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Abstract— In this paper, virtual structure and artificial po-
tential field (APF) based strategies are integrated to realize
formation tracking control for a team of unicycles with collision
avoidance property. Using virtual structure, each vehicle is
required to track a virtual local leader (VLL) for formation
maintenance. For inter-vehicle collision avoidance, the motion
of each vehicle is restricted in a specified sector area containing
the VLL. APF based and backstepping techniques are utilized
to design controller that simultaneously satisfy these control
objectives.

I. INTRODUCTION

Recent years have witnessed the boom of formation con-

trol design for multi-vehicle systems due to the needs in

many industrial and military applications such as putting out

fires, surveillance, search and rescue, and terrain mapping

etc.. One of the main problems widely studied is the tra-

jectory tracking or path following with formation, or called

formation trajectory tracking or path following problem. For

trajectory tracking or path following purpose, one vehicle or

some geometric characteristics of the group is required to

track the virtual vehicle moving on the given trajectory or

to follow the given path. While for formation maintaining,

the configuration of the group should be (globally) asymp-

totically stabilized at some desired geometric pattern, which

either is given by the relative positions among the vehicles,

or maps to some values (e.g. global or local minimum) of

some designed functions (e.g. artificial potential functions).

For real applications, there are some extra control objectives

which should be achieved. For instances, inter-vehicle and

vehicle-obstacle collision avoidances should be guaranteed

in the transients of the tracking or path following.

Several types of formation controllers for nonholonomic

vehicle teams have been proposed by many researchers

during the past a few years. [6], [5], [16], [26], [4], [14], [2]

investigate leader-follower structure based strategies, where

the vehicle group is layered and each vehicle in some layer

has a vehicle in the upper layer as the local leader to follow.

And the only vehicle in the top layer is required to track a

given trajectory or follow a given path when the group is

performing formation tracking or path following task.

APF based approaches have been widely studied for

swarming and flocking control of multiple vehicles with

holonomic dynamics [19], [22], [27], [20]; and recently
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been proved useful in reaching some similar purposes for

nonholonomic vehicle groups [24], [21], [7], [12], [8]. Using

APF based strategy, each vehicle in the group tries to follow

the direction specified by the negative gradient of its APF

component, and the configuration of the group almost con-

verges to the one that corresponds to local minimum of the

collective APF. For holonomic vehicles, this following can

be exactly realized at any time; but it may only be achieved

in an asymptotical manner for nonholonomic vehicles. The

main difficulty of the APF based method is to design an APF

without local minima which corresponds to an undesired

group configuration.

Another important method for formation control of multi-

vehicle systems is based on the virtual structure, which is

composed of the reference virtual leaders for the real vehicles

to follow. These virtual leaders can be in rigid configurations;

interact with each other for some formation control purposes;

or interconnect their motions with those of the real vehicles.

Early work in this direction can be found in [25], [1]. Recent

years have witnessed many efforts in applying this strategy

to coordinated tracking and path-following for multi-vehicles

with different types of dynamics [11], [9], [15], [13], [8]. See

[3] for more work on the topic of formation control.

In this paper, virtual structure and APF based strategies

are combined to design a collision-free guaranteed formation

tracking controller for a team of unicycles. By adopting

virtual structure, the formation tracking problem is trans-

lated into that each vehicle in the group is required to

track a virtual vehicle (called virtual local leader (VLL),

represented by a small circle with number 1-6 in Fig. 1.),

which owns pre-given separation and bearing with respect

to the one (called virtual formation leader (VFL)) giving

the trajectory being tracked. To avoid inter-vehicle collision,

the motion of each vehicle is restricted to a pre-specified

sector area (Si,i = 1, 2, . . . , 6 in Fig. 1), containing the

position of its VLL, whose boundaries are set by different

values of the separation and bearing with respect to the VFL.

APFs associated with each vehicle is designed such that

its unique local minima corresponds to the desired position

of the vehicle. And the unboundedness of the APFs at the

boundaries of the corresponding sector area prevents each

vehicle from leaving it. By using backstepping techniques,

a controller is designed to drive each vehicle to follow the

negative gradients of its associated APFs in an asymptotical

manner. As a result, under some reasonable assumptions on

the motion of the VFL, the pose of each vehicle in the group

can be shown to converges to that of its VLL asymptotically

without colliding with others provided that it is initially

located in the corresponding sector.
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Fig. 1. Illustration of the studied strategy.

The rest of the paper is organized as follows: problem

under discussion is formally stated in Section II; Section III

is devoted to the controller design procedures; simulations

are provided in Section IV; and lastly, concluding remarks

will be included in Section V.

II. PROBLEM STATEMENT

In this work, we consider formation tracking of a team of

N unicycles whose dynamics can be described by

ẋi = vi cos φi,

ẏi = vi sin φi,

φ̇i = ωi, (1)

v̇i =
1

mi
Fi,

ω̇i =
1

Ji
τi,

where (xi, yi) and φi are respectively the position and

orientation of unicycle i; and Fi and τi denote the force

and torque applied on the vehicle.

The trajectory being tracked by the group is given by the

VFL, whose motion is governed by:

ẋr = vr cos φr,

ẏr = vr sin φr, (2)

φ̇r = ωr.

The bearing and separation of vehicle i with respect to the

VFL, denoted respectively by ρi and ϕi (see Fig. 2), evolves

as [14]:

ρ̇i = −vi cos(ϕi − γi) + vr cos ϕi, (3)

ϕ̇i = −ωr +
vi

ρi
sin(ϕi − γi) −

vr

ρi
sinϕi, (4)

where γi = φi−φr is the difference between the orientations

of vehicle i and the VFL. (Note that ρi and ϕi are center

of mass based bearing and separation, which are different

with those defined in many works studying leader-follower

strategies, e.g. [5], [6], [16], [2] and the references therein.)

By adopting virtual structure strategy, for the formation

tracking problem, the position of each vehicle is required

Fig. 2. Illustration of the ρ − ϕ setting.

to converge to that of its VLL, which has bearing ρd
i and

separation ϕd
i with respect to the VFL (see Fig. 2). Also

the body frame of each vehicle is required to track the

Serret-Frenet frame attached to the trajectory of the VLL. In

addition, considering inter-vehicle collision avoidance issue,

vehicle i, i ∈ V := {1, 2, · · · , N}, needs to always stay

inside a sector area Si, which is specified by the separation

interval (ρl
i, ρ

u
i ) and bearing interval (ϕl

i, ϕ
u
i ) with respect

to the VFL. (See Fig. 2 for an illustration of S1 for vehicle

1.)

In this paper, we assume that ρi, ϕi and γi are known

by vehicle i, i ∈ V ; and vr, ωr and its first and second

order derivatives are also available to every vehicle. Thus,

the control objectives can be formally stated as: Find Fi and

τi, i ∈ V , in the forms

Fi = Fi(ρi, ϕi, γi, vr, ωr, v̇r, ω̇r, v̈r, ω̈r),

τi = τi(ρi, ϕi, γi, vr, ωr, v̇r, ω̇r, v̈r, ω̈r),

such that

lim
t→∞

ρi(t) = ρd
i , lim

t→∞

ϕi(t) = ϕd
i , (5)

ρi(t) ∈ (ρl
i, ρ

u
i ), ϕi(t) ∈ (ϕl

i, ϕ
u
i ), ∀ t ∈ [t0,∞), (6)

lim
t→∞

|ẋi − ẋd
i | = 0, lim

t→∞

|ẏi − ẏd
i | = 0, (7)

where ρl
i, ρu

i , ϕu
i , ϕl

i are constants which satisfy

0 < ρm < ρl
i < ρu

i < ρM < ∞, (8)

−
π

2
< −ϕM < ϕl

i < ϕu
i < ϕM <

π

2
, ∀ i ∈ V, (9)

[

xd
i

yd
i

]

=

[

xr

yr

]

+

[

cos φr − sin φr

sin φr cos φr

] [

−ρd
i cos ϕd

i

−ρd
i sin ϕd

i

]

.

(10)
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III. CONTROLLER DESIGN

Since the controller design procedures are the same for

each vehicle, in this section we drop the subscript i in the

variables introduced above.

To proceed, we first introduce a type of potential function

V (·, a, b, c) : (a, c) → [0,+∞), 0 < a < b < c < +∞, with

the following properties:

1) V (·, a, b, c) ∈ C3(a, c);

2)
∂V (x,a,b,c)

∂x < 0,∀x ∈ (a, b); ∂V (x,a,b,c)
∂x > 0,∀x ∈

(b, c);
3) limx→a+ V (x, a, b, c) = limx→c− V (x, a, b, c) = +∞;

It is easy to see that the potential function V (x, a, b, c)
has a unique minima at x = b. Examples of V are

V (x, a, b, c) =







A1 tan4
(

π(b−x)
2(b−a)

)

+ A2 , x ∈ (a, b],

A1 tan4
(

π(x−b)
2(c−b)

)

+ A2 , x ∈ (b, c),

(11)

and

V (x, a, b, c) = A3

(

1

x − a
+

(c − b)2

(b − a)2
1

c − x

)

+ A4,

x ∈ (a, c), (12)

where Ai, i = 1, 2, 3, 4 are arbitrary positive real constants.

Next, we define a type of function that plays imple-

mental role in the controller design. Function g(·, a) :
(−∞, +∞) → (−a, +a), 0 < a < +∞ satisfies:

1) g(·, a) ∈ C2;

2) g(0, a) = 0; xg(x, a) > 0,∀x 6= 0.

An example of such type of function is

g(x, a) = 2a/π · arctan(x).

In the following, we focus on the design of the control

inputs F and τ using backstepping technique.

Step 1: Find virtual controls for v and γ.

Consider the dynamics of ρ and ϕ in (3) and (4), and,

inspired by the work [8], define two virtual inputs αv and

αγ satisfying

αv cos(ϕ − αγ) = vr cos ϕ + Kρgρ(V
′

ρ), (13)

αv sin(ϕ − αγ) = ρωr + vr sinϕ − ρgϕ(V ′

ϕ), (14)

where

Vρ(·) := V (·, ρl, ρd, ρu), Vϕ(·) := V (·, ϕl, ϕd, ϕu); (15)

gρ(·) := g(·, Bρ), gϕ(·) := g(·, Bϕ), (16)

with V ′

ρ and V ′

ϕ denoting dVρ(ρ)/dρ and dVϕ(ϕ)/dϕ respec-

tively; (Later, V ′′

ρ and V ′′

ϕ are used to denote respectively

dV 2
ρ (ρ)/dρ2 and dV 2

ϕ (ϕ)/dϕ2.) Bρ and Bϕ are two positive

real constants, which will be chosen later; Kρ may be

nonnegative constant or time dependent functions, and also

will be selected later.

It can be seen that if v = αv and γ = αγ , then we would

have

ρ̇ = −Kρgρ(V
′

ρ), ϕ̇ = −gϕ(V ′

ϕ), (17)

which will lead to the results of (5) and (6). The main idea

of this work is to design control inputs that can realize (17)

in asymptotical manner. And Lyapunov based analysis is

implemented to guarantee the fulfillment of (5), (6) and (7).

Now, combining (13) and (14), we have

αv sin αγ = −ρ(ωr − gϕ(V ′

ϕ)) cos ϕ +

Kρgρ(V
′

ρ) sin ϕ, (18)

αv cos αγ = vr + ρ(ωr − gϕ(V ′

ϕ)) sinϕ +

Kρgρ(V
′

ρ) cos ϕ. (19)

By (18) and (19), we may choose αv and αγ as

αv =
√

(αv sin αγ)2 + (αv cos αγ)2

=
(

ρ2(ωr − gϕ(V ′

ϕ))2 + (Kρgρ(V
′

ρ))2 + v2
r +

2vr

(

Kρgρ(V
′

ρ) cos ϕ + ρ(ωr − gϕ(V ′

ϕ)) sin ϕ
)

)1/2

, (20)

and

αγ = 2kπ + arctan 2
(

− ρ(ωr − gϕ(V ′

ϕ)) cos ϕ +

Kρgρ(V
′

ρ) sin ϕ, vr + ρ(ωr − gϕ(V ′

ϕ)) sinϕ

+Kρgρ(V
′

ρ) cos ϕ
)

, (21)

where k ∈ Z. To ensure the continuity and differentiability of

αv and αγ , we need to (a) keep αv away from zero, and (b)

let k start at some value, say 0, and vary accordingly (with

increment ±1) whenever arctan 2(αv sin αγ , αv cos αγ) has

discontinuity, i.e., when αv sin αγ = 0 and αv cos αγ < 0.

Now, we address the satisfaction of requirement (a) in

different cases.

Case 1: vr or ωr is uniformly bounded above zero.

Assumption 1: |ωr| > ωm > 0, ∀ t ∈ [t0,+∞).
Assumption 2: |vr| > vm > 0, ∀ t ∈ [t0, +∞).
Lemma 1: Suppose either Assumption 1 or 2 holds; and

ρ, ϕ satisfies (6), (8) and (9). If Kρ = 1, and Bϕ, Bρ are

selected to satisfy

Bϕ < ωm, (22)

Bρ < min{vm cos ϕM ,
ωm − Bϕ

tanϕM
ρm}, (23)

then αv > 0 for all t ≥ t0.

Proof: If Assumption 1 holds, then by (22) and (23),

it follows that
∣

∣

∣

∣

ρ(ωr − gϕ(V ′

ϕ))

Kρgρ(V ′

ρ)

∣

∣

∣

∣

>
ρm(ωm − Bϕ)

Bρ
> tanϕM . (24)

This shows that αv sin αγ cannot be zero, since otherwise

we have from (18) that

ρ(ωr − gϕ(V ′

ϕ))

Kρgρ(V ′

ρ)
= tanϕ < tanϕM . (25)

Now, if Assumption 2 holds, we prove that αv sin αγ and

αv cos αγ cannot be both zero. By contradiction, suppose

both were zero. Then we have seen that αv sin αγ = 0 gives
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ρ(ωr − gϕ(V ′

ϕ)) = Kρgρ(V
′

ρ) tan ϕ, which combines with

(19) shows

Kρgρ(V
′

ρ) = −vr cos ϕ. (26)

But from (23),

|Kρgρ(V
′

ρ)| < Bρ < vm cos ϕM < |vr cos ϕ|. (27)

Case 2: vr is upper bounded; vr and ωr do not simulta-

neously vanish.

Assumption 3: |vr| < vM < +∞, ∀ t ∈ [t0,+∞); for

some ωm > 0, {t ∈ [t0,+∞) : vr(t) = 0, |ωr(t)| < ωm} =
∅.

Lemma 2: Suppose either Assumption 3 holds; and ρ, ϕ
satisfies (6), (8) and (9). Then αv > 0 if

Kρ = v2
r , Bρ <

cos ϕM

vM
, Bϕ < ωm. (28)

Proof: By contradiction, suppose αv sin αγ and

αv cos αγ were both zero. It would follow that (25) and (26)

hold. But, if vr 6= 0, we have
∣

∣

∣

∣

Kρgρ(V
′

ρ)

vr

∣

∣

∣

∣

< vMBρ < cos ϕM 6= cos ϕ, (29)

which contradicts with (26); while if vr = 0, then by the

assumption, |ωr| > ωm > Bϕ, thus
∣

∣

∣

∣

ρ(ωr − gϕ(V ′

ϕ))

Kρgρ(V ′

ρ)

∣

∣

∣

∣

= ∞, (30)

which contradicts with (25).

In the rest of this section, backstepping techniques are

used to derive the input force F and torque τ .

Step 2: Find a virtual control for ω.

Consider the potential function

V1 = Vρ + Vϕ. (31)

We have,

V̇1 = V ′

ρ · ρ̇ + V ′

ϕ · ϕ̇

= V ′

ρ(vr cos ϕ − v cos(ϕ − γ)) +

V ′

ϕ

(

−ωr +
v

ρ
sin(ϕ − γ) −

vr

ρ
sin ϕ

)

= V ′

ρ(−Kρgρ(V
′

ρ) + αv cos(ϕ − αγ) −

v cos(ϕ − γ)) + V ′

ϕ

(

− gϕ(V ′

ϕ) −

αv

ρ
sin(ϕ − αγ) +

v

ρ
sin(ϕ − γ)

)

= −KρV
′

ρgρ(V
′

ρ) − V ′

ϕgϕ(V ′

ϕ) −

V ′

ρ

(

ve cos(ϕ − γ) + αv

(

(cos γe − 1) cos(ϕ − αγ)

+ sin γe sin(ϕ − αγ)
)

)

+
V ′

ϕ

ρ

(

ve sin(ϕ − γ) +

αv

(

(cos γe − 1) sin(ϕ − αγ)

− sin γe cos(ϕ − αγ)
)

)

, (32)

where

ve = v − αv, γe = γ − αγ . (33)

Now, consider the function

V2 = V1 +
1

2
γ2

e . (34)

Then we have,

V̇2 = −KρV
′

ρgρ(V
′

ρ) − V ′

ϕgϕ(V ′

ϕ) +

ve

(

1

ρ
V ′

ϕ sin(ϕ − γ) − V ′

ρ cos(ϕ − γ)

)

+

γe

(

ω − ωr − α̇γ − αv cos(ϕ − αγ) ·

(

V ′

ρ

cos γe − 1

γe
+

V ′

ϕ

ρ

sin γe

γe

)

+ αv sin(ϕ − αγ) ·

(

V ′

ϕ

ρ

cos γe − 1

γe
− V ′

ρ

sin γe

γe

)

)

, (35)

where note that

sin γe

γe
=

∫ 1

0

cos ξγedξ,
cos γe − 1

γe
= −

∫ 1

0

sin ξγedξ,

(36)

are smooth functions for all γe ∈ R.

Denote the virtual control for ω as αω, and let

ωe = ω − αω. (37)

Choose αω as

αω = −γe + ωr + α̇γ + αv cos(ϕ − αγ) ·
(

V ′

ρ

cos γe − 1

γe
+

V ′

ϕ

ρ

sin γe

γe

)

− αv sin(ϕ − αγ) ·

(

V ′

ϕ

ρ

cos γe − 1

γe
− V ′

ρ

sin γe

γe

)

)

, (38)

where α̇γ can be calculated from (21) as

α̇γ = ϕ̇ +
1

α2
v

(

v̇r

(

ρ
(

ωr − gϕ(V ′

ϕ)
)

cos ϕ −

Kρgρ(V
′

ρ) sin ϕ
)

− ϕ̇vr

(

vr + ρ
(

ωr − gϕ(V ′

ϕ)
)

·

sin ϕ + Kρgρ(V
′

ρ) cos ϕ
)

−
(

ρ̇
(

ωr − gϕ(V ′

ϕ)
)

+

ρ
(

ω̇r − g′ϕ(V ′

ϕ)V ′′

ϕ ϕ̇
)

)

·
(

vr cos ϕ + Kρgρ(V
′

ρ)
)

+
(

K̇ρgρ(V
′

ρ) + Kρg
′

ρ(V
′

ρ)V ′′

ρ ρ̇
)

·
(

vr sin ϕ +

ρ
(

ωr − gϕ(V ′

ϕ)
)

)

)

. (39)

It follows that,

V̇2 = −KρV
′

ρgρ(V
′

ρ) − V ′

ϕgϕ(V ′

ϕ) − γ2
e +

ve

(

1

ρ
V ′

ϕ sin(ϕ − γ) − V ′

ρ cos(ϕ − γ)

)

+ γeωe

(40)

Step 2: Find input force F and torque τ
Consider the Lyapunov function

W = V2 +
1

2
v2

e +
1

2
ω2

e . (41)

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuA15.6

499



Clearly, we have

Ẇ = −KρV
′

ρgρ(V
′

ρ) − V ′

ϕgϕ(V ′

ϕ) − γ2
e +

ve

(

1

m
F − α̇v +

1

ρ
V ′

ϕ sin(ϕ − γ) −

V ′

ρ cos(ϕ − γ)

)

+ ωe

(

1

J
τ − α̇ω + γe

)

(42)

Thus, by choosing

F = m

(

− ve + α̇v −
1

ρ
V ′

ϕ sin(ϕ − γ) +

V ′

ρ cos(ϕ − γ)

)

, (43)

τ = J(−ωe + α̇ω − γe), (44)

it follows that

Ẇ = −KρV
′

ρgρ(V
′

ρ) − V ′

ϕgϕ(V ′

ϕ) − γ2
e − v2

e − ω2
e . (45)

Theorem 1: Suppose ρ(t0) ∈ (ρl, ρu), ϕ(t0) ∈ (ϕl, ϕu);
vr, v̇r and ωr are bounded over [t0, +∞). Then, by the inputs

given in (43) and (44), the control objectives (5), (6) and (7)

can be achieved if we further have either set of the following

conditions is satisfied:

i) Assumption 1 or 2 holds, and Kρ, Bρ and Bϕ are

chosen as in Lemma 1;

ii) Assumption 3 holds; vr does not converge to zero; and

Kρ, Bρ and Bϕ are chosen as in Lemma 2.

Proof: (sketch) First, from (45) and the property 2) of

the function g, we know that Ẇ ≤ 0, for all t ∈ [t0, +∞),
which, by the property 3) of the function V , can lead to the

fact that there exist ρ⋆, ρ⋆ ∈ (ρl, ρu), ϕ⋆, ϕ⋆ ∈ (ϕl, ϕu) such

that

ρ(t) ∈ [ρ⋆, ρ
⋆], ϕ(t) ∈ [ϕ⋆, ϕ

⋆], ∀ t ∈ [t0, +∞]. (46)

Next, by Barbalat Lemma [17], we can conclude that the

right hand side of (45) converges to zero as t → ∞, which

implies

γe → 0, ve → 0, ωe → 0, (47)

KρV
′

ρgρ(V
′

ρ) → 0, V ′

ϕgϕ(V ′

ϕ) → 0, (48)

as t → +∞. From (48) and the continuity of g, V ′

ϕ and V ′

ρ , it

is not difficult to obtain limt→∞ ϕ(t) = ϕd, limt→∞ ρ(t) =
ρd.

It remains to prove the result (7). From limt→+∞ ve = 0
and limt→+∞ γe = 0, we have

ẋ = v cos φ = v cos(φr + γ) → αv cos(φr + αγ)

= cos φr · (αv cos αγ) − sin φr · (αv sin αγ), (49)

as t → +∞. By noting (18), (19), and that limt→+∞ ρ = ρd,

limt→+∞ ϕ = ϕd, we further reach

ẋ → cos φr(vr + ρdωr sin ϕd) − sinφr(−ρdωr cos ϕd)

= vr cos φr + ρdωr sin(φr + ϕd) = ẋd, (50)

as t → +∞. The convergence of ẏ can be shown similarly,

hence omitted.

Fig. 3. The safety sectors and desired formation in the simulation.

IV. SIMULATIONS

In this section, we simulate our control law with three

unicycles. The parameters of the safety sectors Si, i = 1, 2, 3,

and desired formation are listed in the following Table I and

also illustrated in Fig. 3:

TABLE I

PARAMETERS OF THE SAFETY SECTORS AND DESIRED FORMATION

Vehicle No. Parameters

ρd

1
= 5, ρl

1
= 2, ρu

1
= 8,

1
ϕd

1
= −

π

6
, ϕl

1
= −

π

3
, ϕu

1
= 0.

ρd

2
= 10, ρl

1
= 8, ρu

1
= 16,

2
ϕd

2
= 0, ϕl

2
= −

π

6
, ϕu

2
= π

6
.

ρd

3
= 5, ρl

3
= 2, ρu

3
= 8,

3
ϕd

3
= π

6
, ϕl

3
= 0, ϕu

3
= π

3
.

The initial conditions of the three unicycles are:

TABLE II

INITIAL CONDITIONS OF THE VEHICLE TEAM

Vehicle No. Initial Conditions

ρ1(t0) = 4, ϕ1(t0) = −
π

9
, φ1(t0) = 2π

3
,

1
v1(t0) = 0, ω1(t0) = 0.
ρ2(t0) = 10, ϕ2(t0) = π

18
, φ2(t0) = π,

2
v2(t0) = 0, ω2(t0) = 0.

ρ3(t0) = 7, ϕ3(t0) = π

18
, φ3(t0) = 4π

9
,

3
v3(t0) = 0, ω3(t0) = 0.

The function in (12) is used to construct the potential

functions Vρ and Vϕ with A3 = 1 and A4 = 0. The

parameters Bρ and Bϕ for, respectively, the functions gρ

and gϕ are picked as 0.5 and 0.2.

We run the simulation in two cases. For both the cases, the

VFL is initially posed as xr(t0) = 0, yr(t0) = 0, φr(t0) =
π/2. In addition, we have v̇r ≡ 0, ω̇r ≡ 0, v̈r ≡ 0, ω̈r ≡ 0.

But, in the first case, we let vr(t0) = 2 and ωr(t0) = 0rad/s;

while in the second case, vr(t0) and ωr(t0) are initially set

to be 2 and 0.15 respectively. The results are plotted in Fig.

4 and 5.
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Fig. 4. Simulation with the VFL moving along a straight line: vr ≡ 2,
ωr ≡ 0, t = 10s.
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Fig. 5. Simulation with the VFL moving along a circle: vr ≡ 2, ωr ≡

0.15, t = 20s.

V. CONCLUSIONS

In this paper, by adopting the virtual structure strat-

egy, the formation tracking problem is transformed into

the VLL tracking problem for each vehicle. To guarantee

the inter-vehicle collision avoidance, APF is designed for

each vehicle such that it tends to be unbounded when the

vehicle approaches the boundary of a pre-given safety area.

Backstepping technique is used to design the control laws

that can drive the vehicle to move along the reference path

given by the proposed APF, and, consequently, to track the

VLL asymptotically.
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