
Binary Consensus with Soft Information Processing

in Cooperative Networks

Yongxiang Ruan and Yasamin Mostofi

Department of Electrical and Computer Engineering

University of New Mexico Albuquerque, New Mexico 87113, USA

Email: {edwinruan,ymostofi}@ece.unm.edu

Abstract— In this paper we consider reaching binary consen-
sus over a network with AWGN channels. We consider the case
where knowledge of the corresponding link qualities is available
at every receiving node. We propose novel soft information
processing approaches to improve the performance in the
presence of noisy links. We characterize the performance and
derive an expression for the second largest eigenvalue. We show
that soft information processing can improve the performance
drastically. We furthermore show that, by statistically learning
the voting patterns, we can solve the undesirable asymptotic
behavior of binary consensus.

I. INTRODUCTION

Cooperative decision-making and control has received

considerable attention in recent years. Such problems arise

in many different areas such as environmental monitoring,

surveillance and security, smart homes and factories, target

tracking and military systems. Consider a scenario where a

network of agents wants to perform a task jointly. Each agent

has limited sensing capabilities and has to rely on the group

for improving its estimation/detection quality. Consensus

problems arise when the agents need to reach an agreement

on the value of a parameter and can be categorized into two

groups: Estimation Consensus and Detection Consensus.

Estimation consensus refers to the problems where the

parameter of interest can take values over an infinite set or

an unknown finite set. These problems received considerable

attention over the past few years [1]-[9]. Detection Con-

sensus, on the other hand, refers to the problems in which

the parameter of interest takes values from a finite known

set. Then the update protocol that each agent will utilize

becomes non-linear. We referred to a subset of detection

consensus problems where the network is trying to reach an

agreement over a parameter that can only have two values

as binary consensus [10]. For instance, networked detection

of fire falls into this category. While estimation consensus

problems have received considerable attention, detection

consensus problems have mainly remained unexplored. [11]

considered and characterized phase transition of a binary

consensus problem in the presence of a uniformly distributed

communication noise. Since the probability density function

of this noise is bounded, there exists a transition point

beyond which consensus will be reached in this case [11].

In most consensus applications, the agents will communicate
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their status wirelessly. Therefore, the received data will be

corrupted by the receiver noise, which is best modeled as

an additive Gaussian noise [12]. It then becomes important

to analyze the performance of consensus problems in the

presence of Gaussian communication noise. In [10], we con-

sidered a networked binary consensus problem with Gaussian

communication noise. Since the noise is not bounded, there

is no transition point beyond which consensus is guaranteed.

Instead, we utilized a probabilistic approach to characterize

and understand the behavior of the network. We showed

that the steady-state behavior of such systems is undesirable,

independent of the amount of communication noise variance,

as the network loses the memory of the initial state. We

then derived an expression for the second largest eigenvalue

of the system to characterize the dynamics of the network.

We showed that as communication noise increases, the

performance can degrade drastically. It should be noted that

the binary consensus problem considered in this paper (as

well as that of [10] and [11]) is fundamentally different

from the problem of belief propagation [13] since we are

only interested in sending one bit of information. This results

in a fundamentally different problem formulation and poses

more challenges. However, it is an important problem since

sending as few bits as possible is crucial in several low-power

sensor network applications.

To improve the performance and robustness of binary

consensus, in this paper we propose soft information process-

ing approaches for reaching binary consensus over AWGN

channels. Techniques based on soft information process-

ing have been utilized in coding theory and equalization

in order to prevent error propagation in the presence of

channel noise. In this paper we show how to build decision

making functions that utilize soft approaches. We show that

our proposed approach can improve consensus performance

drastically. We characterize this mathematically by deriving

a close approximation for the second largest eigenvalue of

the underlying transition probability matrix. We furthermore

show the impact of statistical learning on preventing the

undesirable asymptotic behavior.

II. SYSTEM MODEL

Consider M agents that want to reach consensus on the

occurrence of an event. Each agent makes a decision on the

occurrence of the event based on its one-time local sensor
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measurement. Let bj(0) ∈ {0, 1} denote the initial decision

of the jth node, based on its local measurement, where bj =
1 indicates that the jth agent votes that the event occurred

whereas bj = 0 denotes otherwise. Then the goal is that

all the agents reach a decision that is equal to the majority

of the initial decisions. For instance, in a cooperative fire

detection scenario, each node has an initial opinion as to if

there is a fire or not. However, as a network they may act

only based on the majority vote. Therefore, it is desirable that

every node reaches the majority of the initial votes without

a group leader. As it may happen in realistic scenarios, the

nodes may not have any information on the sensing quality of

themselves or others. Therefore, in this paper, the main goal

is that each node reaches the majority of the initial votes.

Considering sensing quality of the nodes is among possible

extensions of this work.

In order to reach consensus, the agents will communicate

their decisions over AWGN (Additive White Gaussian Noise)

channels. Each agent sends its binary vote (only one bit of

information) to the rest of the group and revises its vote

based on the received information. This process will go on

for a while. We say that accurate consensus is achieved if

each agent reaches the majority of the votes, as was defined

in [10]. For instance, if 4 out of 7 nodes are voting 1 initially,

it is desirable that through communication they convince the

rest of the group to vote one. If all the nodes vote zero in

this case, accurate consensus is not achieved.

Each transmission is corrupted by receiver thermal noise

as it passes through an AWGN channel. When a node

receives the decisions of other nodes, the receptions can

happen in different frequencies or time slots [14]. Then each

reception will experience a different (uncorrelated) sample

of the receiver thermal noise.1 Let bj,i(k) represent the

reception of the ith node from the transmission of the jth

one at kth time step. We will have bj,i(k) = bj(k) + nj,i(k)
for 1 ≤ i, j ≤ M , where nj,i(k) is the noise at kth

time step in the transmission of the information from the

jth node to the ith one. This noise is zero-mean Gaussian

[14] with the variance of σ2
n. In this paper we assume that

the graph is time-invariant and fully connected to focus

on designing intelligent cooperative information processing

techniques. Furthermore, we take all the noises of the links to

be identically distributed. We consider the impact of relaxing

these assumptions in [15]. It should, however, be noted

that due to the presence of noisy channels, no node knows

all the information even for a fully connected graph. This

poses interesting challenges in reaching consensus, which

this paper addresses.

Upon receiving the decisions of other nodes, the ith node

updates its vote. We will have,

bi(k + 1) = F (b1,i(k), b2,i(k), . . . , bM,i(k)) , (1)

where bi,i = bi and F (.) represents a decision-making

function.

1If the transmissions are using the same frequency and time slots, they
should be differentiated in codes. In this case, a node will experience
different interference terms in the reception of the decisions of others.

In [10], binary consensus over noisy links was considered

when no knowledge of link qualities was available. Then the

following decision-making function was utilized:

bi(k + 1) = Dec





1

M

M
∑

j=1

bj,i(k)



 , (2)

where Dec(x) =

{

1 x ≥ 0.5
0 x < 0.5

. This function finds the

majority of the votes and would have worked perfectly if

links were ideal. However, as link qualities degrade, its

performance gets worse. Fig. 1 shows the performance of this

decision-making function, in terms of probability of accurate

consensus, for different link qualities. It can be seen that as

noise level increases, the network performance degrades con-

siderably. Furthermore, the probability of reaching accurate

consensus increases only up to a certain point. To explain

this, the asymptotic and transient behavior of the network

was then characterized mathematically and an expression for

the second largest eigenvalue of its transition matrix was

derived [10].
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Fig. 1. Probability of accurate consensus for different noise variance σ
2
n

–
performance of binary consensus when no knowledge of link qualities is
utilized [10]

The main deficiency of the decision-making function of

Eq. 2 is that it does not utilize potential knowledge of link

qualities. In the receiver, noise variance (or equivalently

Signal to Noise Ratio) can often be measured and can

therefore be utilized in the consensus process [16]. It is the

goal of this paper to design intelligent information processing

techniques, based on using the knowledge of noise variance,

to improve the performance of networked consensus.

III. SOFT INFORMATION PROCESSING

As can be seen in Eq. 2, noisy receptions are added inside

the Dec(.) function. If these receptions could be “cleaned”

beforehand, the performance could improve. A natural choice

for this is for the ith node to pass each bj,i through a threshold

function to determine if zero or one was sent as is done in

the communication literature:

bj,iD(k) = Υhard (bj,i(k)) , (3)

where Υhard(x) = Dec(x). The problem with this approach,

however, is error propagation. This means that for high level

of noise, the decision function, Υhard(.), can increase the level
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of error by translating the received vote to 0 or 1 erroneously.

Since the error propagates in the network through repeated

communication, this method does not improve the perfor-

mance that much. Therefore, instead of using the “hard”

decision-making function of Eq. 3, we propose to use soft

information processing. Soft information processing has been

used in the context of channel equalization and coding in

the communication literature [17]. The main idea is that by

having a softer translation of the received information, the

performance can improve drastically. In this paper we apply

the same concept to network consensus. The soft decision

for bj,i(k) can be defined as follows:

Υsoft(bj,i(k)) =E[bj(k)|bj,i(k)] (4)

=Prob[bj(k) = 1|bj,i(k)]

=
Prob[bj,i(k)|bj(k) = 1] × Prob[bj(k) = 1]

Prob[bj,i(k)]
,

where Prob[bj,i(k)|bj(k) = 1] = ϕ(bj,i(k) − 1) and ϕ(x) =

1√
2πσn

e
− x2

2σ2
n . By substituting Prob[bj,i(k)|bj(k) = 1] in Eq.

4 and rearranging the terms, we will have

E[bj(k)|bj,i(k)] =

Prob[bj(k) = 1]

Prob[bj(k) = 1] + Prob[bj(k) = 0]e
−2bj,i(k)+1

2σ2
n

. (5)

Therefore, agent i will use the following function to update

its decision:

bi(k + 1) = Dec





1

M



bi(k) +

M
∑

j 6=i
E[bj(k)|bj,i(k)]







 , (6)

where Dec(·) is defined in Eq. 2. Alternatively, Eq. 6 can be

thought of as a decision-making function based on the best

estimate of the ith node for
∑

j 6=i bj(k).
Fig. 2 summarizes the steps involved in soft information

processing, where p̂j,i(k) is the estimate of the ith node

of Prob[bj(k) = 1]. In this paper, we consider both cases

where the receiver estimates Prob[bj(k) = 1] as well the

scenario where it assumes that Prob[bj(k) = 1] is 0.5 (the

latter is the natural assumption when this knowledge is

not available in the receiver). We first start by considering

the case where the receiver assumes that Prob[bj(k) = 1]
is 0.5. In this paper, we refer to this case as basic soft.

Then learning soft will refer to the case where the ith node

learns Prob[bj(k) = 1] statistically and incorporates it in the

decision-making process.

noise statistical
learningfilter

channel from soft info decsision

ij processingfrom to
 b j(k)  

b1(k) 

 

bM(k) 

b j,i(k) 

 b j,iD(k)  

E[b j(k)|b j,i(k)] 

b i(k) 

b i(k+1) 
p j,i(k) 
 ̂  

Fig. 2. An illustration of consensus with soft information processing – the
shaded area is used when statistical learning is deployed (Section V) and
the rest demonstrates basic soft (Section IV)

IV. BASIC SOFT INFORMATION PROCESSING

In this section, we are going to analyze the properties and

performance of the basic soft information processing case.

As can be seen from Eq. 5 and 6, the argument inside the

Dec(.) function is a nonlinear function of bj,i(k)s. Since in

this paper we are interested in characterizing the dynamics

of the network, we will first linearize the argument inside the

Dec(.) function. Our results will show that this linearization

has a negligible impact on the performance.

A. Linearization

In the basic soft information processing case, we assumed

that the ith node does not have an estimate of Prob[bj(k) = 1]
for j 6= i. Therefore, it will assume that Prob[bj(k) = 1] =
Prob[bj(k) = 0] = 0.5 for j 6= i. Then we will have the

following for the basic soft case

bi(k + 1) =

Dec





1

M



bi(k) +

M
∑

j=1,j 6=i

1

1 + e
−2bj,i(k)+1

2σ2
n







 . (7)

Next we will linearize 1

1+e

−2bj,i(k)+1

2σ2
n

, considering the prob-

ability distribution of bj,i(k).

Lemma 1: α = 1
1+4σ2

n
and β =

2σ2
n

1+4σ2
n

minimize the

following cost:

Costl =

∫ +∞

−∞

[

1

1 + e
−2x+1

2σ2
n

− (αx + β)

]2

ς(x)dx, (8)

where ς(x) = 1
2
√

2πσn

(

e
− x2

2σ2
n + e

− (x−1)2

2σ2
n

)

is the pdf of

random variable x.

Proof: By equating the partial derivatives to zero,

we will have E
[

x

1+e

−2x+1

2σ2
n

]

= E[x2]α + E[x]β,

E
[

1

1+e

−2x+1

2σ2
n

]

= E[x]α+β. After a long derivation, it can be

shown that α = 1
1+4σ2

n
and β =

2σ2
n

1+4σ2
n

are the solutions.

It can be easily confirmed that bj,i(k) has a pdf of

ς(bj,i(k)), where ς(.) is as denoted in Lemma 1 (nj,i(k)
is a zero mean Gaussian random variable with variance of

σ2
n). Therefore we will have the following decision-making

function after linearization using Lemma 1:

bi(k + 1) =

Dec





1

M



bi(k) + α
M
∑

j=1,j 6=i
bj(k)



 + γ + αwi(k)



 , (9)

where αwi(k) is a zero mean Gaussian noise with the

variance of σ2
s ,

α =
1

1 + 4σ2
n

, σ2
s =

(M − 1)α2σ2
n

M2
, and

γ =
M − 1

2M
(1 − α). (10)

Next we will characterize the dynamics of this decision-

making function.
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B. State Transition Matrix

Let S(k) =
∑M

i=1 bi(k) represent the number of nodes

voting 1 at time step k. S(k) can be divided into two parts:

S(k) = V (k) + U(k), where V (k) is the number of nodes

that are voting one in state k (time step k) and voted one in

state k − 1. Similarly, U(k) represents the number of nodes

that are voting one in state k but voted zero in state k − 1.

Given S(k) = n, both V (k + 1) and U(k + 1) become

binomially distributed:

Prob [V (k + 1) = m|S(k) = n] =

(

n

m

)

κmn,1(1 − κn,1)
n−m,

Prob [U(k + 1) = m|S(k) = n] =
(

M − n

m

)

κmn,0(1 − κn,0)
M−n−m, (11)

where

κn,1 =Prob[bi(k + 1) = 1|bi(k) = 1 & S(k) = n]

=Q

(

0.5 − γ − 1+(n−1)α
M

σs

)

, ∀i, (12)

κn,0 =Prob[bi(k + 1) = 1|bi(k) = 0 & S(k) = n]

=Q

(

0.5 − γ − nα
M

σs

)

, ∀i.

Then, given current state S(k) = n, the pdf of S(k + 1)
is a convolution of two independent binomial distributions

corresponding to V (k+1) and U(k+1). Let Pn,m represent

the probability of going from state n to state m. We will

have,

Pn,m =Prob[S(k + 1) = m|S(k) = n]

=

ψ′
n,m
∑

x=ψn,m

f(x, n, κn,1)f(m− x,M − n, κn,0)

=

ψ′
n,m
∑

x=ψn,m

(

n

x

)

κxn,1(1 − κn,1)
n−x

×
(

M − n

m− x

)

κm−x
n,0 (1 − κn,0)

M−n−m+x, (13)

where ψn,m = max(0,m + n − M), ψ′
n,m = min(n,m)

and f(x, n, q) =
(

n
x

)

qx(1 − q)n−x is the pdf of a binomial

distribution with q as the success probability. α, γ and σs
are as defined in Eq. 10. Then S(k), i.e. the number of

nodes voting 1 at time step k, is the sufficient information to

represent the state of the network. Fig. 3 shows the transition

from state n to state m. Furthermore,

E[S(k + 1)|S(k) = n] = nκn,1 + (M − n)κn,0. (14)

Let Πi(k) represent the probability that i ∈ ΩM of the agents

are voting 1 at kth time step, where ΩM = {0, 1, 2, . . . ,M}:

Πi(k) = Prob [S(k) = i] , i ∈ ΩM . Then

Π(k + 1) = PTΠ(k), (15)

where Π(k) =
[

Π0(k) Π1(k) . . . ΠM (k)
]T

and P =
[Pn,m].

Fig. 3. The state transition from state n to state m – group 1 refers to the
set of nodes that are voting one

1) Properties of the transition matrix: Let

λ0, λ1, · · · , λM represent the eigenvalues of matrix P
in a decreasing order: |λ0| ≥ |λ1| ≥ · · · ≥ |λM |. Matrix P
will have the following properties for σn 6= 0 :

a) P is a row stochastic matrix, i.e. ∀n,
∑M

m=0 Pn,m = 1.

b) From the Gersgorin disk theorem [18], the eigenvalues

of P are located in the following area:
⋃M

i=0{z ∈ C : |z −
Pi,i| ≤ 1 − Pi,i}. This means that |λi| ≤ 1, ∀i.
c) From Perron’s theorem [19], λ0 = 1 is a simple eigenvalue

of P and [PT ]k → L as k → ∞, where L = µνT , µ = PTµ,

ν = Pν, and µT ν = 1, ν = [11 · · ·1]T .

Lemma 2: κn,1 = 1 − κM−n,0.

Proof: We have κn,1 = Q

(

0.5−γ− 1+(n−1)α
M

σs

)

and 1 − κM−n,0 = 1 − Q

(

0.5−γ− (M−n)α
M

σs

)

=

Q

(

−0.5+γ+ (M−n)α
M

σs

)

= κn,1, where the last equality is

written using the relationship between γ and α of Eq. 10.

Lemma 3: The P matrix is a centrosymmetric matrix. i.e.

the (M − n)th row is a reverse repeated version of the nth

row: PM−n,M−m = Pn,m for 0 ≤ n,m ≤M .

Proof:

PM−n,M−m =

ψ′
M−n,M−m
∑

x=ψM−n,M−m

f (x,M − n, κM−n,1) f (M −m− x, n, κM−n,0) . (16)

From Lemma 2, κn,1 = 1 − κM−n,0. Then we have,

PM−n,M−m =

ψ′
M−n,M−m
∑

x=ψM−n,M−m

f (x,M − n, 1 − κn,0) f (M −m− x, n, 1 − κn,1) . (17)

Let r = x−M + n+m. Then we have

PM−n,M−m

=

ψ′
n,m
∑

r=ψn,m

f (m− r,M − n, 1 − κn,0) f (r, n, 1 − κn,1)

=Pn,m. (18)

2) Case of σn = 0: For ideal links, we have bj(k) =

bj,i(k) and bi(k + 1) = Dec( 1
M

∑M

j=1 bj(k)), which means

that the network will reach accurate consensus in one step.

In this case, λ0 = λ1 = 1 and λi = 0 for 2 ≤ i ≤ M (see

[10] for more details).

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeC14.4

3616



3) Case of σn → ∞: In this case, we have limσn→∞ α =
0 and limσn→∞ γ = M−1

2M . Therefore, it can be confirmed

from Eq. 9 that each node will keep its own vote and does

not take any communication into account, as should be the

case.

C. Second Largest Eigenvalue

It can be seen from the properties of the transition matrix

that the asymptotic value of Π(k) is independent of the

initial state: limk→∞ Π(k) = µ
sum(µ) , where µ is the right

eigenvector of PT . This is what is referred to as “memoryless

consensus” in [10], i.e. the network loses the memory of the

initial state asymptotically. While this is not desirable, the

network can still be in consensus with high probability for a

long period of time. To characterize this, the second largest

eigenvalue of P plays a key role as discussed in [10]. In

this part, we derive an expression for λ1, the second largest

eigenvalue of the transition matrix. As we saw in the previous

section, |λ1| ≤ 1 with λ1 = 1 only if σn = 0. Therefore,

intuitively, the larger the second eigenvalue is, the better the

performance should be. We will show that our proposed soft

decision-making approach will result in the network staying

in accurate consensus with higher probability for a longer

period of time. We then show, in the next section, that our

proposed learning soft strategy will solve the “memoryless

consensus” issue.

Lemma 4: Let ξ = ⌈M2 ⌉ and ηn = E[S(k + 1)|S(k) =
n]/M , where E[S(k + 1)|S(k) = n] is defined in Eq. 14.

Let P represent the transition probability matrix generated

using κn,1 and κn,0 of Eq. 12. We will have

ξ−1
∑

m=0

(
M

2
−m)(Pn,m − PM−n,m) =

M

2
(1 − 2ηn). (19)

Proof: We have
ξ−1
∑

m=0

(
M

2
−m)(Pn,m − PM−n,m) =

ξ−1
∑

m=0

(
M

2
−m)

ψ′
n,m
∑

x=ψn,m

f(x, n, κn,1)f(m− x,M − n, κn,0)

−
ξ−1
∑

m=0

(
M

2
−m)

ψ′
M−n,m
∑

y=ψM−n,m

f(y,M − n, κM−n,1)

× f(m− y, n, κM−n,0), (20)

where ψn,m, ψ′
n,m are defined in Eq. 13. By using the fact

that κM−n,0 = 1 − κn,1 from Lemma 2, we will have

−
ξ−1
∑

m=0

(
M

2
−m)

×
ψ′

M−n,m
∑

y=ψM−n,m

f(y,M − n, κM−n,1)f(m− y, n, κM−n,0)

=
M
∑

m=ξ

(
M

2
−m)

ψ′
n,m
∑

x=ψn,m

f(x, n, κn,1)f(m− x,M − n, κn,0).

(21)

Therefore,
ξ−1
∑

m=0

(
M

2
−m)(Pn,m − PM−n,m) =

M
∑

m=0

(
M

2
−m)Pn,m

=

M
∑

m=0

(
M

2
−m)Prob[S(k + 1) = m|S(k) = n]

=
M

2
− E[S(k + 1)|S(k) = n] =

M

2
(1 − 2ηn). (22)

Due to the complicated structure of the transition matrix

of Eq. 13, finding an exact expression for the second largest

eigenvalue is not feasible. Instead, we derive a tight approx-

imation for the second largest eigenvalue by linearizing the

Q function.

Assumption 1: For small enough x, we can linearize the

Q(.) function around the origin via the first order approxima-

tion of the Taylor series: Q(x) ≈ Q(0)− x√
2π

. By applying

this approximation to κn,1 and κn,0 and using the definition

of ηn, we have

ηn ≈0.5 − (1 − 2n

M
)
(M − 1)α+ 1

2
√

2πMσs
,

η0 ≈0.5 − (M − 1)α+ 1

2
√

2πMσs
. (23)

Therefore, for the purpose of finding the second largest

eigenvalue, we can approximate ηn as follows,

ηn,approx =
n

M
+ (1 − 2n

M
)η0. (24)

It can be confirmed from Eq. 12 that this approximation

becomes more accurate for either large communication noise

variances or small ones. Next, we use the properties of

the centrosymmetric matrices [20], [21] to derive a tight

approximation for the second largest eigenvalue.

Lemma 5: (a) Let G represent an n × n centrosym-

metric matrix, where n = 2n′. G can be partitioned as
[

A BJ
JB JAJ

]

, where A, B are n′ × n′ matrices and J

represents an n′×n′ backward identity matrix: Ji,j = δi,n′−j
for 0 ≤ i, j ≤ n′ − 1 (δi,j is the Kronecker delta).

Furthermore, G is similar to

K−1
e GKe =

[

A+B 0
0 A−B

]

, (25)

where Ke =

[

I −I
J J

]

is an n × n matrix and I is an

n′ × n′ identity matrix.

(b) Let G represent an n×n centrosymmetric matrix, where

n = 2n′ +1. G can be partitioned as





A a BJ
b c bJ
JB Ja JAJ



,

where A, B are n′ ×n′ matrices, a is an n′ × 1 matrix, b is

a 1 × n′ matrix and c is a scalar. Furthermore, G is similar

to

K−1
o GKo =





A+B a 0
2b c 0
0 0 A−B



 , (26)
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where Ko =





I 0 −I
0 1 0
J 0 J



.

Proof: See [21].

Since P is an (M+1)×(M+1) centrosymmetric matrix,

we can apply Lemma 5. If M + 1 = 2ξ, it can be easily

seen that An,m = Pn,m and Bn,m = PM−n,m for 0 ≤
n,m ≤ ξ − 1 (note that we are indexing matrix elements

from zero). If M +1 = 2ξ+ 1, we will have An,m = Pn,m,

Bn,m = PM−n,m, an = Pn,M
2

, bm = PM
2 ,m

and c = PM
2 ,

M
2

for 0 ≤ n,m ≤ ξ − 1.

Lemma 6: Let Papprox represent the transition probability

matrix generated under Assumption 1. Then, 1 − 2η0 is an

eigenvalue of (A − B)approx, with the corresponding eigen-

vector as
[

M
2

M
2 − 1 · · · M

2 − (ξ − 1)
]T

, where ξ =
⌈M2 ⌉.

Proof: We have A − B =
[

Pn,m − PM−n,m
]

for 0 ≤ n,m ≤ ξ − 1. Let χ = (A −
B)approx

[

M
2

M
2 − 1 · · · M

2 − (ξ − 1)
]T

. Then the

nth element of vector χ will be as follows for 0 ≤ n ≤ ξ−1:

χn =
∑ξ−1

m=0(
M
2 − m)(Pn,m,approx − PM−n,m,approx). By

using Lemma 4 and Eq. 24, we will have: χn = M
2 (1 −

2ηn,approx) = M
2 (1− 2n

M
)(1−2η0) = (M2 −n)(1−2η0), 0 ≤

n ≤ ξ − 1. Then,
[

M
2

M
2 − 1 · · · M

2 − (ξ − 1)
]T

is a right eigenvector of (A − B)approx and 1 − 2η0 is the

corresponding eigenvalue.

Theorem 1: Let Papprox represent the transition probability

matrix generated under Assumption 1. Let λ1,approx represent

the second largest eigenvalue of Papprox. Then we have,

λ1,approx = 1 − 2η0 = 1 − 2Q(
4σ2

n+M

2σn

√
M−1

).

Proof: From Lemma 6, we know that 1 − 2η0 is

an eigenvalue of (A − B)approx. From Lemma 5, we know

that eigenvalues of (A−B)approx are eigenvalues of Papprox.

Therefore, 1 − 2η0 is an eigenvalue of Papprox. Furthermore,

it can be easily confirmed that as σn → 0, 1 − 2η0 goes

to one, which only happens to the second largest eigenvalue

(See Section IV-B. It can be similarly confirmed for Papprox).

Therefore λ1,approx = 1 − 2η0 = 1 − 2Q(
4σ2

n+M

2σn

√
M−1

).

To see how well this approximation works, Fig. 4 shows

the second largest eigenvalue and its approximation as a

function of σn and for M = 4, M = 10 and M = 20. As can

be seen, the approximation works well especially for smaller

M , larger σn, or σn close to zero. For comparison, the sec-

ond largest eigenvalue is λ1,original = 1− 2Q( M

2σn

√
M−1

) for

the case where no knowledge of channel qualities was used,

as indicated by Eq. 2 [10]. It can be confirmed that λ1,original

decreases drastically as σn increases, getting values much

smaller than one. In our case, however, λ1,approx of Theorem

1 behaves differently. At lower σn, as σn increases, it will

decrease. However, at higher σn, λ1,approx starts increasing.

This is due to the fact that soft information processing weighs

the received information based on link qualities. Therefore,

at considerably high σn, the received information is almost

ignored, which results in λ1,approx approaching one.
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Fig. 4. Approximation of the second largest eigenvalue for basic soft case

V. SOFT INFORMATION PROCESSING WITH STATISTICAL

LEARNING

As can be seen from the true structure of the soft informa-

tion processing function of Eq. 5 and 6, the ith node needs

to have the knowledge of Prob[bj(k) = 1] for j 6= i. Such

information is not readily available in the receiver. However,

it can be statistically estimated, as is shown in the highlighted

part of Fig. 2. Node i will pass bj,i(k) through the hard

decision function, as indicated by Eq. 3, to generate bj,iD(k).
At the kth time step, node i counts the number of times

that bj,iD became one in a given time interval to estimate

Prob[bj(k) = 1]. Let p̂j,i(k) represent ith node’s estimate of

Prob[bj(k) = 1]. Then we will have the following form of

decision-making:

bi(k + 1) = Dec

(

1

M

×



bi(k) +

M
∑

j 6=i

p̂j,i(k)

p̂j,i(k) + (1 − p̂j,i(k)) e
−2bj,i(k)+1

2σ2
n







 .

(27)

Similar to Section IV-A, we will get the following after

linearization:

bi(k + 1) = Dec





1

M



bi(k) +

M
∑

j 6=i
αj,i(k)bj(k)





+γi(k) +

∑

j 6=i αj,i(k)nj,i(k)

M

)

, (28)

where αj,i(k) and γi(k) can be found similarly.

Since αj,i are not the same for different js, as compared

to the basic soft case of Eq. 9, S(k) is no longer sufficient

information to represent the state of the network (it can

be proved mathematically). We instead have to use vector

[b1(k) b2(k) · · · bM (k)] as the state of the network, which

will result in a state transition matrix of size 2M × 2M with

Prob[bi(k + 1) = 1|b1(k), b2(k), · · · , bM (k)] =

Q

(

0.5 − γi(k) − 1
M

[bi(k) +
∑M

j 6=i αj,i(k)bj(k)]

σs(k)

)

, (29)
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where σ2
s(k) =

∑

j 6=i α
2
j,i(k)σ

2
n

M2 . Finding a closed-form ex-

pression for the 2nd largest eigenvalue of this case is consid-

erably challenging. Instead, we characterize the performance

through simulation in the next part.

VI. PERFORMANCE OF THE PROPOSED APPROACHES

Fig. 5 shows the performance of the proposed soft infor-

mation processing approaches. For comparison, the perfor-

mance of the original algorithm of Eq. 2, where no knowl-

edge of link qualities is used, is also plotted. It can be seen

that the proposed strategies can improve the performance

drastically. Furthermore, by comparing basic soft and basic

soft linear cases, it can be seen that the linearization of

Eq. 7 did not impact the performance (we found this to

be the case for other σns as well). As can be seen, the

basic soft information-processing approach of Section IV can

improve the performance drastically compared to the original

case. However, its asymptotic behavior is still undesirable

as the probability of accurate consensus starts to decrease

after a while. It can be seen that by statistically learning the

probability distribution of the votes of other nodes, learning

soft can improve the performance considerably and have a

desirable asymptotic behavior. It should be noted that the

discontinuity of the learning soft curve (at around k = 10)

is due to the fact that each node starts the statistical learning

process after 10 iterations in order to accumulate enough

data.
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Fig. 5. Performance of the proposed soft information processing approaches
for σn = 1

VII. CONCLUSION AND FURTHER EXTENSIONS

In this paper we considered binary consensus over noisy

communication links. We proposed novel soft information

processing approaches in order to have more robust consen-

sus behavior in the presence of noisy links. We characterized

the behavior of a network that deploys the proposed strategies

and found an expression for the second largest eigenvalue

of the transition matrix. We furthermore showed that by

statistically learning the voting patterns of the nodes, we can

have a desirable asymptotic behavior. Overall, our results

show the drastic improvement gained through using soft in-

formation processing. We are currently working on extending

the proposed framework to more general cases including

not fully connected, time-varying graphs using some of the

results that we have derived in [15] and [22].
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