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Abstract— The topology of a networked control system has
critical consequences for its performance. We provide first
substantial examples on the effects of topology. Then we proceed
to develop a rigorous evaluation of topology effects using
stochastic methods inspired from statistical physics and Markov
chains. This analysis leads us to proofs on faster convergence
of distributed algorithms in networked systems for certain
topologies and especially small world topologies, which are
are given an ‘efficiency’ characterization. Finally, these results
lead to the development of self-organization of such systems in
hierarchies that provably improve performance and response.

I. INTRODUCTION

In recent years the study of networked control systems

has attracted substantial interest in the control community.

An essential aspect of many of these systems is the lack of a

central control authority: distributed control rules and algo-

rithms are often utilized due to a host of reasons including

energy considerations and reliability. Examples of different

applications of local control rules and distributed algorithms

in recent literature include flocking schemes and consensus in

collaborative control of groups of robots [7], [23], [22], [18],

synchronization of oscillators [19], trust establishment in a

network of autonomous entities [2], [3], gossip algorithms

and cooperation in sensor coverage [9], [27].

In all of these distributed schemes the agents are pro-

vided with simple sets of decision making algorithms or

dynamics, such that each agent takes an action using its local

information. The actions that each agent preforms are also

local, i.e. only are affected by and affect their neighbors.

The goal of the system is to emerge a desired global be-

havior from the local interactions. The effectiveness of these

schemes depends on three important factors: 1) The speed

of convergence. 2) Robustness to agent/connection failures.

3) Energy/communication efficiency. There is usually a trade

off in achieving these objectives. It is important to notice that

the speed of convergence and robustness depend on both the

structure of the network and the dynamics of the agents.

In this paper, we focus on the structural aspects of

the network. We show that well-connectedness of agents

significantly affects the convergence and robustness of the

distributed algorithms running on the network. Since the

decentralized nature of the algorithms require each agent
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to be connected to only a few other agents, achieving high

connectivity at the same time may seem counter-intuitive

and even paradoxical. However, certain classes of graphs

maintain this property. For example, small world topologies

offer a favorable tradeoff between performance (convergence

speed) versus cost of collaboration (connectivity cost) [4].

The subject of dynamic systems on graphs has also gained

attention in other communities. Following the popular small

world model of Watts and Strogatz [26] and the preferential

attachment model of Barabasi and Albert [1], substantial

research efforts have been dedicated towards constructing a

scientific framework to study networks and the processes run-

ning on them. The main interest of the ongoing research in

this community is to understand the formation and function

of real world networks such as the World Wide Web, social

networks, and biological systems.

The two research areas explained above have some over-

lap. Although the results in network science are usually

asymptotic, they can provide the control society with useful

insight. As an example, the study of mixing times of random

walks on random and small world graphs [13], is in close

connection to the convergence rate of consensus schemes

considered in the control literature as mentioned in [24].

We address the small world effect in the context of pertur-

bation of stochastic matrices. We also propose a hierarchical

self-organization method and show that, by utilizing it, the

network is capable of running distributed algorithms with

high convergence speed. We generalize the concept of social

leaders introduced by Blondel et al. [8] to classify the

agents of more importance in a network. The scheme is

based on a two stage algorithm which first finds the most

effective choice of local leaders, and then provide nodes

with information about their location with respect to other

nodes and leaders and the choice of groups to form. This

leads to self-organization of the systems in the hierarchy and

improves performance and response.

The paper is organized as follows. We start by providing

substantial examples on the effects of topology in the next

section. In section III, we provide an overview of small world

networks and address the convergence of consensus algo-

rithms on them in the framework of perturbation of stochastic

matrices. The two-level hierarchical self-organization scheme

for faster convergence is developed in section IV.

II. THE IMPORTANCE OF BEING WELL-CONNECTED

In this section we study some motivational examples that

show the importance of being ‘well connected’ in distributed

algorithms. The first two examples given in this section
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Fig. 1. Two “No-voters” control the local majority poll (from [16])

Fig. 2. A small coalition controls the local majority poll (from [16])

demonstrate how being well connected can serve agents’

selfish purposes. The next examples show the merits of being

well connected for the performance of the overall system.

A. Local Majority voting

We start with a classic example by Peleg [16], which

shows that in voting schemes a few well connected nodes can

determine the outcome of the process. Consider n citizens

each living on a vertex of a graph. Each citizen has an

opinion about voting “Yes” or “No” on a subject. However,

citizens observe a rule by which they first ask privately

their neighbors’ opinions. Each person then casts “Yes”(

resp. “No”) if the majority of their neighbors are “Yes-

voters”(resp. “No-voters”). An important question is: what

is the minimum number of “No-voters” that can guarantee a

“No” outcome. As shown in Figure 1 the answer is 2. Every

one of the n−2 “Yes- voters” should change its vote, because

of having two “No-voters” in their neighborhood.

It is worthwhile to notice that all the “Yes-voters” observe

a 2 to 1 majority of “No-voters” in their neighborhood.

However, each “No-voter” observes a huge majority of “Yes-

voters” in their neighborhood. If the nodes follow the polling

rule iteratively, each node will oscillate between Yes and

No. However, if the “No-Voters” fail to observe the rule,

the iteration will converge and all the nodes will vote No

after the first iteration. Peleg also shows that for large n,

a negligible minority of 2
√

n “No-voters” can force all the

voters to decide to vote No in just one iteration. This can

be achieved by a clique of well connected “No-voters” who

are attached to groups of badly connected “Yes-voters” as

in Figure 2. In this case, by following the rules the “No-

voters” can force the “Yes-voters” to change their vote while

maintaining their own No votes in a single iteration.

B. Consensus schemes

Consider a set of n agents and the interconnection between

them modelled by a graph G = (V, E). The nodes of the

graph, V = {1, 2, ..., n} represent the agents. If node i is able

to communicate with node j a directed edge exists between

the two nodes. Given an n by n matrix F , the graph G(F )
is defined to be a graph on n nodes V = {1, 2, ..., n} with

an edge from node i to node j if and only if Fij 6= 0. In

the context of this paper, we consider the case of symmetric

interconnections. Therefore, the graphs considered here are

undirected. By a discrete time consensus equation, we mean

a linear iteration of the form:

x(k + 1) = F (k)x(k) (1)

in which F (k) is a nonnegative stochastic matrix. The entry

Fij denotes the weight that node i applies to the values that

it gets from node j and its value may be time dependent. If

there is no link between nodes i and j, Fij = 0.

A natural set of weights come from Vicsek’s model for

leaderless coordination [18], [25]. Vicsek’s model assigns

weights to neighbors of a node in a way in which each node

performs a local averaging in its neighborhood. Therefore,

F (k) = (I + D(k))−1(A(k) + I), (2)

where A is the adjacency matrix of the graph G and D is the

diagonal matrix with each node’s degree on the correspond-

ing diagonal. Consider the fixed topology case. Vicsek’s

model in this case is related to a random walk on a fixed

graph with self loops. If the graph is connected, then all the

agents’ state variables will converge to x∞ =
∑n

i=1 πixi(0).
It can be easily verified that πi = ni+1

2l+n , where l equals

the number of edges in the graph. Therefore each agent’s

contribution to the consensus is proportional to the number

of neighbors it has. Therefore, for example in Figure 1, the

ratio of the contribution of white agents to the contribution

of black agents is of order O(n).

C. Robustness

In order to be functional, distributed algorithms need to

be robust to agent and link failures. In [14], Gupta et al

address the robustness issue in distributed algorithms using a

cost function approach. [14] defines three failure modes 1,2,

and 3, respectively according to the faulty agent’s ceasing

functionality, propagation of constant arbitrary values, and

propagation of varying values. It is shown that consensus

problems are robust to l − 1 node failures of mode 1, in

an l−connected graph. A classic theorem in graph theory

states that the minimum number of vertices separating two

independent set of nodes is equal to the maximum number of

disjoint paths between them [12]. Thus being well-connected

improves the robustness of distributed algorithms.

D. Fast convergence in consensus schemes

Since the iteration matrices F are non-negative and

stochastic, the study of convergence of consensus schemes

can be achieved by the study of the corresponding Markov

chains. For fixed topology, consensus will be reached if and
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only if F is primitive, i.e. the graph should be strongly

connected with at least one self loop. Convergence of con-

sensus algorithms in the presence of topology changes has

been extensively studied and different sufficient conditions

have been proposed based on different assumptions on the

connectivity as well as synchrony ([15] and the references

therein). Under our symmetric communication assumption,

a sufficient condition is existence of infinite nonempty,

bounded contiguous time intervals, across which the union

of the communication graphs is strongly connected [18].

If F is a primitive stochastic matrix, according to the

Perron-Frobenius theorem [10], λ1 = 1 is a simple eigen-

value with a right eigenvector 1 and a left eigenvector π
such that 1T π = 1, F∞ = 1πT and if λ2, λ3, ..., λr are

the other eigenvalues of F ordered in a way such that

λ1 = 1 > |λ2| ≥ |λ3| ≥ ... ≥ |λr|, and m2 is the algebraic

multiplicity of λ2, then

F t = F∞ + O(tm2−1|λ2|t) = 1πT + O(tm2−1|λ2|t)

This shows that the convergence of the consensus protocol

is geometric, with relative speed equal to SLEM.

We denote by µ = 1 − SLEM(G) the spectral gap

of a graph, so graphs with higher spectral gaps converge

more quickly. If the matrix F is symmetric, its SLEM can

be written as the norm of its restriction to the subspace

orthogonal to 1 = [111...1]T. In general the SLEM of F
matrices are not easily computable.

For the general case where topology changes are also in-

cluded, Blondel et al [7] showed that the joint spectral radius

of a set of matrices derived from F matrices determines the

convergence speed. For Σ a finite set of n×n matrices, their

joint spectral radius is defined as:

ρ = lim sup
t→∞

max
A1,...,At∈Σ

||At...A1||1/t

Calculation of the joint spectral radius of a set of matrices

is mathematically hard. It is worthwhile to notice that graphs

with well-connected nodes guarantee fast convergence. This

is a direct result of the Cheeger inequality which relates

the spectral gap of an F matrix to the conductance of the

corresponding graph [10]. Switching over such topologies

will also result in good convergence speed.

Since agents usually have energy constraints, the number

of agents with which they communicate is limited. An

important design issue is to find topologies which satisfy

certain performance provided that the number of the links

each agent can establish is less than an upper bound. In the

next section we study the small world topologies and show

their advantages from a perspective of favorable trade off

between communication cost and speed of convergence [4].

III. CONSENSUS PROBLEMS ON SMALL WORLD GRAPHS

Watts and Strogatz [26] introduced and studied a simple

tunable model that can explain behavior of many real world

complex networks. Their “Small World” model takes a

regular lattice and replaces the original edges by random

ones with some probability 0 ≤ φ ≤ 1. It is conjectured
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Fig. 3. Spectral gap gain for (n, k) = (1000, 5)

that dynamical systems coupled in this way would display

enhanced signal propagation and global coordination, com-

pared to regular lattices of the same size. The intuition is

that the shortcuts between distant parts of the network cause

high speed spreading of information which may result in

fast global coordination. Olfati-Saber [21] studied consen-

sus protocols on small world networks and proposed some

conjectures. We have performed similar studies in two areas

[3], [5]. We have used a variant of the φ−model originally

proposed by Watts and Strogatz [26], which starts with a

ring of n nodes, each connected by undirected nodes to its

nearest neighbors to a range k. Shortcut links are added

-rather than rewired- between randomly selected pairs of

nodes, with probability φ per link on the underlying lattice;

thus there are typically nkφ shortcuts. In reference [5]

we actually forced the number of shortcuts to be equal to

nkφ (comparable to the Watts φ−model) and used Vicsek’s

weights. We studied different choices of initial ring lattices

C(n, k). Figure 3 shows the effect of added shortcuts to a

base ring C(1000, 5). Our Simulation results in [5] show that

adding a small number of links to a ring-structured graph

should result in high convergence rate. However analytical

verification of this result is difficult for general graphs. Here

we justify our results using a “mean field” approach and

perturbation analysis. In the present analysis, following [17],

we reflect the effect of shortcuts by adding “small ” nonzero

positive numbers to the entries of F corresponding to non-

adjacent nodes of the lattice. We show the results for the

cases of one and two dimensional lattices. Generalization

of the results to higher dimensions is achievable at the cost

of increasing notation. The small perturbation corresponds

to using lots of shortcuts with negligible weights on them.

Although by adding a uniform perturbation the topology

of the graph is not respected, the analysis gives insight on

random communication patterns for Small World networks.

We state the result for the case where the base lattice is a

ring but the result can be extended to C(n, k) for other ks.

We show the results for Vicsek’s weights.

We follow the perturbation approach to Small World

networks proposed by Higham [17]. We start with the one

dimensional case. Consider the base lattice to have a ring
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topology on n nodes, G(n, 2) and the corresponding F
matrix F0. This can be also viewed as a random walk with

self loops. This is similar to a particular case of our base

circulant matrix F0. Therefore the base matrix is:

F0(i, j) =

{

1
3 |i − j| = 0, 1, n − 1

0 otherwise.

We know that:

Lemma 3.1: SLEM(F0) = 1
3 [1+2cos(2π

n )]. Furthermore

it has multiplicity at least 2.

Now we perturb the nonzero entries of the matrix F0 by

ǫ = K
nα for fixed K > 0 and α > 1 in the limit N → ∞, to

get the perturbed matrix Fǫ which is given by:

Fǫ(i, j) =

{

1
3 − (n−3)ǫ

3 |i − j| = 0, 1, n − 1

ǫ otherwise.

We call the “shortcuts” created this way ǫ−shortcuts. Fǫ

is also a circulant matrix. It can be easily shown that the

SLEM is equal to:

λ2(Fǫ) = (
1

3
− n

3
ǫ)(1 + 2cos

2π

n
) (3)

Thus we can state the following proposition:

Proposition 3.2: Let ǫ = K
nα , α ≥ 1.

• For α > 3, the effect of ǫ-shortcuts on convergence rate

is negligible. α = 3 is the onset of the effectiveness.

• For α = 2, the shortcuts dominantly decrease SLEM.

• For α = 1, almost all of the nodes communicate

effectively and thus the SLEM is very small.

Proof: (Sketch)

For large n we can write:

λ2(Fǫ) = 1 − 4π2

3n2
+ o(

1

n3
) − nǫ +

4π2ǫ

3n
+ o(

1

n3
)

The first three terms are the contributions of the base

lattice and the rest are the contributions of the perturbation.

Comparing this to the SLEM of the base lattice yields the

desired results.

For the base lattice, the spectral gap decreases as fast as

n2. If ǫ is O(nα), α > 3, then terms coming from the lattice

are dominant, and therefore the shortcuts do not affect the

spectral gap. For α = 3 the terms regarding the shortcuts

will be of the same degree as the terms from the base and

for k large enough, the SLEM starts decreasing from the

corresponding lattice SLEM. For α = 2 the terms regarding

the shortcuts are dominant and the SLEM has considerably

decreased compared to the base lattice. Only for the case of

α = 1 the spectral gap does not vanish as n → ∞.

Similar statements can be established for the case of a two-

dimensional grid. We consider a two-dimensional m×m grid

with periodic boundary, in which each node is connected

to 4 nodes. Let n = m2. Using Vicsek’s weights, the

corresponding F0 is a block circulant matrix, in which each

of its blocks is circulant. The matrix F0 can be written as:

F0 = BlockCirc[C1, C2, ..., Cm],

where C1 = Circ[ 15 , 1
5 , 0, ..., 0, 1

5 ], C2 = Cm = 1
5Im, and

C3 = C4... = Cm−1 = 0. The matrices Ci are either in

diagonal form or can be diagonalized. Let Λ1 denote the

diagonalization of C1, and Λ2 = Λn = 1
5Im.

The SLEM of F0 then can be found using Lemma 3.3 :

Lemma 3.3: SLEM(F0) = 1
5 [3 + 2cos( 2π√

n
)].

Proof: (Sketch) The matrix F0 is m2 × m2 block

circulant. Its blocks are m dimensional circulants, so it can be

diagonalized using the Kronecker product of m dimensional

Fourier matrices ( [11], Theorem 5.8). The diagonal matrix

Λ is given by:

Λ = Im ⊗ Λ1 + Ωm ⊗ Λ2 + Ωm−1
m ⊗ Λm,

where Ωm = diag(1, ω, ..., ωm−1) and ω = exp(2πi/m).
Comparison of the eigenvalues of the m diagonal blocks of

Λ yields the result.

Now, consider the perturbed matrix Fǫ in which the zero

elements of F0 are perturbed by ǫ, and the previously

nonzero elements are also perturbed to retain the stochastic

form of the matrix. It can be verified that, Fǫ is again a block

circulant matrix with circulant blocks C1, C2, ..., Cm, where

C1 = Circ[ 15 − (n−5
5 ǫ), 1

5 − (n−5
5 ǫ), ǫ, ..., ǫ, 1

5 − (n−5
5 ǫ)],

C2 = Cm = ( 1
5 − n

5 ǫ)Im + ǫ1m1
T

m
, and C3 = C4... =

Cm−1 = ǫ1m1
T

m
.

Therefore Fǫ can be diagonalized to Λ:

Λ = Im⊗Λ1+(Ω+Ωm−1)⊗Λ2+(Ω2+Ω3+...+Ωm−2)Λ3

where again Λ1, Λ2, and Λ3 are diagonalizations of C1, C2,
and C3. Using the same arguments as in Lemma 3.3, the

SLEM of Fǫ is calculated:

SLEM(Fǫ) = [
3

5
+

2

5
cos

2π√
n

] − nǫ[
3

5
+

2

5
cos

2π√
n

].

For large values of n, the spectral gap for the unperturbed

lattice is approximately 4
5

π2

n , whereas the spectral gap of the

perturbed matrix is approximately 4
5

π2

n +nǫ(1+ 2π2

n ). Thus,

we get the results as in the 1-D case.

As observed above ǫ−shortcuts are loosely analogous to

the shortcuts in the φ-model. Since the Small World model

is a probabilistic model, we anticipate that adding small

weights is analogous to choosing graphs with low probability

shortcuts. This idea has been further developed in [6].

IV. A HIERARCHICAL SELF ORGANIZING METHOD

In this section we show that a very efficient communica-

tion pattern with substantial improvement in performance is

possible by a two level hierarchical scheme. The idea here

is that selecting a few well connected and controlled agents

which are well protected should enhance the speed of con-

vergence of distributed schemes like consensus algorithms.

Given N agents, suppose we can divide them into K
groups each having M members, so N = K.M . It is

assumed that K ≤ M ≪ n. The exact sizes of K and

M are problem specific and influence the performance of

the algorithm. For each group suppose that we can select a

“leader”. The leaders should be able to have two properties:

they should be well connected to the members of their group,
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and they should also be able to communicate with other

leaders when necessary. If the distributed algorithm is carried

out at each group separately and the leaders communicate on

a higher level, the agents can enjoy faster convergence rates;

the reduction of the size of each group from N to M ≤
√

N
results in faster intergroup convergence whereas the ease of

communication between the leaders upon demand results in

overall fast convergence. This can be illustrated for example,

by considering the consensus problem of Figure 2 with the

agents known as “no-voters” selected as leaders.

We now provide a semi-distributed method which can

categorize the agents as “leader” or “regular”. Further, the

method assigns each regular agent with an influence vector

which indicates which leader has more influence on it. This

provides the nodes with some global picture of the network.

A. Distributed exploration of the graph structure

The structure of a graph plays a crucial role in properties

of a distributed algorithm that is running on it. Given a

graph, individual nodes have only local knowledge about

its structure, which includes information about their neigh-

boring nodes. If any node wants to either improve its own

performance or a global performance measure it needs to

know more about the global picture of the network. This

information can be used by the node to refine its choice of

neighbors in order to improve its performance.

The most complete measure of global graph structure is

the adjacency matrix. Since each node has limited memory,

energy, and computational capacity, they cannot store and

process the adjacency matrix. Our goal is to devise a scheme

to provide each node with a small vector that includes

compact global information on how the node is located with

respect to the other nodes. It is desired that the scheme can

be disseminated via an implementable distributed manner.

We propose a two stage algorithm for this purpose. Apart

from a single data transmission and reception at a central

authority by each node, the algorithm is carried out in a

decentralized manner. In the first stage nodes will collaborate

to find their social degree [8]. This is a local measure of

how ‘well connected’ each node is. Once the nodes find

out their social degree, they will transmit it to a central

authority which determines K “social leaders” of the graph-

the better connected nodes among all. The central authority

then broadcasts the list of K social leaders to all of the nodes.

In the second stage, each node uses a simple iterative scheme

to maintain its influence vector, a vector of size K which

determines the influence of each social leader on it. We

acknowledge that while developed independently, the idea is

similar to recent community evaluation schemes developed

in the network science literature [20].

B. Social degrees and leader nodes

To find the leaders or the agents with the highest influence

we use a generalization of a framework proposed by Blondel

et al [8]. They define the social degree of a node as the

number of the cycles of length 3 passing through that node.

They also define a social leader as a node with the highest

degree in its neighborhood. This can be generalized as:

Definition 4.1: Social degree of order k of a node (de-

noted by SD(k)(vi)) is defined to be the number of cycles

of length k passing through the node, if k > 2 and the

number of its neighbors, if k = 2.

Definition 4.2: A leader node of order k is the node with

the highest social degree of order k among its neighbors.

Definition 4.3: For given 0 < α < 1 and β = 1 − α, a

node’s social score is defined as SC(vi) = α.SD(2)(Vi) +
β.SD(3)(vi).

Notice that each node can determine its social degree of

orders 2 and 3 by a simple query from its neighbors. Since

determining higher order degree requires more effort, we use

the orders 2 and 3 for our present application.

In the first stage of the algorithm, each node computes its

social degrees of order 2 and 3. It also queries the social

degrees of its neighbors. Upon comparing its social degrees

with its neighbors, if a node is found to be a leader of

order 2 or 3, it transmits its degrees to the central authority.

Upon receiving these data from the leader nodes, the central

authority selects K nodes li, i = 1, ..., k with the highest

social scores, SC(li), gives an arbitrary order to them and

transmits their assigned order to them. Notice that the choice

of α and β determines the preference between leaders in a

“star-like” neighborhood versus leaders of better connected

neighborhoods. Once a selected leader is assigned its order

1 ≤ i ≤ K it will maintain the constant vector ei ∈ RK .

This is the unit vector with 1 in its ith entry.

C. Determination of the influence vector

Our objective in this part is to associate with each of the

regular nodes a vector that determines how well it is related

to each of the leaders and how it is influenced by them. The

amount of influence that a leader has on a local node is not

only determined by their distance but also by the number of

paths between them. We provide a definition for the influence

vector based on the properties of random walks on graphs.

Definition 4.4: Consider a graph with K leaders and

N − K regular nodes. The influence of leader nodes lk
(k = 1, ...,K) on any regular node i is the probability that

a random walk that starts from i hits lk before it hits any

other leader node.

Given the leaders and the arbitrary order assigned to them,

we first describe the algorithm to determine the influence

vectors for each regular node. Then we will show why

it converges and why it outputs valid vectors as influence

vectors. We denote the influence vector of node i by xi ∈
RK . By xk

i (t) we mean the kth entry of the influence vector

of node i evaluated at time t.

The algorithm operates as follows. The influence vector of

leader li is first assigned to be the unit vector xi = ei. These

K vectors do not vary. For all regular nodes i, xi is initialized

randomly, distributed uniformly on [0, 1]K . At each iteration

time t + 1, each regular node i updates its influence vector
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entry-wise (k = 1, 2, ...,K) using the following rule

xk
i (t + 1) =

1

1 + ni(t)
[xk

i (t) +
∑

j∈Ni(t)

xk
j (t)] (4)

Theorem 4.1 shows the effectiveness of the above scheme.

Theorem 4.1: If the underlying graph is connected, the it-

eration (4) converges to a set of unique vectors. Furthermore,

limt→∞xk
i (t) is equal to the probability that a random walk

starting at node i hits the leader node lk before any other

leader node.

Proof: The proof of convergence is standard. The

particular form of the solution arises because the procedure

solves a discrete version of the Dirichlet problem on the

graph. We follow the proof of Bremaud [10]. Relabel the

nodes, such that D = {1, 2, ..., N − K} denote the regular

nodes and ∂D = {N − K + 1, ..., N} denote the leader

nodes, where li = N −K + i. For all k = l1, ..., lK , define a

function φi on the graph such that φk(lj) = δ(k, lj), where

δ is the Dirac Delta function.

Let P = (I + D)−1(A + D), where A is the adjacency

matrix of the graph G and D is the diagonal matrix with ith

diagonal element equal to the degree of node i. Fix k, i.e.

consider the influence of leader lk. Then xk
i converges to a

value that satisfies the following equation

xk
i =

{

(Pxk)i i = 1, 2, ..., N − K
φk(i) i = N − K + 1, ..., N

(5)

Note that P is a stochastic matrix and the first equation is

valid for the regular nodes. Let {Zk
n}n≥0 be a homogeneous

Markov chain with state space V = {1, 2, ..., n}. Let T be

the hitting time of ∂D. For each state i ∈ V define:

hk
i = E[φ(Zk

T )|Zk
0 = i] (6)

Since the underlying graph G is connected, P is irreducible.

Also ∀i ∈ V , pii > 0, which means the chain is aperiodic.

The number of states is finite and therefore the chain is

positive recurrent and P (T < ∞|Zk
0 = i) = 1.

By definition hk = φk on ∂D and xk = φk on D. By first

step analysis: hk
i =

∑

j∈V pijh
k
j on D. So:

hk =

{

Pxk on D
φk on ∂D

(7)

Therefore h = x on the graph G. The proof of uniqueness

of the solutions also follows from [10]. Notice that φk
i is

defined such that hk
i is equal to the probability of hitting the

leader node lk before the other leader nodes.

V. CONCLUSION

We showed in different contexts that the performance of

distributed collaborative schemes can depend dramatically

on the structure of the underlying topology. We showed

that small world topologies offer several advantages from a

perspective of a favorable tradeoff between performance of

collaborative behaviors vs. costs of collaborative behaviors.

A two level hierarchy of self-organization was shown to

provide a very efficient communication pattern with substan-

tial improvement of performance. Finally, a semi-distributed

method of finding proper “leader” nodes and measuring the

influence of them on the regular ones in large networks was

proposed and analyzed.
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