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Abstract— This paper addresses a novel approach to the n-
vehicle collision avoidance problem. The vehicle model used is
a planar unicycle, chosen for its wide applicability to ground,
sea, and air vehicles. This paper generalizes previous work with
constant-speed vehicles to models that include the ability to slow
down, stop and reverse. An algorithm is developed that works in
conjunction with any desired controller to guarantee all vehicles
remain free of collisions while attempting to follow their desired
control. This algorithm is reactive and decentralized, making
it well suited for real time applications, and explicitly accounts
for actuation limits. Results are demonstrated in simulation.

I. INTRODUCTION

As multi-vehicle autonomous systems are studied and

implemented, the issue of conflict resolution becomes an

increasingly important point. From mobile robots performing

a cooperative search to air traffic control for unmanned aerial

vehicles (UAVs), collision avoidance is of utmost importance

for safety.

The work here presents the Decentralized Reactive Colli-

sion Avoidance (DRCA) algorithm as a solution for conflict

resolution. The purpose of this paper is to provide a more

detailed description of the work first presented in [1], and

generalized in [2], especially including a wider range of

simulations.

Each vehicle is modeled as a unicycle in order to capture

the essential dynamics of a wide range of vehicles. Ad-

ditionally, arbitrary speed restrictions are allowed, making

constant-speed vehicles a subset of this more general frame-

work. The vehicles modeled can thus range from mobile

robots and ships to submarines and aircraft. This framework

also implicitly allows static obstacles to be avoided, since

they can be modeled as zero-speed vehicles. Currently the

DRCA algorithm is designed for planar applications, but

extensions to three dimensions are in development. The third

dimension adds a degree of freedom for re-routing which

should improve performance for aircraft and other vehicles

capable of three-dimensional movement.

A useful overview of papers on deconfliction can be found

in [3]. The authors divide autonomous conflict resolution

methods into three categories: prescribed, optimized, and

force field. In prescribed maneuver approaches [4], [5], [6],

all vehicles follow a set protocol, not unlike the rules of the

road. While this approach can lead to straightforward proofs,

it also tends to be less flexible with respect to changing

conditions. Optimization schemes are also quite common

([7], [8], [9], [10]), but suffer in real time applications

This work supported by NSF grant CMS-0234861.
E. Lalish and K. A. Morgansen are with the Department of Aeronautics

and Astronautics, University of Washington, Box 352400, Seattle, WA
98195-2400. {emmettl, morgansen}@aa.washington.edu.

from non-deterministic computation time. Additionally, these

approaches tend to be centralized, which often limit their

applicability in real systems. Most force field approaches

treat each vehicle as a charged particle that repels all the

other vehicles, based primarily on position information (a

zeroth order look ahead) [11], [12], [13], [14].

The DRCA algorithm fits most closely into the force

field category, though it differs widely from most other

algorithms which use force fields or potential functions. The

force field defined in the work here differs in that it makes

use of the collision cone concept, introduced in [15] and

subsequently used often in the deconfliction literature [9],

[16], [17]. This method involves a first order look ahead

for detecting conflicts, which takes the restrictions of the

unicycle model into account directly. An implicit assumption

is that no antagonistic vehicles are present in the system;

either all vehicles are trying to avoid conflicts, or at worst

some are maintaining constant velocity.

The authors of [3] also make a distinction between pair-

wise and global conflict resolution maneuvers. While the

collision cone is fundamentally a pairwise conflict detection

scheme, the DRCA algorithm takes into account all of the

other vehicles in order to compute the control, making it a

global approach.

No homogeneity is required among the vehicles that make

up the system. The DRCA algorithm allows each vehicle to

have different size, speed, actuation limitations, and gains.

The vehicles can even have completely different tasks they

are performing.

As the name implies, the DRCA algorithm is also decen-

tralized, in that no communication or agreement is required

between the vehicles. Each vehicle does require the states of

every other vehicle, but this information can come equally

from sensing (e.g. radar) or from communication. If commu-

nication is chosen, the required n to n topology is relatively

easy to implement through a broadcast. The effect of limited

sensor or communication range on this system is a subject

of current research and is beyond the scope of this paper.

One caveat of the DRCA algorithm is that it can only keep

a system conflict-free. When vehicles start on a collision

course, an initial deconfliction maneuver is required to bring

the system to a safe state where the DRCA algorithm can

take over. One such maneuver is discussed in this paper, and

an initial separation bound is presented for which collision

avoidance is guaranteed.

The remainder of the paper is organized as follows. Sec-

tion II gives the problem statement and introduces definitions

and notation used throughout the paper. Initial deconfliction

maneuvers are discussed in Section III. The DRCA algorithm
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is described in Section IV. Simulations and discussions of

performance are given in Section V. Conclusions and future

work are in Section VI.

II. PROBLEM STATEMENT

The work here presents a method for deconflicting n

unicycle vehicles. Each vehicle has a nominal desired control

input, ud(t), which comes from an arbitrary outer-loop con-

troller. This controller is designed for the vehicle to perform a

desired task, which could range from target tracking to way-

point navigation, area searching, etc. The goal of the DRCA

algorithm is to adjust the control input on each vehicle to

guarantee collision avoidance while simultaneously staying

close to the desired control input (keeping in mind that this

desired control can change with time).

The dynamics of the ith vehicle are

d

dt









xi

yi

si

ψi









=









si cos(ψi)
si sin(ψi)

uti

uni









, (1)

where xi and yi are inertial position coordinates, ψi is the

heading relative to an inertial frame, and si is the speed.

The inputs are forward acceleration and heading rate, ui =
[uti

, uni
]T .

The position vector of vehicle i is denoted ri ≡ [xi, yi]
T ,

while the tangent (heading) vector, t, and normal to the

tangent vector, n, of vehicle i are:

ti ≡

[

cosψi

sinψi

]

and ni ≡

[

− sinψi

cosψi

]

.

The velocity vector is then: vi = siti. The relative position

vector from vehicle i to vehicle j is denoted r̃ij ≡ rj − ri,

while the relative velocity vector is defined in the opposite

sense: ṽij ≡ vi − vj . Note that these definitions imply that
˙̃rij = −ṽij , and

˙̃vij = uti
ti + uni

sini − utj
tj − unj

sjnj . (2)

The speed of the vehicle, si, is restricted to lie in a closed

interval Si:

Si = {si ∈ R|si,min ≤ si ≤ si,max} . (3)

The minimum speed can be zero for a vehicle that can stop

but cannot reverse, negative for a vehicle that can reverse, or

positive for a vehicle with a positive minimum speed (e.g.

aircraft). One can also have smin = smax for constant-speed

applications.

The inputs are restricted to a constrained domain by the

specific physical limitations of the vehicle being studied:

ui ∈ Ci, (4)

where

Ci = {ui ∈ R
2
∣

∣uti,min
≤ uti

≤ uti,max
,

uni,min
≤ uni

≤ uni,max
}.

The constraint set, Ci, can vary with time, but must always

include the origin (i.e. the vehicle must always be capable of

maintaining its current velocity). In fact, speed restrictions

can be implicitly modeled by choosing ut,max → 0 as s →
smax, which is an accurate model of most real vehicles.

Additionally, many vehicles are not modeled well by a

rectangular constraint set (i.e. the maximum acceleration and

turning are coupled). To handle this case, one can simply use

a constraint set that encloses the true input constraint set,

then apply saturation to the input generated by the DRCA

algorithm. The guarantees will hold as long as the signs of

the inputs are correct (hence the requirement that the input

constraint set contains the origin).

The vehicles considered here are modeled as nonholo-

nomic point masses, however physical vehicles have finite

size. Therefore to account for physical constraints in the

theoretical model, the condition for conflict is not to attain

the same position in space at the same time, but rather to

come within a minimum allowed distance of each other at

some point in time. This minimum distance could be, for

example, the five nautical mile separation between aircraft

required by the FAA or the sum of the radii of two mobile

robots.

Definition 1 (Collision): A collision occurs between vehi-

cles i and j when

‖r̃ij‖ < dsep,ij , (5)

where dsep,ij is the minimum allowed separation distance

between the vehicles’ geometric centers.

For two vehicles not actively in a collision, the next

question is whether they will collide if they remain on their

present headings. This situation will be called a conflict.

Definition 2 (Conflict): A conflict occurs between vehi-

cles i and j if they are not currently in a collision, but

with zero control input (i.e. constant velocity), at some future

point in time they will enter a collision:

dmin,ij ≡ min
t>0

‖r̃ij‖ < dsep,ij . (6)

The following lemma provides a useful way to check for

conflicts. To simplify the notation in the rest of this paper,

the ij subscripts will generally be suppressed (for example,

r̃ij will be written as r̃).

Lemma 1: Let β = ∠ṽ−∠r̃0, α = arcsin
(

dsep

‖r̃0‖

)

and r̃0

be the relative position vector at the time conflict is being

checked. A necessary and sufficient condition for no conflict

to occur is

|β| ≥ α. (7)

The angle α represents the half-width of the collision cone

([15], [9], [17]), which is depicted in Fig. 1.

This lemma is proven in [1]. The angle α denotes the

half-width of the collision cone, similar to [9], [17], [15],

and described geometrically in Fig. 1.

III. INITIAL DECONFLICTION MANEUVERS

Section IV contains a proof that the DRCA algorithm can

keep a system conflict-free indefinitely once a conflict-free

state is achieved. However, generally the point of collision

avoidance is to resolve conflicts that are already present.
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Vehicle i

Vehicle j
β

α

α

ṽij

dsep,ij

dsep,ij
r̃ij

Fig. 1. Geometric definition of the collision cone. The area between the
two dotted lines is the collision cone; a conflict occurs when the relative
velocity vector, ṽij , lies within this area.

Hence some initial maneuver is required by the vehicles to

bring themselves from a conflicted state to a conflict-free

state so that the DRCA algorithm can keep them that way.

The purpose of the initial deconfliction maneuver is to

bring vehicles to a conflict-free state as quickly as possible

with a guarantee that no collisions will occur during this

maneuver, given certain bounds on the initial conditions.

The initial condition bounds are necessary because a wide

class of initial conditions exist for which collision avoidance

is impossible (usually due to a lack of sufficient control

authority).

Many possible maneuvers can be used for initial decon-

fliction, but this section will detail one simple option. A first

consideration for how to maneuver out of conflict is which

of the inputs should dominate. Changing speed is a problem

for two reasons. First, most vehicles have less capability for

forward acceleration than for lateral acceleration. Second, all

vehicles have speed limits, which means that at some point,

control authority (in one direction) vanishes entirely. Based

on these considerations the deconfliction maneuver presented

here will amount to a turning-only command.

One maneuver to achieve deconfliction, as will be proven

below, is to have all vehicles turn the same way at maximum

rate until a conflict-free state is reached for the whole system.

If the direction is pre-programmed (e.g. positive or left),

this maneuver mimics a rules-of-the-road approach, where

vehicles always pass on the same side. A similar approach

was used in [5], because for exact or nearly-exact conflicts,

this maneuver results in a roundabout passing behavior,

which tends to reduce the deviation of the vehicles from

their paths.

However, more important than performance is a guarantee

of safety. Collision avoidance for the “all hard left” maneuver

can be proven because even when the system cannot reach

a conflict-free state, the maneuver simply becomes a loiter

pattern.

Theorem 1: If the initial separation of each pair of vehi-

cles satisfies

‖r̃ij‖ ≥ 2
si

uni,max

+ 2
sj

unj,max

+ dsepij
, (8)

Then a system of n vehicles will remain collision free for

c

dsep

dsep

vj

vi

e

r̃

pt,ijti

α

α
β

ṽ

sipn,ijni

Fig. 2. Geometry of the e and c vectors and the conflict measures pt

and pn (cT ṽ > 0 in this example). The dotted lines represent the collision
cone.

all time if each vehicle constantly turns at its maximum rate

while maintaining speed.

Proof: The trajectory each vehicle follows using con-

stant turning is a circle of radius si

uni,max

. As long as a pair

of vehicles is separated by at least the sum of the diameters

of their loiter patterns and the minimum separation distance,

then they can never collide.

For initial conditions where the conflicts are inexact (as

defined in [5]), this rules-of-the-road approach can occasion-

ally lead to poor performance (depending on the cost function

chosen). Nowhere does the proof stipulate that each vehicle

must turn the same direction, only that each must pick a

constant turning direction. Therefore some kind of heuristic

or even an optimization algorithm may be capable of giving

better performance than the simple “all hard left” command.

These alternate maneuvers are a topic of current research.

Additionally, application-specific adjustments could include

changing speed to attain the minimum vehicle turning radius.

IV. DRCA ALGORITHM

Once the initial deconfliction maneuver has been per-

formed and the system is in a conflict-free state, the DRCA

algorithm can be used and allows each vehicle to use its

desired control input unless that input would cause the

vehicle to come into conflict with another vehicle.

In order to smoothly transition from the desired control to

the avoidance control, each vehicle needs a way to measure

how close its velocity vector is to causing a conflict. The

first step is to construct a unit vector, c, defining the near

side of the collision cone:

c = R(sgn(β)α)
r̃

‖r̃‖
,

where sgn(γ) is the sign function, taking on the value 1 for

γ ≥ 0 and -1 for γ < 0, and R(γ) is the planar rotation

matrix:

R(γ) ≡

[

cos γ − sin γ
sin γ cos γ

]

.

Next, construct a normal vector, e, from the collision cone

to the relative velocity vector, ṽ (see Fig. 2). If cT ṽ > 0, e
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can be found from the following two geometric relations:

e+ kc = ṽ

cT e = 0,

where k is an appropriate scalar. These equations can be

rewritten as
[

I c

cT 0

] [

e

k

]

=

[

ṽ

0

]

. (9)

If cT ṽ ≤ 0 (the vehicles are headed away from each other),

then no normal exists and the nearest point on the collision

cone is the tip, so e = ṽ. Combining this result with the

solution of (9) gives

e =

{

ṽ, cT ṽ ≤ 0

R
(

π
2

)

ccTRT
(

π
2

)

ṽ, cT ṽ > 0,

where R
(

π
2

)

c is a vector orthogonal to c.

Because the control inputs ut and un produce changes in

velocity along the orthogonal vectors t and n respectively

(2), they are decoupled and can be analyzed separately. For

ut, a signed distance to the collision cone in the direction

of ti is needed in order to determine how much change in

speed would cause a conflict. This signed distance is defined

as follows (valid only when no conflict is present):

pt,ij =
‖eij‖

2

eT
ijti

.

The definition of the signed distance in the normal direction

is similar (see Fig. 2), but must be augmented by the

vehicle speed, si, to account for the relationship between

un (heading rate) and lateral acceleration:

pn,ij =
‖eij‖

2

sie
T
ijni

.

Note that when cT ṽ < 0, these signed distances do not

measure strictly to the collision cone, but rather to a half-

space that encloses it. Therefore these signed distances are

conservative.

Define ǫt, ǫn > 0 as thresholds such that when ‖pt‖ > ǫt,

the conflict is far enough away that it can be ignored (and

likewise for pn). The n-vehicle DRCA algorithm running on

vehicle i computes pt and pn to each of the other vehicles

and then finds the closest conflict in each direction, i.e.

p+
ti

= min
j

{pt,ij > 0, ǫti
}

p−ti
= −max

j
{pt,ij < 0,−ǫti

} ,
(10)

and likewise for pn. Note that by definition 0 < p± ≤ ǫ.

To simplify notation, in any case where a relation holds for

both pt and pn, the subscript will be suppressed.

Each control input is constructed using a function, F , such

that ut = F (p+
t , p

−
t ) and un = F (p+

n , p
−
n ). The control func-

tion chosen for this implementation of the DRCA algorithm

00

0

ε

P
2

p
+

P
1

P
4

p
−

P
3

ε

u

u
min

u
max

Fig. 3. Example of the control function, F . Note that P4 moves up and
down with changing ud.

is piecewise-linear, defined by the following ordered triples

of the form (p+, p−, u):

P1 = (0, 0, 0) P2 = (ǫ, 0, umax)
P3 = (0, ǫ, umin) P4 = (ǫ, ǫ, ud).

(11)

An example of this control function is shown in Fig. 3.

Because F is a function of the desired control, ud must be

saturated such that

umin ≤ ud ≤ umax. (12)

A more intuitive way to choose values for ǫt and ǫn is to

relate them to gain-like parameters,

kt =
ut,max − ut,min

ǫt

(and similarly for kn). Note that both kt and kn have units

of inverse seconds. Also, one can see that the magnitude of

the gradient of the control function will always be less than

or equal to k, regardless of the desired control.

Theorem 2: The DRCA algorithm described above, when

implemented on n vehicles with dynamics (1) and input

constrained by (4), will keep the system collision free for

all time if the system starts conflict-free.

Proof: To measure the distance to a collision, define m

as a signed version of ‖e‖ (in terms of ṽ from the geometry

in Fig. 2):

m =

{

‖ṽ‖ , cT ṽ ≤ 0

‖ṽ‖ sin(|β| − α), cT ṽ > 0.
(13)

Note that m is negative during conflict and positive during

no conflict.

To ensure that a conflicted state is never reached, it is

sufficient to show that

lim
m→0+

ṁ ≥ 0,
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for every pair of vehicles. This condition implies that as the

boundary of a collision cone approaches, it will either stop

approaching or recede before a conflict is formed.

For cT ṽ ≤ 0 (using the ij notation again briefly for

clarity),

ṁij =
eT
ij

˙̃vij

mij
. (14)

Substituting (2) yields

eT
ij

˙̃vij

mij
=

1

mij

(

uti
eT
ijti + uni

sie
T
ijni

− utj
eT
ijtj − unj

sje
T
ijnj

)

.

Because of the symmetry of the problem eji = −eij , so

eT
ij

˙̃vij

mij
=

1

mij

(

uti
eT
ijti + uni

sie
T
ijni

+ utj
eT
jitj + unj

sje
T
jinj

)

=
‖eij‖

2

mij

(

uti

pt,ij
+

uni

pn,ij
+

utj

pt,ji
+

unj

pn,ji

)

=mij

(

uti

pt,ij
+

uni

pn,ij
+

utj

pt,ji
+

unj

pn,ji

)

. (15)

As long as the controller ensures that uti
has the same sign

as pt,ij and uni
has the same sign as its pn,ij , then ṁ ≥ 0

for that pair of vehicles. Note that each vehicle need only

calculate its control from its own point of view, and this rule

will automatically cause the vehicles to cooperate in avoiding

conflicts.

For cT ṽ > 0, the derivative of (13) becomes

ṁ = sin(|β|−α)
d ‖ṽ‖

dt
+‖ṽ‖ cos(|β|−α)

d

dt
(|β|−α). (16)

From the geometry,

d |β|

dt
=sgn(β)

(

d∠ṽ

dt
−
d∠r̃

dt

)

=sgn(β)
d∠ṽ

dt
+

‖ṽ‖

‖r̃‖
|sinβ|

The derivative of α is somewhat less straight-forward:

dα

dt
=

d

dt

(

arcsin

(

dsep

‖r̃‖

))

=
d

dt

(

dsep

‖r̃‖

)

(

1 −

(

dsep

‖r̃‖

)2
)−1/2

=
dsep ‖ṽ‖ cosβ

‖r̃‖
2





‖r̃‖
√

‖r̃‖
2
− d2

sep





=
‖ṽ‖

‖r̃‖
cosβ tanα.

Combining the above two terms gives

d

dt
(|β| − α) =

‖ṽ‖

‖r̃‖
(|sinβ| − cosβ tanα) + sgn(β)

d∠ṽ

dt
,

which can be substituted into (16) to get

ṁ = sin(|β| − α)
d ‖ṽ‖

dt
+ cos(|β| − α) sgn(β) ‖ṽ‖

d∠ṽ

dt

+ cos(|β| − α)
‖ṽ‖

2

‖r̃‖
(|sinβ| − cosβ tanα). (17)

To simplify the above, note that in the case of cT ṽ > 0, the

geometry of the vectors (Fig. 2) gives

eT ˙̃v = m

(

sin(|β| − α)
d ‖ṽ‖

dt

+ cos(|β| − α) sgn(β) ‖ṽ‖
d∠ṽ

dt

)

.

Therefore (17) reduces to

ṁ =
eT ˙̃v

m
+ cos(|β| − α)

‖ṽ‖
2

‖r̃‖
(|sinβ| − cosβ tanα).

Assuming the system is conflict-free, Lemma 1 dictates

|β| ≥ α. Therefore |tanβ| ≥ tanα, and so

|sinβ| − cosβ tanα ≥ 0.

Also, cT ṽ > 0 implies that cos(|β| − α) > 0. Therefore,

combining this result with (14) implies that

ṁ ≥
eT ˙̃v

m

for any value of cT ṽ. Recalling (15),

ṁij ≥ mij

(

uti

pt,ij
+

uni

pn,ij
+

utj

pt,ji
+

unj

pn,ji

)

.

Combining this result with the definitions (10), any con-

tinuous control function that satisfies

lim
p+

t →0

ut ≥ 0, lim
p−

t →0

ut ≤ 0,

lim
p+

n→0

un ≥ 0, lim
p−

n →0

un ≤ 0,
(18)

also ensures that

lim
m→0+

ṁ ≥ 0,

guaranteeing the system cannot enter a conflicted state.

The control function used in this implementation (11)

satisfies (18), so the DRCA algorithm will cause the n-

vehicle system to remain conflict-free for all time, assuming

it started that way.

Note this result holds for arbitrary (even time varying) ud,

umin and umax, so long as they satisfy (12) and C contains

the origin at every instant. In fact, further saturation may be

applied to u (for instance to accommodate a non-rectangular

constraint set) without affecting the safety guarantee, so long

as the sign of each input is preserved.
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(a) (b)

(c) (d)

Fig. 4. Five vehicle simulation: (a) shows the vehicle trajectories. Target paths are shown as dotted lines. Vehicles are shown at 25 seconds, while their
initial positions are denoted by small circles. All vehicles start with negative speeds (c). (b) shows a snapshot of the collision cones from the perspective
of the red vehicle at 25 seconds. The arrows denote each vehicle’s velocity. This illustration effectively overlaps several diagrams like Fig. 2. The yellow
vehicle is closest to conflict with the purple and yellow vehicles. (c) and (d) show the corresponding speeds and turning rates of the vehicles, respectively.

V. SIMULATIONS

A. Variable Speed

The first simulation (Fig. 4) is of a homogeneous group

of five vehicles that are capable of moving both forward

and backward. Each vehicle has a target that moves at

constant velocity, whose position and orientation the vehicle

is attempting to attain (using a standard target following

controller). The vehicles are all initialized with random head-

ings and negative initial speeds (see Fig. 4c), so the corners

in the paths denote points where the vehicle speed crosses

zero. The initial positions of the vehicles form a circle of

radius six meters, with their targets heading toward the center

(with some randomization in heading and position). Circles

of diameter dsep = 1 m are denoted around each vehicle

in Fig. 4a. A collision occurs if the circles overlap. In this

example kn = 3 s-1 and kt = 10 s-1, which causes the

vehicles to follow their desired acceleration more than their

desired turning. smax = −smin = 1 m/s and ut,max =
−ut,min = 0.5 m/s2 and un,max = −un,min = 0.5 rad/s.

In this example, the vehicles begin conflict-free, so no

deconfliction maneuver is necessary. However, the targets

move in such a way that following the desired controls

would cause the vehicles to collide. The DRCA algorithm

successfully keeps the system conflict-free while eventually

allowing the vehicles to attain their targets. The turning rate

control for each vehicle is shown in Fig. 4d. To demonstrate

how the controller operates, Fig. 4b shows the collision cones

from the red vehicle’s perspective at the same instant that

the vehicles are plotted in Fig. 4a. Interesting to note is that

while the blue and purple vehicles are the nearest in distance

to the red vehicle, the purple and yellow vehicles are closest

to conflict.

B. Heterogeneity

The second simulation is geared more toward aircraft, as

the group of five vehicles in Fig. 5 are restricted to a constant

speed of 1 m/s. In addition to the five vehicles is one static

obstacle (which can be thought of as a zero speed vehicle).

In this simulation, dsep is the sum of the radii of the two

vehicles involved, and the shaded regions represent the radius

of each vehicle. The vehicles’ initial conditions form them

into a circle of radius eight meters and point them roughly

toward the obstacle, so the system starts in conflict.

The vehicles perform the “all turn left” initial deconfliction

maneuver (as seen in Fig. 6), which brings the system to a
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Fig. 5. Five constant-speed vehicle simulation with one obstacle (red).
Desired paths are shown as dotted lines. Vehicles are shown at 9.5 seconds,
while their initial positions are denoted by small circles. The shaded circles
represent vehicle size, such that a collision occurs when the shaded regions
overlap.

Fig. 6. Turning rate input of the vehicles in Fig. 5. un,max = −un,min =

0.5 rad/s and kn = 5 s-1.

conflict-free state in less than one second. This deconfliction

maneuver naturally results in a roundabout type of behavior.

Each vehicle uses a path following algorithm for its desired

control, where the path is defined as a straight line emanating

from the vehicle’s initial conditions. All of the vehicles return

to their desired paths once they have passed the obstacle and

each other.

VI. CONCLUSION

The work presented in this paper has developed a decen-

tralized control algorithm for deconflicting n unicycle-type

vehicles. The DRCA algorithm is reactive and so can easily

be implemented real time on a wide variety of vehicles,

including aircraft, ships, submarines and cars. Collision

avoidance is guaranteed for a general n-vehicle system once

a conflict-free state is reached, even in the case of arbitrarily

small control authority. A lower bound (8) was found for

the initial separation of the n vehicles such that collision

avoidance is assured even when starting in conflict. Finally,

the DRCA algorithm allows the vehicles to follow changing

desired controls so long as safety is not sacrificed.

Many extensions are possible for this work. First, for ap-

plications to aircraft and submarines, broadening this concept

to three dimensions will add a degree of freedom and hence

increase the performance of the system. Second, the DRCA

algorithm shows promise for evading adversarial pursuers,

and may lead to interesting results regarding pursuit/evasion

games. Third, finding more general initial deconfliction ma-

neuvers will make this algorithm more suitable to general

conflict scenarios. Finally, integrating a finite detection hori-

zon into this algorithm will be important to maintain the

collision avoidance guarantees while operating with physical

sensor models that limit the available information.
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