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Abstract— Fuzzy Cognitive Maps (FCM) have been intro-
duced by Kosko to model complex behavioral systems in
various scientific areas. One issue that has not been adequately
studied so far is the conditions under which they reach a
certain equilibrium point after an initial perturbation. This
is equivalent to studying the existence and uniqueness of
solutions for their concept values. In this paper, we study
the existence of solutions by using an appropriately defined
contraction mapping theorem. It is proved that when the weight
interconnections fulfill certain conditions the concept values will
converge to a unique solution regardless the exact values of the
initial concept values perturbations. Otherwise the existence
or the uniqueness of equilibrium can not be assured. The
results are considered very significant because set the basis for
the development of reliable system identification and control
schemes based on the concept of FCM. In view of these results
recently proposed extensions of FCM, the Fuzzy Cognitive
Networks are invoked.

I. INTRODUCTION

Fuzzy Cognitive Maps (FCM) are inference networks
using cyclic directed graphs that represent the causal rela-
tionships between concepts [1].They use a symbolic repre-
sentation for the description and modelling of the system.
In order to illustrate different aspects in the behavior of
the system, a fuzzy cognitive map consists of nodes where
each one represents a system characteristic feature. The node
interactions represent system dynamics. An FCM integrates
the accumulated experience and knowledge on the system op-
eration, as a result of the method by which it is constructed,
i.e., by using human experts who know the operation of
the system and its behaviour. Different methodologies to
develop FCM and extract knowledge from experts have been
proposed in [2], [3], [4].

Fuzzy cognitive maps have already been used to model
behavioral systems in many different scientific areas. For
example, in political science [5], fuzzy cognitive maps were
used to represent social scientific knowledge and describe
decision-making methods [6], [7], [8]. Kosko enhanced the
power of cognitive maps considering fuzzy values for their
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nodes and fuzzy degrees of interrelationships between nodes
[1],[9]. He also proposed the differential Hebian rule [9]
to estimate the FCM weights expressing the fuzzy inter-
relationships between nodes based on acquired data. After
this pioneering work, fuzzy cognitive maps attracted the
attention of scientists in many fields and they have been
used in a variety of different scientific problems. Fuzzy
cognitive maps have been used for planning and making
decisions in the field of international relations and political
developments and to model the behavior and reactions of
virtual worlds. FCMs have been proposed as a generic
system for decision analysis [8], [10] and as coordinator of
distributed cooperative agents. Extensions of FCM are the
Dynamic Cognitive Networks (DCN) [11], the Fuzzy Causal
Networks [12] and recently the Fuzzy Cognitive Networks
(FCN) [13]. The latter extension was presented as a complete
computational and storage framework to facilitate the use of
FCM in cooperation with the physical system they describe.

Regarding FCM weight estimation and updating, recent
publications [14], [15], [16], [17] extend the initially pro-
posed differential Hebian rule [9] to achieve better weight
estimation. Another group of methods for training FCM
structure involves genetic algorithms and other exhaustive
search techniques [18], [19], [20], [21], where the training is
based on a collection of particular values of input output
historical examples and on the definition of appropriate
fitness function to incorporate design restrictions.

An issue that needs more theoretical investigation concerns
the conditions under which the concept values of FCM
reach an equilibrium point and whether this point is unique.
According to Kosko [22], starting from an initial state, simple
FCMs follow a path, which ends in a fixed point or limit
cycle, while more complex ones may end in an aperiodic or
“chaotic” attractor. These fixed points and attractors could
represent meta rules of the form “If input then attractor or
fixed point”. The relation of the existence of these attractors
or fixed points to the weight interconnections of the FCM has
not been fully investigated. This is, however, of paramount
importance if one wants to use FCMs in reliable adaptive
system identification and control schemes.

In this paper, we study the existence of the above fixed
points by using an appropriately defined contraction mapping
theorem. It is proved that when the weight interconnections
fulfill certain conditions, related to the size of the FCM, the
concept values will converge to a unique solution regard-
less of their initial states. Otherwise the existence or the
uniqueness of equilibria can not be assured. In view of these
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Fig. 1. An FCM with 5 nodes.

results meta rules of the form “If weights then fixed point”
are more appropriate to represent the behavior of an FCM.
Fuzzy Cognitive Networks (FCN) [13], [23]-[25], introduced
recently as an extension of FCMs can work on the basis of
such meta rules. It is demonstrated that when the necessary
weight conditions are fulfilled by an FCN during its updating
procedure, its information storage mechanism is actually a
depository of this kind of meta rules.

The paper is organized as follows. Section II describes
the representation and mathematical formulation of Fuzzy
Cognitive Maps. Section III presents the main results, where
the proof of the existence solution of the concept values of a
Fuzzy Cognitive Map is given. FCNs are briefly invoked in
section IV and some of their important aspects are presented.
Finally, Section V concludes the work providing also hints
for future extensions.

II. FUZZY COGNITIVE MAPS

Fuzzy Cognitive Maps (FCM) is a modeling methodology
for complex systems, originated from the combination of
Fuzzy Logic and Neural Networks. The graphical illustration
of an FCM is a signed fuzzy graph with feedback, consisting
of nodes and weighted interconnections. The nodes of the
graph are related to concepts that are used to describe main
behavioral characteristics of the system. Nodes are connected
by signed and weighted arcs representing the causal rela-
tionships that exist among concepts. Graphical representation
illustrates which concept influences other concepts, showing
the interconnections between them. This simple illustration
permits thoughts and suggestions in reconstructing FCM,
such as the adding or deleting of an interconnection or a
concept. In conclusion, an FCM is a fuzzy-graph structure,
which allows systematic causal propagation, in particular
forward and backward chaining.

A. Fuzzy Cognitive Map representation

A graphical representation of FCMs is depicted in Fig.
1. Each concept represents a characteristic of the system; in
general it represents events, actions, goals, values and trends
of the system . Each concept is characterized by a number Ai

that represents its value and it results from the transformation
of the real value of the systems variable, represented by this
concept, in the interval [0,1]. All concept values form Vector
A are expressed as:

A =
[

A1 A2 .... An

]T

with n being the number of the nodes (in Fig. 1 n = 5) .
Causality between concepts allows degrees of causality and
not the usual binary logic, so the weights of the intercon-
nections can range in the interval [-1,1] (see [22]).

The existing knowledge on the behavior of the system is
stored in the structure of nodes and interconnections of the
map Each node-concept represents one of the key-factors
of the system. Relationships between concepts have three
possible types; either express positive causality between
two concepts (Wij > 0) or negative causality (Wij < 0) or
no relationship (Wij = 0). The value of Wij indicates how
strongly concept Ci influences concept Cj . The sign of Wij

indicates whether the relationship between concepts Ci and
Cj is direct or inverse. The direction of causality indicates
whether concept Ci causes concept Cj , or vice versa. These
parameters have to be considered when a value is assigned
to weight Wij . For the FCM of Fig. 1 matrix W is equal to

W =

⎡
⎢⎢⎢⎢⎣

0 0 0 W41 W51

W12 0 W32 0 W52

0 0 0 0 W53

0 W24 W34 0 0
W15 0 0 W45 0

⎤
⎥⎥⎥⎥⎦

The equation that calculates the values of concepts of Fuzzy
Cognitive Map, according to [4] is equal to:

Ai(k) = f(
n∑

j=1
j �=i

WT
ij Aj(k − 1) + Ai(k − 1)) (1)

Where Ai(k) is the value of concept Ci at discrete time
k, Ai(k − 1) the value of concept Ci at discrete time k − 1,
Aj(k − 1) the value of concept Cj at discrete time k − 1,
and Wij is the weight of the interconnection from concept
Cj to concept Ci. f is a sigmoid function used in the Fuzzy
Cognitive Map, which squashes the result in the interval [0,1]
and is expressed as,

f = 1
1+e−x .

Equation (1) can also be written as:

A(k) = f(W ext · A(k − 1)) (2)

where W ext is such that: W ext
ij =

i �=j
Wji, W ext

ij =
i=j

dii, where

dii is a variable that takes on values in the interval [0, 1],
depending upon the existence of “strong” or “weak” self-
feedback to node i. Note that the case dii close to 0 is
generic, while the dii close to 1 is an exception. See among
other examples and the virtual undersea world example in
Kosko ( [22], p.513) where only two out of 24 nodes are
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using self-feedback. For the FCM of Fig. 1 matrix W ext is
equal to

W ext =

⎡
⎢⎢⎢⎢⎣

d11 0 0 W41 W51

W12 d22 W32 0 W52

0 0 d33 0 W53

0 W24 W34 d44 0
W15 0 0 W45 d55

⎤
⎥⎥⎥⎥⎦

From now on, in this paper the matrix W ext will be just
called W . Equation (2) can be rewritten as:

A(k) = f(W · A(k − 1)) (3)

In the next Section we are deriving conditions, which deter-
mine the existence of a unique solution of (3).

III. EXISTENCE AND UNIQUENESS OF SOLUTIONS IN
FUZZY COGNITIVE MAPS

In this Section we check the existence of solutions in
equation (3). We know that the allowable values of the
elements of FCM vectors A lie in the closed interval [0, 1].
This is a subset of � and is a complete metric space with the
usual l2 metric. We will define the regions where the FCM
has a unique solution, which does not depend on the initial
condition since it is the unique equilibrium point.

A. The Contraction mapping principle

We now introduce the Contraction Mapping Theorem [26].

Definition 1: Let X be a metric space, with metric d. If

ϕ maps X into X and there is a number c < 1 such that

d(ϕ(x), ϕ(y)) ≤ cd(x, y) (4)

for all x, y ∈ X , then ϕ is said to be a contraction of X
into X .

Theorem 1: [26] If X is a complete metric space, and if

ϕ is a contraction of X into X , then there exists one and

only one x ∈ X such that ϕ(x) = x.

In other words, ϕ has a unique fixed point. The uniqueness
is a triviality, for if ϕ(x) = x and ϕ(y) = y, then (4) gives
d(x, y) ≤ cd(x, y), which can only happen when d(x, y) =
0.
Equation (3) can be written as:

A(k) = G(A(k − 1)) (5)

where G(A(k − 1)) is equal to f(W · A(k − 1)).
In FCM’s A ∈ [0, 1]n and it is also clear according to (3)
that G(A(k − 1)) ∈ [0, 1]n. If the following inequality is
true:

d(G(A), G(A′)) ≤ cd(A,A′)

then G has a unique fixed point A such that:

G(A) = A

Before presenting the main theorem we need to explore the
role of f as a contraction function.
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Fig. 2. Inclination of sigmoid function f .

Theorem 2: The scalar sigmoid function f , (f = 1
1+e−x )

is a contraction of metric space X into X , were X =
[a, b], a ≤ 0, b ≥ 1 according to Definition 1, where:

d(f(x), f(y)) ≤ cd(x, y) (6)
Proof: Here f is the sigmoid function, x,y ∈ X , X is

as defined above and c is a real number such that 0 ≤ c < 1
The inclination l of a sigmoid function f is equal to:

l =
∂f

∂x
=

e−x

(1 + e−x)2
=

1
ex

(
1

1 + e−x

)2

=
1
ex

f2 (7)

for x ∈ X . Equation (7) is plotted in Fig. 2. According
to Fig. 2 one can see that the inclination l of f(x) in the
bounded set X is always smaller than 1/4, as follows:

1
4
≥ l (8)

and l also equals to:

d (f(x), f(y))
d (x, y)

= l (9)

From (8) and (9) we get:

d (f(x), f(y))
d (x, y)

= l < 1 (10)

Thus there is always a number c for which 0 ≤ c < 1, such
that (10) is:

d (f(x), f(y))
d (x, y)

< c < 1 (11)

Theorem 3: There is one and only one solution for any

concept value Ai of any FCM, if:(
n∑

i=1

‖wi‖2

)1/2

< 4 (12)

where wi is the ith row of matrix W and ‖wi‖ is the l2
norm of wi.

Proof:
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Let X be the complete metric space [0, 1]n and G : X →
X be a map such that:

d(G(A), G(A′)) ≤ cd(A,A′) (13)

for some 0 ≤ c < 1.
Vector G is equal to:

G =

⎡
⎢⎢⎢⎢⎢⎣

f(w1 · A)
f(w1 · A)
f(w1 · A)

...
f(wn · A)

⎤
⎥⎥⎥⎥⎥⎦ (14)

where n is the number of concepts of the FCM, f is the
sigmoid function defined above, wi is the ith row for matrix
W of the FCM, where i = 1, 2, ..., n, and by · we denote the
inner product between two equidimensional vectors which
both belong in �n.

Assume A and A′ are two different concept values for the
FCM. Then we want to prove the following inequality:

‖G(A) − G(A′)‖ ≤ c ‖A − A′‖ (15)

But ‖G(A) − G(A′)‖ according to (14) equals to:

‖G(A) − G(A′)‖ =
(

n∑
i=1

(f(wi · A) − f(wi · A′))2
)1/2

According to Theorem 2 for the scalar argument of f(.)
which is wi · A in the bounded and closed interval [−a, a]
with a being a finite number it is true that:

|f(wi · A) − f(wi · A′)| ≤ c′i |(wi · A) − (wi · A′)|
for every i = 1, 2, ..., n.
Thus

|f(wi · A) − f(wi · A′)| ≤ c′ |(wi · A) − (wi · A′)|
where c′ = max(c′1, c

′
2, ..., c

′
n).

By using the Cauchy-Schwartz inequality we get:

c′|(wi · A) − (wi · A′)| = c′|wi · (A − A′)|

≤ c′‖wi‖‖A − A′‖
Subsequently, we get:

‖G(A) − G(A′)‖ =
(

n∑
i=1

(f(wi · A) − f(wi · A′))2
)1/2

⇒ ‖G(A) − G(A′)‖ ≤
(

n∑
i=1

(c′ ‖wi‖ ‖A − A′‖)2
)1/2

Finally:

‖G(A) − G(A′)‖ ≤ c′ ‖A − A′‖
(

n∑
i=1

‖wi‖2

)1/2

A necessary condition for the above to be a contraction is:

c′
(

n∑
i=1

‖wi‖2

)1/2

< 1 (16)

From eq. (8) we have that:

c′ ≤ 1/4

So that condition of eq. (16) now becomes:(
n∑

i=1

‖wi‖2

)1/2

< 4 (17)

B. Exploring the results

1) An FCM with two concepts: Suppose that we have an
FCM with two nodes. The weight matrix W2 of this FCM
is:

W2 =
[

d11 w21

w12 d22

]
According to Theorem 3 in order that an FCM with two

nodes has a unique concepts solution inequality (12) must
be true. In this case (12) is written as:

d11 + w2
21 + w2

12 + d22 < 16

Since |w21| ≤ 1, |w12| ≤ 1 and dii can at most both take
the value of 1, one can easily see that the above inequality
is always true and particularly:

1 + w2
21 + w2

12 + 1 ≤ 4 < 16

2) An FCM with three concepts: Suppose that we have an
FCM with three nodes. The weight matrix W3 of this FCM
is:

W3 =

⎡
⎣ d11 w21 w31

w12 d22 w32

w13 w23 d33

⎤
⎦

Taking into account that the magnitude of every weight
value of W3 is less than one Eq. (12) is now written:

d11+w2
21+w2

31+w2
12+d22+w2

32+w2
13+w2

23+d33 ≤ 9 < 16

where it is obvious that, for an FCM with three concepts,
the condition for the uniqueness is always true.

3) An FCM with four concepts: Suppose that we have an
FCM with four nodes. The weight matrix W4 of this FCM
is:

W4 =

⎡
⎢⎢⎣

d11 w21 w31 w41

w12 d22 w32 w42

w13 w23 d33 w43

w14 w24 w34 d44

⎤
⎥⎥⎦

The square root of the sum of the square l2 norm of each
row of matrix W4 is equal to:√√√√ 4∑

i=1

‖wi‖2 =
√

‖w1‖2 + ‖w2‖2 + ‖w3‖2 + ‖w4‖2 (18)

The l2 norm of each row is equal to: ‖wi‖ =

√
4∑

j=1

w2
ij ,

where i denotes the ith row of matrix W4 and j
denotes the column index. Equation (18) is now:
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√
4∑

i=1

‖wi‖2 =
√

‖w1‖2 + ‖w2‖2 + ‖w3‖2 + ‖w4‖2 =√√√√√
4∑

j=1

w2
j1

2

+

√
4∑

j=1

w2
j2

2

+

√
4∑

j=1

w2
j3

2

+

√
4∑

j=1

w2
j4

2

=√
4∑

j=1

w2
j1 +

4∑
j=1

w2
j2 +

4∑
j=1

w2
j3 +

4∑
j=1

w2
j4 =

√
4∑

j=1

(
4∑

i=1

w2
ji

)
=

√√√√ 4∑
j=1

(djj) +
4∑

j=1

(
4∑

i=1,i �=j

w2
ji

)

Since for the non diagonal elements |wji| < 1, then :
w2

ji < 1.
Finally the above equation concludes to:√√√√ 4∑
j=1

(djj) +
4∑

j=1

(
4∑

i=1,i �=j

w2
ji

)
≤ √

4 + 12 = 4

Subsequently, we get:√
4∑

i=1

‖wi‖2 ≤ 4

According to Theorem 3 in order that only one solution
exists for the concepts of an FCM the following inequality

must be true:

√
4∑

i=1

‖wi‖2
< 4.

We finally get the next conclusion: Since generically most
of the dii will be close to zero, “an FCM with four concepts
has a unique solution generically”.

4) An FCM with more than four concepts: Suppose that
we have an FCM with more than four nodes. The weight
matrix Wn of the FCM is:

Wn =

⎡
⎢⎢⎢⎢⎣

d11 w21 w31 ... wn1

w12 d22 w32 ... wn2

w13 w23 d33 ... wn3

... ... ... ... ...
w1n w2n w3n ... dnn

⎤
⎥⎥⎥⎥⎦

where n > 4 The square root of the sum of the square l2
norm of each row of matrix Wn is given by:√

n∑
i=1

‖wi‖2 =
√
‖w1‖2 + ‖w2‖2 + ..... + ‖wn‖2

⇒
√

n∑
i=1

‖wi‖2 =

√
n∑

j=1

(
n∑

i=1

w2
ji

)

⇒
√

n∑
i=1

‖wi‖2 =

√√√√ n∑
j=1

(djj) +
n∑

j=1

(
n∑

i=1,i �=j

w2
ji

)

⇒
√

n∑
i=1

‖wi‖2 ≤
√

n∑
j=1

(djj) +

√√√√ n∑
j=1

(
n∑

i=1,i �=j

w2
ji

)

Finally we conclude that for an FCM with n > 4 concepts
Theorem 3 is true when:

√√√√√ n∑
j=1

⎛
⎝ n∑

i=1,i �=j

w2
ji

⎞
⎠ ≤ 4 −

√√√√ n∑
j=1

(djj) (19)

SystemFCN

A (k-1)system

A (k)FCN
desired values

Fig. 3. Interactive operation of the FCN with the physical system.

Therefore, when n > 4 the condition for the uniqueness
of solution of (3) depends on the number of diagonal dii

elements of the FCM that are nonzero and the size of the
FCM. However, Eq. (19) provides us with an upper bound
for the weights of the FCM. When the weights are within
this bound the solution of (3) is unique and therefore the
FCM will converge to one value regardless of its initial
concept values. This in turn gives rise to a meta rules
representation of the FCM having the form “If weights
then fixed point”. This representation is employed by Fuzzy
Cognitive networks (FCN), which are presented in the next
Section.

IV. THE FUZZY COGNITIVE NETWORK APPROACH

As shown in Section III the concepts values of the FCM
with a specified matrix W have a unique solution as far as
(12) and consequently (19) is fulfilled. The perspective of
transforming FCMs into a modeling and control alternative
requires, first to update its weight matrix W so that the FCM
can capture different mappings of the real system and second
to store these different kinds of mappings. Fuzzy Cognitive
Network (FCN) [13] has been proposed as an operational
extension framework of FCM, which updates its weights
and reaches new equilibrium points based on the continuous
interaction with the system it describes. Moreover, for each
equilibrium point a fuzzy rule based storage mechanism of
the form “If weights then fixed point” is provided, which
facilitates and speeds-up its operation. The components of
FCN are briefly presented bellow.

A. Close interaction with the Real System

The operation of the FCN in close cooperation with the
real system it describes, might require continuous changes in
the weight interconnections, depending on feedback received
from the real system. Fig. 3 presents the interactive operation
of the FCN with the physical system it describes. The weight
updating procedure is described below.

B. Weight Updating Procedure

The updating method takes into account feedback node
values from the real system. Using the updated weights the
FCN reaches a new equilibrium point. In this approach the
updating is made based on the conventional delta rule, which
is described by the following equations

pj = Asystem
j (k) − f(Wij · AFCN

i (k − 1)) (20)

W k
ij = Wij(k − 1) + apj(1 − pj)AFCN

i (k) (21)

where pj is the error and a is the learning rate, usually set at
a = 0.1. As it is shown from the argument of the exponential
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function, the term denoted as AFCN
i refers to the response of

the FCN, when the nodes take their values from the feedback
of the system. In case the control objective is that one or
more nodes reach a desired value then for these nodes Eq.
(20) is rewritten as:

pj = Adesired
j (k) − f(Wij · AFCN

i (k − 1)) (22)

After the weights updating, Eq. (1) will give new equilibrium
concept values to the FCN. If the weights are chosen such
that they meet the condition derived in Section III, these
values will be unique. The calculated node values will be
applied to the real system, which in turn provides feedback
to the FCN to be used by the new updating cycle according
to Fig. 3. Error pj appearing in Eqs (20) and (21) is actually
estimated for each one of the nodes j of the FCN, regardless
of its label. Equation (22) is used for calculating the error of
desired value nodes, while Eq. (20) is used for the errors of
all other node values. When the real node values coming
as a feedback from the system are fed to the FCN, this

may present non zero error in all of its nodes. The error
becomes zero only when the weights are updated so that
the node values of the FCN match exactly the values of the
corresponding physical quantities.

C. Storing knowledge from previous operating conditions

The procedure described in the previous subsection mod-
ifies FCN’s knowledge about the system by continuously
modifying the weight interconnections and consequently the
node values. During the repetitive updating operation the
procedure uses feedback from the system variables. This
means that in each iteration all the intermediate weight and
node values, some of which are control values, are fed to the
real system and its response is used to give the new updating
direction. It is obvious that this procedure continuously
annoys the physical system, something that in many cases is
undesirable. In the sequence we propose a methodology that
alleviates this annoyance and further speeds up the updating
procedure. This is done by storing the previous acquired
operational situations in a fuzzy if-then rule database, which
associates in a fuzzy manner the various weights with the
corresponding equilibrium node values. The procedure is
explained as follows. Suppose for example that the FCM
of Fig. 1 has a unique equilibrium point

A =
[

A1 A2 A3 A4 A5
]T

which is connected with the weight matrix W :

W =

⎡
⎢⎢⎢⎢⎣

d11 0 0 a41 a51

a12 d22 a32 0 a52

0 0 d33 0 a53

0 a24 a34 d44 0
a15 0 0 a45 d55

⎤
⎥⎥⎥⎥⎦

in order that A is a unique solution of eq. (1) weight matrix
W has to be such that inequality (12) is fulfilled. For weight
matrix W inequality (12) takes the form:

a2
41 +a2

51 +a2
12 +a2

32 +a2
52 +a2

53 +a2
24 +a2

34 +a2
15 +a2

54 <

16 −
√

5∑
j=1

(djj)

where n = 5 is the number of concepts of the FCN.
Suppose also that the FCM in another operation point is

related to the following weight matrix W , which also fulfills
(12):

W =

⎡
⎢⎢⎢⎢⎣

d11 0 0 b41 b51

b12 d22 b32 0 b52

0 0 d33 0 b53

0 b24 b34 d44 0
b15 0 0 b45 d55

⎤
⎥⎥⎥⎥⎦

with the unique equilibrium point being:

A =
[

B1 B2 B3 B4 B5
]T

Inequality (12) for the weight matrix W has now the form:

b2
41 + b2

51 + b2
12 + b2

32 + b2
52 + b2

53 + b2
24 + b2

34 + b2
15 + b2

54 <

16 −
√

5∑
j=1

(djj)
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The fuzzy rule database, which is obtained using the
information from the two previous equilibrium points, is
depicted in Fig. 4 and 5 and is resolved as follows:
There are two rules for the description of the above two
different equilibrium situations:
Rule 1
if node C1 is mf1 and node C2 is mf1 and node C3 is mf1
and node C4 is mf1 and node C5 is mf1
then w12 is mf1 and w15 is mf1 and w24 is mf1 and w32

is mf1 and w34 is mf1 and w41 is mf1 and w45 is mf1 and

w51 is mf1 and w52 is mf1 and w53 is mf1
Rule 2
if node C1 is mf2 and node C2 is mf2 and node C3 is mf2
and node C4 is mf2 and node C5 is mf2
then w12 is mf2 and w15 is mf2 and w24 is mf2 and w32

is mf2 and w34 is mf2 and w41 is mf2 and w45 is mf2 and

w51 is mf2 and w52 is mf2 and w53 is mf2
The number and shape of the fuzzy membership functions

for the variables in both sides of the rules are gradually
modified, as new desired equilibria appear in the system
during its operation. To add a new triangular membership
function in the fuzzy description of a variable, the new value
must differ from the previous one more than a specified
threshold. The threshold comes usually as a compromise
between the maximum number of allowable rules and the
detail in fuzzy representation of each variable.

V. CONCLUSIONS
In this paper the uniqueness of the equilibrium values of

the concepts of FCMs was studied, using an appropriately de-
fined contraction mapping theorem. It was proved that when
the weight interconnections fulfill certain conditions, related
to the size of the FCM, the concept values will converge to a
unique solution regardless their initial values. The condition
is further resolved by exploring its application in FCMs of
various representative sizes. The convergence point of the
concepts depends exclusively on the values of weight matrix
W of the FCM giving rise to an FCM representation using
meta rules of the form “If weights then equilibrium point”.
A new alternative scheme called Fuzzy Cognitive Network
(FCN) was also presented, which is designed to work in
close interaction with the physical system it describes and
stores information related to different operational points
using fuzzy meta rules of this kind. Future work will include
the development of reliable system identification and control
schemes which will use the concept of FCN and employ the
theoretical results presented here.
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