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Abstract— In this paper a real-time cooperative path decision
algorithm for UAV surveillance is proposed. The surveillance
mission involves multiple competing objectives. To handle these
competing objectives, a layered decision framework is proposed,
in which different objectives are deemed relevant at different

decision layers depending on their priorities. Compared to
previous work, in which multiple objectives are integrated into a
single global objective function, this layered decision framework
allows an objective with higher priority to be satisfied first by
eliminating possible compromises from other less important
ones. An important objective of the path decision algorithm is
to navigate the UAV safely in a hostile environment. To achieve
this, the key is to increase the time horizon of the path decisions.
A multi-step look-ahead path decision strategy based on a Roll-
out Policy is proposed. This policy has moderate complexity
and, when used in the layered decision framework, it is able
to find safe paths effectively and efficiently. For the guidance
of a group of UAVs, the use of small path-decision groups and
the assigning of different tasks to different UAVs can also be
incorporated into the algorithm, which makes it more flexible
in such scenarios.

I. INTRODUCTION

Recently a considerable amount of research effort has

been directed toward the navigation and cooperative control

of groups of Unmanned (or uninhabited) Aerial Vehicles

(UAVs) [14], [5], [6], [12], [8]. In this paper, we focus on

the surveillance application of UAVs. Under a centralized

information structure, the objective is to develop a real-time

path decision algorithm for a group of UAVs to carry out

multi-objective surveillance in a hostile environment. The

objectives of the surveillance include: i) Navigate the UAVs

safely in a hostile surveillance environment; ii) Search for

new targets; iii) Classify the detected targets; and iv) Main-

tain tracks on the detected targets. In the previous work [16],

these objectives were combined into a single global objective

function. The path decision problem was formulated as a

nonlinear programming problem and solved by optimizing

the global objective function over the continuous control

variables (turn rates of the UAVs). However, there are several

drawbacks to this approach. First, since different objectives

have different meanings, the weighted sum of the objective

functions is difficult to interpret and validate. Secondly, the

simultaneous impacts of multiple objectives on the path

decisions could compromise the accomplishments of one on
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another objective in an unpredictable manner. As shown in

Section IV, the survival probabilities of the UAVs can drop

significantly when a combined global objective function is

used for path decisions. Lastly, due to the complexity of this

formulation, it was used to generate decisions with a one-step

look-ahead approach only, i.e., a myopic policy.

In this paper, a Layered Decision Framework is proposed

for the handling of the competing objectives and a multi-

step look-ahead strategy using a Roll-out Policy are proposed

for path decisions. Combined, they are shown to be able to

solve the problem of safe navigation and guide the UAVs for

multiple objectives in a hostile environment.

Two additional features can also be incorporated into the

path decision algorithm, which make it more flexible to

control a large number of UAVs. One is the formation of

decision groups. Another is to assign different objectives to

different UAVs. For conciseness, their details are in the full

version of this paper [20].

Section II describes the surveillance problem. Section III

is devoted to the layered decision framework for multi-

objective surveillance. In Section IV, the multi-step look-

ahead path decision strategy is proposed, and it is shown

to be effective in solving the problem of safe navigation.

Section V discusses issues when the algorithm is used to

guide a group of UAVs. Section VI provides the conclusions.

II. THE SURVEILLANCE MODELS AND OBJECTIVES

Assume that fixed wing Unmanned Aerial Vehicles are

used in a surveillance region. The UAVs can fly only within

a speed interval and have limited maneuverability. Following

the formulation in [16], it is assumed that the UAVs move

with a constant speed Vuav and the maximum turn rate the

UAVs can take is Ωmax. Unlike in [16], the control of the

UAVs is discretized into D levels, namely the UAVs can only

take turn rates from a finite set. For example, when D = 3
the control set is {−Ωmax, 0, Ωmax}. It is assumed that the

path decisions are made every T seconds. For cooperative

surveillance, the UAVs need to exchange information of their

states and measurements from the onboard sensors. In this

paper, a centralized data processing framework is used, that

is, all the information from the UAV network is available

for data fusion and path decisions. While the proposed path

decision algorithm works best in a centralized setting, it can
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be used in a distributed manner by treating each individual

UAV as a duplication of the decision center. The issue of

synchronizing information among distributed agents (UAVs)

in a distributed system is beyond the scope of this paper.

Objectives of the surveillance include: “Safe navigation”,

“Tracking”, “Search” and “Classification”. Details of their

models and objective functions are presented in [19], which

are similar to the formulations in [16]. This paper focuses

on the use of these objective functions for the path decisions

of the UAVs and here we only bring in those necessary

definitions and notations.

For “Tracking”, the sate of the target is defined as X =
[x ẋ y ẏ]

′

. At time kT the expected track (information)

update for target j at time (k + 1)T is

Îj(k + 1|k + 1) = Ij(k + 1|k) +

N∑

s=1

{π̂D(s, j, k + 1)

·Ĥ(s, j, k + 1)
′

R̂(s, j, k + 1)−1Ĥ(s, j, k + 1)} (1)

where Ij denotes the information matrix which is the inverse

of the covariance from the track: Ij = P−1
j , π̂D(s, j, k +

1), Ĥ(s, j, k + 1) and R̂(s, j, k + 1) are the expected

detection probability, observation matrix and measurement

covariance matrix. To evaluate the expected quality of the

track, the mean square position error (MSE) is used, since it

is directly related to the RMS position (components 1 and 3

of the state vector) error. For target j the predicted MSE is

M̂SE(j, k + 1) = P̂j(k + 1|k + 1)(1,1)

+ P̂j(k + 1|k + 1)(3,3) (2)

For “Safe navigation”: survival probability of the UAVs is

denoted as πS , which is a vector. The sth element, πS(s),
of πS is the survival probability of UAV s. The vector π̂S

denotes the expected survival probability of UAVs.

For “Search”, the surveillance region is divided into M ×
N sectors, and Pm,n denotes the probability that there is no

new target in the sector; the target arrivals are modeled as a

Poisson process.

For “Classification”, µj is the the class probability vector

for target j, which contains the probabilities that target j
belongs to each possible class.

III. LAYERED DECISION FRAMEWORK FOR

MULTI-OBJECTIVE SURVEILLANCE

In this paper, a layered decision framework is proposed to

handle the multiple objectives in the surveillance, in which

each objective occupies a decision layer according to its

priority. A decision layer consists of: i) The objective; ii) A

function that evaluates the degree of accomplishment of the

objective; iii) A satisfactory level of the objective, at which

point no further improvement is necessary. Table I shows an

example of arrangement of the decision layers. In the layered

decision framework, an objective with higher priority will be

considered first. The key idea is once a satisfactory level is

reached on an objective, the “satisfied” objective will have

no effect on the path decisions; thus the remaining freedom

in the path decisions can be passed on to the next decision

layer. To illustrate this, consider a simple case of a group of

N = 2 UAVs tracking two targets while performing search

in the surveillance region. Suppose the control of each UAV

is discretized into D = 3 levels. At every decision epoch, the

number of control options for the UAV group is DN = 9.

For simplicity, the example will stay with one-step look-

ahead path decision (a multi-step look-ahead strategy will

be proposed later). All the data in this example are for the

purposes of illustration only.1

In the layered decision framework, the control options are

first evaluated in the top decision layer of “Safe navigation”.

Table II shows the resulting m best control options (m = 5 in

this case) marked with “
√

”. They form a reduced control set,

which is passed on to the second decision layer of “Tracking”

for further selection. Similar procedures as in Tables II are

used in other decision layers, e.g., “Tracking” and “Search”,

except that different evaluation functions and satisfactory

levels are used. Sifting through the decision layers, the path

decision algorithm ends when the best control option is

found. The uniqueness of the final path decision can be

guaranteed by simply setting the “satisfactory level” of the

last decision layer to the “ideal” one. In this example, the

last decision layer is “Search”, thus τPNNT can be set to 1,

which is an “ideal” level that can never be attained.

Compared to the weighted sum approach, the layered

decision framework has the following advantages:

• Multiple objectives of surveillance are clearly delin-

eated. Objectives with higher priorities are free from

possible compromises from the less important ones.

• For each objective, the “satisfactory” levels allow the

path decision algorithm to be sensitive to the entities

(e.g., targets in the tracking layer, sectors in the search

layer) that demand more attention.

• The layered decision framework allows different path

decision strategies to be used for the objectives, which

leads to improved efficiency.

• Potential savings in computation can be achieved, when

a path decision is determined by the first few decision

layers, since the remaining layers do not need to be

evaluated.

IV. MULTI-STEP LOOK-AHEAD PATH DECISION

STRATEGY FOR UAV NAVIGATION

An important objective for the path decision algorithm

is to navigate the UAV group safely in the surveillance

region. In [16] the survival probabilities of the UAVs are

incorporated into the global objective function through the

1In actual simulations, the differences between different control options
are much smaller than those shown in this example. However, by always
following the best control option, the UAVs will navigate to desired positions
by capturing the gradient information of the objective functions.
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TABLE I

DECISION LAYERS IN THE PATH DECISION ALGORITHM FOR THE SURVEILLANCE

Objective Decision Layer Satisfactory Evaluation criterion
(priority) level for the accomplishment

Safe Navigation 1 τPS min{πS(s), τPS}
Classification 2 τCLS min{max{µj}, τCLS}

Tracking 3 τMSE(j) max{MSE(j), τMSE(j)}
Search 4 τPNNT min{Pm,n, τPNNT }

s is the index of the UAVs and j is the index of the targets.

TABLE II

DECISION LAYER 1: CONTROL DECISIONS FOR SAFE NAVIGATION WITH N = 2 UAVS AND τPS = 0.9

Control index (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

π̂S 0.92 0.95 0.87 0.99 0.82 0.81 0.93 0.83 0.91
(Expected πS at k+1) 1 0.98 0.91 0.92 0.87 0.95 1 0.91 0.92

π̄S 0.9 0.9 0.87 0.9 0.82 0.81 0.9 0.83 0.9
(min{π̂S , τPS}) 0.9 0.9 0.9 0.9 0.87 0.9 0.9 0.9 0.9

Control Evaluation 0.81 0.81 0.783 0.81 0.713 0.729 0.81 0.747 0.81

(
∏

π̄S(s))
√ √ √ √ √

track update as

Îj(k + 1|k + 1) = Ij(k + 1|k)

+

N∑

s=1

{π̂S(s, k + 1)π̂D(s, j, k + 1)

· Ĥ(s, j, k + 1)
′

R̂(s, j, k + 1)−1Ĥ(s, j, k + 1)} (3)

which is a variation of (1). If the expected survival prob-

abilities of the UAVs, π̂S(s, k + 1), drop, there will be a

reduction in the expected information gain. As a result, the

path decision algorithm tends to avoid drops in the survival

probabilities of the UAVs. While this formulation intuitively

makes sense, it turns out to be incapable of preventing

the UAV survival probabilities from significant drops. There

are two reasons for this problem. First, tracking and safe

navigation are two competing objectives. Particularly when

a UAV is tracking a single target it tends to get close to

the target, while safe navigation requires the UAV to keep

adequate distance from the target. The combination of the

objectives into a single global objective function can lead

to unpredictable compromises. This problem can be solved

using the layered decision framework. Second, due to limited

maneuverability of the UAV, a one-step look-ahead path

decision strategy can result in late detections of potential

risks. In this section, a multi-step look-ahead path decision

strategy is proposed based on a Roll-out Policy [3]. When

used in the decision layer of safe navigation, it is shown to

produce significantly improved results.

A. Multi-step Look-ahead Path Decision and Roll-out Policy

By discretizing the controls of the UAVs, multi-step look-

ahead path decision for the UAV group can be viewed as a

combinatorial optimization problem. However, the problem

is NP-hard, e.g., for a UAV group that consists of N UAVs,

the optimal solution for a K-step look-ahead path decision

needs to consider DNK possible paths, which can be far

too expensive for a real-time algorithm even with modest N
and K . Instead of seeking the optimal solution, a suboptimal

solution requiring less computation is much more desirable.

A Roll-out policy, proposed in [3], is a suboptimal solution

to combinatorial optimization problems. Based on a heuristic

solution to the problem (called a base heuristic), the Roll-

out policy is guaranteed to find a solution that is no worse

than the base heuristic. Successful applications of the Roll-

out policy can be found in [4], [18], in which it works

surprisingly well by producing near-optimal solutions.

k

k+1

k+2

k+3

Greedy Heuristic

k

k+1

k+2

k+3

Roll-out Policy with Greedy Heuristic (RH)

(a) (b)

Fig. 1. Greedy Heuristic and Roll-out Policy

Fig. 1 illustrates the greedy heuristic and the correspond-

ing Roll-out policy in a 3-step look-ahead path decision

strategy for a single UAV. Assume that at each node, there

are 3 controls (turn rates) available for the UAV. Using the

Greedy heuristic, the control that leads to the next “node”

with the best immediate result will be selected. Fig. 1(a)

shows the path (control sequence) from k to k+K (= k+3)

generated by the Greedy heuristic (highlighted by the thick

dashed arrows). In the Roll-out policy, as shown in Fig. 1(b),

instead of starting from k, the greedy heuristic starts from

k + 1 to generate the remaining paths to k + 3. The control

at k that produces the best path to k + 3 (highlighted by
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the thick arrow) is selected as the control decision. Notice

that the evaluations of the paths from k to k + K are

based on the information available at k and the procedure is

repeated at every decision time with the updated information.

Compared to the exhaustive search, which requires one to

evaluate
K∑

i=1

DN ·i “nodes”, the Roll-out policy only evaluates

DN +(K −1)D2N nodes. The computational cost increases

linearly with the decision horizon K .

B. The Decision Layer of Safe Navigation

The proposed multi-step look-ahead path decision strategy

can be used in any decision layer in the layered decision

framework (see Section III). Again, instead of seeking one

best control decision at k, at each decision layer, the path

decision algorithm looks for m best controls which will be

passed on to the next decision layer for further selection.

An important issue in the K-step lookahead path decision

algorithm is to evaluate and compare the control sequences

from k to k+K . Fig. 1 shows that the evaluation of a control

sequence from k to k + K requires the evaluations of the

nodes from k + 1 to k + K . In the layer of safe navigation,

a node at k + i can be evaluated by

ĴS(k + i) =
∑

s

ln(min{π̂S(s, k + i), τPS}) (4)

where s is the index of the UAVs and τPS is the satisfactory

level introduced in Table II. Accordingly, the evaluation of

a control sequence from k to k + K involves computing

K∑

i=1

ĴS(k + i) (5)

In addition, a control sequence is considered to be “safe”

if the expected survival probabilities of the UAVs are above

τPS along the path, namely,

min
s

{π̂S(s, k + i)} ≥ τPS ∀ i = 1, ...., K (6)

Therefore, all “safe” control sequences satisfy

K∑

i=1

ĴS(k + i) = KN ln(τPS) (7)

Based on above definitions, at the kth decision time, the

procedure for a K-step look ahead path decision algorithm

for safe navigation is as follows:

• Use the Roll-out Policy to generate control sequences

from k to k + K .

• If more than one “safe” control sequences that satisfy

(7) are detected, pass the controls at k from the “safe”

control sequences to the next decision layer.

• Otherwise, the control at k that leads to the “best”

control sequence (evaluated using (5)) is selected as the

path decision. The evaluations in the remaining decision

layers are not needed.

C. Simulation Results for UAV Safe Navigation: Roll-out vs.

One-step Look-ahead

Consider first a “toy example” in which one UAV searches

and tracks one target. For simplicity, classification is not

included here. Table III shows the decision layers of the

path decision algorithm.2 Notice that τMSE in the track-

ing layer is set to zero, which means once the target is

detected, the UAV will “focus” on tracking. The surveil-

lance region is 40 km×40 km and is divided into 10×10

sectors. The target starts from [2000, 14200] m with initial

velocity [10, −2] m/s. The process noise of the target has

intensity
√

q = 0.01 m/s2. It is assumed that VUAV =
40 m/s and the control set is {−3, 0, 3} deg/s. The on

board GMTI radar has measurement standard deviations of

[10 m, 1 mrad, 1 m/s]. There are 3 stationary threats located

at [5000, 15000] m, [7000, 7000] m and [20000, 10000] m
(indicated by the “asterisks”). The circles show the bound-

aries of the corresponding restricted zones within which the

survival probability of the UAV from the threat is below the

satisfactory level τPS .

For comparison purposes, the combined objective ap-

proach, in which the survival probability of the UAV is

incorporated into the expected track update as (3), is also

tested. Notice that in the layered decision framework, safe

navigation is treated separately from the objective of track-

ing; thus, unlike (3), the objective of the expected track

update given in (1) does not deal with survival probabilities

of the UAVs. A modified version of (3)

Îj(k + 1|k + 1) = min
s

{π̂S(s, k + 1)}Ij(k + 1|k)

+

N∑

s=1

{π̂S(s, k + 1)π̂D(s, j, k + 1)

· Ĥ(s, j, k + 1)
′

R̂(s, j, k + 1)−1Ĥ(s, j, k + 1)} (8)

is tested as well, which puts more penalty to the drops in

the survival probabilities.

Fig. 2 shows trajectories of the UAV and the target in one

simulation.

Figs. 3–4 show the minimum survival probability of the

UAV over 100 MC runs, in which “combined objective 1”

refers to the approach that uses the expected update in (3)

as the objective function and “combined objective 2” refers

to the approach that uses the expected update (8) as the

objective function. As shown in Fig. 3, the one-step look-

ahead path decision strategy cannot meet the requirement for

safe navigation, no matter which setting is used. In Fig. 4,

although a 9-step look-ahead path decision strategy is used,

significant drops in the survival probability of the UAV are

still observed in the two combined objective approaches.

Only the 9-step look-ahead path decision strategy with the

layered decision framework is able to keep the survival

probability of the UAV close to the satisfactory threshold

of τPS = 0.9. The rare drop to 0.8 occurred only once in

2If the tactical value of the information is very high, safe navigation can
be moved to a layer with lower priority.
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TABLE III

DECISION LAYERS IN THE SIMULATION

Objective Decision layer Satisfactory Evaluation Criterion Strategy for
(priority) level for the accomplishment path decision

Safe Navigation 1 τPS = 0.9 min{πS(s), τPS} multi-step

Tracking 2 τMSE = 0 m2 max{MSE(j), τMSE} one-step

Search 3 τPNNT = 1 min{Pm,n, τPNNT } one-step
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Fig. 2. UAV Trajectory in one Simulation
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Fig. 3. Minimum survival probability (one-step look-ahead, 100 MC runs)

the 100 runs. Fig. 5 compares the RMS position errors of

the algorithms. Notice that, around the 100th decision time,

the layered decision framework has larger RMS position

errors than those of combined objective function approaches,

but the drops in the survival probability are avoided, as

shown in Fig. 4. This is an example where an objective with

higher priority (safe navigation) will not be compromised by

objectives with lower priorities (tracking and search), which

is a desirable feature of the layered decision framework. Also

notice that, most of the time, the three approaches have no

significant differences in the RMS position errors.
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Fig. 4. Minimum survival probability (9-step look-ahead, 100 MC runs)
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V. MULTIPLE UAV COOPERATIVE PATH DECISION

ALGORITHM FOR SURVEILLANCE MISSIONS

The multi-step look-ahead path decision algorithm pro-

posed in Section IV has no limitation on the number of

UAVs. However, its complexity increases exponentially as

the number of UAVs increases. To contain the computational

complexity of the path decision algorithm, clustering of

UAVs into small decision groups can be used. Also, when

guiding a group of UAVs, the function of assigning different

tasks to different UAVs is of interest. These two functions can

be easily incorporated into the Layered Decision framework.

Details of the implementations are provided in [20], where

the effectiveness of the proposed algorithm is evaluated in a

surveillance scenario with 4 UAVs and 4 targets as in Fig.
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6. It is shown that the proposed path decision algorithm for
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Fig. 6. UAV trajectories in one simulation (three exclusion zones are
around the “asterisks”)

UAV group is able, with moderate complexity, to (i) guide a

group of UAVs cooperatively for surveillance missions with

competing objectives, and (ii) achieve balanced performance

according to a prioritized list of objectives.

VI. CONCLUSIONS

In this paper, the problem of guiding a group of Unm-

maned Aerial Vehicles (UAV) for a multi-objective surveil-

lance mission in a hostile environment is studied. First,

the control of the UAV is discretized into a finite set,

which amounts to sampling the objective functions over the

continuous control space. The comparisons of the sample

values are able to capture the gradient information in the

objective functions, thus guiding the UAV group for the

surveillance task.

More importantly, the discretization of the control vari-

ables provides extra freedom in dealing with multiple ob-

jectives in the surveillance mission. This leads to a layered

decision framework, in which different objectives are treated

in separate decision layers in the order of their priorities.

Compared to the approach that uses a single global objective

function which is a combination of all the objectives, the

layered decision framework has the following advantages: i)

Multiple objectives in the surveillance mission are isolated;

thus objectives with higher priorities are free from possible

compromises from the less important ones; ii) For each

objective, the path decision algorithm is more sensitive to the

entities (targets in tracking, sectors in search) that demand

more attention; iii) Suitable path decision strategies can be

used for different objectives, which makes the algorithm

computationally efficient.

The discretized controls also allow the extension of the

time horizon of the path decisions, which is particularly

important for the safe navigation of the UAVs. A multi-

step look-ahead path decision strategy based on the Roll-

out policy is proposed. When used in the layered decision

framework, this approach produces significantly improved

results over the one-step look-ahead policy.

For the control of a group of UAV, the use of small path-

decision groups and assigning different objectives to different

UAVs can also be incorporated, which make the algorithm

more flexible. The proposed path decision algorithm is shown

to guide a group of UAVs efficiently and safely for the multi-

objective surveillance mission considered.
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