):

σ2∞(r) ≥ 1
2πe

22h∞(r).

We then obtain the following lemma.
Lemma 7.2: Consider the closed-loop system given in

Figure 1, where the plant is a DLTI system described by
equations (1) and (2). Then the best estimator y for r is
bounded as

E{(r−y)2} ≥ 1
2πe

22h(r). (23)

Moreover, the variance of the best reference estimator, σ2∞(r),
is bounded from below as follows

σ2∞(r) ≥ 1
2πe

22h∞(r). (24)

VIII. EXAMPLES

The results derived in so far are necessary conditions but
not sufficient. Since the quantity I∞(r; ŷ) implies correlation
of signals and not necessarily that y is tracking r. The
following examples capture how conservative the results of
this work are.

A. Example 1: Erasure Channel

We consider the tracking problem shown in Figure 1 for
the reference signal, r(k). The reference signal is assumed
to be a white Gaussian sequence, with zero-mean and with
σ2r = 1. We consider a memoryless erasure channel as shown
in Figure 2 in the feedback link with limited rate and
a probability of receiving the state measurement of pγ =
0.70479. The probability of dropping a packet is therefore
1− pγ . We consider a two-part encoder-decoder scheme:
First, the encoder converts the real state-vector measured,
x(k), to its binary form, truncates the binary representation
to its R most significant bits, then encapsulates the bits in a
packet and send the packet through the channel. If the packet
is not dropped, the decoder on the receiver site receives
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Fig. 2. Erasure Channel Scheme.

the packet, extracts the bits and converts them to its real
number representation. If the receiver does not receive a
packet, the decoder will assume that a zero was sent and
the controller does not apply any control signal. In [10] it
is shown that for the scalar case, this scheme guarantees
that the error between the actual measurement signal and
the decoded signal, εεε(k) = x(k)− x̄(k), is bounded and that
the feedback channel capacity Cf = log2(a)/pγ is achieved.
The scheme also assumes that the decoder knows exactly
the operation of the encoder and that both have access to
the control signal. Consider the following plant: x(k+1) =
4.33x(k) + u(k);y(k) = x(k); and u(k) = 4.33(r(k)− ȳ(k)).
One limitation of our result is that it is given in terms of the
mutual information rate, which is difficult to compute for
this type of problems. However, we know that it imposes a
limit to guarantee that E{εεε(k)εεεT (k)}<∞. In order to explore
what happens to E{εεε(k)εεεT (k)}, we plot the power spectrum
of εεε , Sεεεεεε (ω) whose enclosed area from [−π ,π ] is equivalent
to the squared output average of εεε , i.e.,

E{εεε2} =
π∫

−π

Sεεεεεε (ω)dω . (25)

According to Theorem 7.1, the minimum feedback channel
capacity for stabilization needed is 3 bits/time-step. The
power spectrum density is shown in Figure 3, where we
notice that the power spectrum is bounded and, therefore,
E{εεε2(k)} is finite. If, instead of using 3 bits/time-step, we
use 2 bits/time-step, we obtain the new power spectrum of the
error in Figure 4. Note that the power spectrum is becoming
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Fig. 3. Example with Erasure Channel and Bit Rate of 3 bits/time-step.

unbounded and so the area below the curve, i.e., E{εεε2(k)}
is no longer finite.
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Fig. 4. Example with Erasure Channel and Bit Rate of 2 bits/time-step.

y ŷ

n∼ N(0,σ2)

Fig. 5. AGWN Channel Scheme.

B. Example 2: AWGN Channel

We consider the problem of tracking (see Figure 1) a ref-
erence signal, r(k), which is assumed to be a white Gaussian
sequence with zero-mean and σ2r = 5000. We consider a
memoryless AWGN channel (Figure 5) in the feedback link
with feedback channel capacity, Cf = (1/2) log2(1+ P/Φ),
where Φ is the noise variance and P is the power constraint
such that E{ŷ2} ≤ P. The variance Φ is varied in the range
[1000;200000], i.e, the SNR from the reference signal to the
noise signal changes between 0.025 and 5. Let the plant be:
x(k+ 1) = 2x(k) + u(k); y(k) = x(k); and u(k) = 2(r(k)−
ŷ(k)). In this example, we can actually measure the mutual
information rate between the reference and the feedback
signal for different SNR values, and monitor the upperbound
Cf − log2(a) given in Lemma 7.1. We use previous results
from [9] to measure the mutual information rate, I∞(r; ŷ), and
results from [1] to design a controller. Since the system is
linear and all inputs are white Gaussian processes, the output
ŷ is also a Gaussian process. From [9], we know that if r and
ŷ are two jointly-Gaussian stationary processes, with spectral

densities Φr(ω) and Φŷ(ω), and if we define w=
[
r
ŷ

]
, with

spectral density Φw(ω), the mutual information rate of r and
ŷ is given by

I∞(r; ŷ) =
1
4π

π∫
−π

det(Φr(ω))det(Φŷ(ω))
det(Φw(ω))

dω . (26)

Figure 6 illustrates that we obtain the expected result. The
mutual information rate tends to zero for low SNR and, for
this particular case reaches its upper bound, i.e. Cf − log2(a),
for high SNR. We see that this upper bound never reaches
a value of zero (actually, for a SNR of 0, its value is 0.61
bits/time). We conclude, however, that the bound for good
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tracking, as measured by I∞(r; ŷ), is higher that the one for
stabilization.
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Fig. 6. Example with AWGN Channel for different SNR levels.

C. Example 3: Limitations Due to the Entropy of the Refer-
ence

This example is presented to illustrate the results in
Subsection VII-A. Let us consider the following sys-
tem/controller: x(k+ 1) = 1.2x(k)+ u(k); y(k) = x(k); and
u(k) = r(k)− 0.3ȳ(k). Assume that the reference signal is
given by

r(k) = 2+nr(k);

where nr has a Gaussian distribution with zero mean and
variance σ2 with σ = 2. Moreover, we assume a perfect feed-
back of the output. Since the reference is a Gaussian signal,
by substitution in Property 3.1.(b), the differential entropy of
the reference signal is given by h(r) = (1/2) log2

(
2πeσ2

)
.

According to Lemma 7.2, the lower bound in the right side of
equation (23) is σ2. In order to plot E{(r−y)2}= E{(εεε)2},
we ran 1000 simulations and averaged then. The average
result of these simulations is shown in Figure 7, which
clearly illustrates the result of Lemma 7.2.
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Fig. 7. Example with Gaussian Reference Signal.

IX. CONCLUSIONS AND FUTURE WORK

This paper has provided information theoretical conditions
for tracking problems in feedback control systems. The
results were obtained in terms of the mutual information rate
between the feedback and the reference signals, as well as
the channel capacity and the unstable eigenvalues of the LTI
system. The lower bound for the channel capacity obtained
was expected since it corresponds to the one obtained in
previous literature as [12] and [7]. We also obtained a lower
bound in terms of the entropy of the reference signal for the
maximum achievable accuracy in a tracking system, in the
absence of constraint channel. Our results were verified with
several examples and simulations. We plan to extend these
ideas by exploring the impact of non-minimum phase zeros
of the plant. We are also investigating various frequency
domain interpretations of our results. Finally, we are in
the process of studying steady-state conditions in tracking
deterministic reference signals, which do not have a clear
interpretation in terms of information theory concepts.
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