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Abstract— Open channel flow is traditionally described by
hyperbolic conservation laws (the Saint-Venant equations), that
can be controlled using boundary conditions. For horizontal
frictionless channels, a classical approach consists in using
the characteristic form to diagonalize the equations, using so-
called Riemann invariants. This elegant approach is much more
difficult to apply when friction and slope are not zero, i.e.
in the vast majority of cases. On the other hand, a Laplace
based method enables to diagonalize the system with nonzero
slope and friction, but in the frequency domain. This paper
enlightens a link between both methods, showing that the
frequency domain method can be considered as an extension of
the Riemman invariants form for channels with non zero slope
and friction. As an application, we derive explicit expressions
for the boundary controls solving the motion planning problem.

I. INTRODUCTION

A. Motivation

This work is motivated by the problem of controlling

an open channel represented by Saint-Venant equations.

These hyperbolic partial differential equations describe the

dynamics of open channel hydraulic systems, e.g. rivers,

irrigation or drainage canals, sewers, etc., assuming one

dimensional flow.

The distributed feature of these systems is usually taken

into account by using a Riemann invariants approach [2],

which uses an adequate change of variables to diagonalize

the system. However, this solution is only valid for a specific

case, corresponding to rectangular horizontal frictionless

channels around a uniform flow regime. This main limitation

of the Riemann invariants method has lead to consider an

alternative method based on frequency domain approach

[5], [4], [6]. Such a method is very close to the one

classically used by control engineers: the nonlinear PDE is

first linearized around a stationary regime, then the Laplace

transform is used to consider the linearized PDE in the

frequency domain, and classical frequency domain tools

are used to design controllers, in a very similar way as

when the system is represented by finite dimensional transfer

functions.

An interesting feature of this approach is that it naturally

takes into account the effect of slope and friction on the

hyperbolic equation, while this is not easily done with

Riemann invariants [8]. Indeed, the characteristic form leads

to Riemann invariants only when the channel is horizontal
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and there is no friction. In that case, the characteristic form

leads to diagonalize the system.

On the other hand, the frequency domain approach also

enables to diagonalize the system with nonzero slope and

friction, but in the frequency domain.

We investigate in this article the link between both ap-

proaches and provide closed-form expressions for a dynamic

change of variable that extends the Riemann invariants

approach to the case where the open channel has nonzero

slope and friction.

As an application, we derive expressions for the boundary

controls solving the motion planning problem, which has

been considered in other applications [7]. We also extend

the stability condition for feedback control obtained using

Riemann invariants methods to the case of channels with

slope and friction.

B. Control Problem

The linearized Saint-Venant equations express mass and

momentum conservation in an open channel around a steady

flow defined by a discharge Q0 and a water depth Y0.

The linearized equations are given by:

∂ξ

∂t
+ A

∂ξ

∂x
+ Bξ = 0 (1)

where ξ(x, t) = (a(x, t), q(x, t))T : [0, L] × [0,+∞) →
Ω ∈ R

2 is the state of the system and A =

(

0 1
αβ α − β

)

,

B =

(

0 0
−γ δ

)

.

The parameters are given by: α = C0 +V0, β = C0 −V0,

γ = g(1 + κ)Sb, δ = 2gSb

V0

, κ = 7
3 − 4A0

3T0P0

∂P0

∂Y , where V0 is

the mean velocity, C0 the celerity, F0 = V0/C0 is the Froude

number (F0 < 1), Sb the bottom slope, κ a coefficient linked

to the geometry of the channel, T0 the top width.

We consider the solutions of the Cauchy problem for the

system (1) over [0,+∞) × [0, L] under an initial condition

ξ(0, x) = ξ0(x), x ∈ [0, L] and two boundary conditions of

the form q(t, 0) = q0(t) and q(t, L) = qL(t), t ∈ [0,+∞).

II. HORIZONTAL FRICTIONLESS CASE

We deal in this section with the special case where δ =
γ = 0, corresponding to horizontal frictionless open channel

flow.

A. Characteristic Form

Let us introduce the following change of variable, which

corresponds to the characteristic form of the linearized
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equations:

χ1(x, t) = q(x, t) + βT0y(x, t) (2a)

χ2(x, t) = q(x, t) − αT0y(x, t) (2b)

Using a matrix notation, and the fact that ξ = (T0y, q)T ,

we therefore have:

χ(x, t) = Xξ(x, t)

with X =

(

β 1
−α 1

)

.

This change of variable enables us to diagonalize matrix

A as follows:

A = X
−1

DX

with

D =

(

α 0
0 −β

)

.

The equation (1) can then be rewritten as:

∂χ

∂t
+ D

∂χ

∂x
= 0 (3)

This change of variable corresponds to the characteristic

form of the equations. Indeed, the new variable χ(x, t)
verifies:

dχ1

dt
(x1(t), t) = 0 along

dx1

dt
(t) = α (4a)

dχ2

dt
(x2(t), t) = 0 along

dx2

dt
(t) = −β (4b)

The variables χ1(x, t) and χ2(x, t) are constant along the

characteristic lines defined by Eqs. (4a) and (4b). They are

called Riemann invariants of the system (1).

Let us now use the Laplace transform to compute the

transfer matrix of the system.

B. Frequency Domain Approach

We denote in the following L(f) = f̂(s) the Laplace

transform of a function f(t). To derive the transfer matrix,

we apply Laplace transform on Eq. (3), which leads to:

∂χ̂(x, s)

∂x
= −sD−1χ̂(x, s) + D

−1χ0(x) (5)

where χ0(x) = Xξ0(x) is the initial condition expressed in

the characteristic variables.

The general solution of this ordinary differential equation

in x is then given by:

χ̂(x, s) = Φ(x, s)χ̂(0, s)+Φ(x, s)

∫ x

0

Φ(v, s)−1
D

−1χ0(v)dv

(6)

with Φ(x, s) = e−sD−1x =

(

e−
sx
α 0

0 e
sx
β

)

.

The components of the solution can then be expressed as:

χ̂1(x, s) = e−s x
α χ̂1(0, s) + χ̄10(x, s) (7a)

χ̂2(x, s) = e−s L−x
β χ̂2(L, s) + χ̄20(x, s) (7b)

with

χ̄10(x, s) =
1

α

∫ x

0

e−s x−v
α χ10(v)dv (8a)

χ̄20(x, s) =
1

β

∫ L

x

es x−v
β χ20(v)dv (8b)

Let us now define τ1 and τ2, the delays for downstream

and upstream propagation, respectively:

τ1 =
L

α
=

L

C0 + V0
(9a)

τ2 =
L

β
=

L

C0 − V0
(9b)

Using Eqs. (7), we can now express the input-output

transfer matrix in terms of the characteristics variables at

the boundaries:
(

χ̂1(L, s)
χ̂2(0, s)

)

= GP (s)

(

χ̂1(0, s)
χ̂2(L, s)

)

+

(

χ̄10(L, s)
χ̄20(0, s)

)

(10)

with GP (s) =

(

e−τ1s 0
0 e−τ2s

)

.

We see that in the horizontal frictionless case, the transfer

matrix is diagonal in the characteristics variables, and only

contains delays. This is consistent with the physical inter-

pretation of the characteristics: the variable χ1(x, t) can be

expressed as a delayed function of its value at the upstream

boundary x = 0, and the variable χ2(x, t) can be expressed

as a delayed function of its value at the downstream boundary

x = L. The flow is the result of the interaction of these two

traveling waves.

1) Solution in the Time Domain: The solution (6) can be

expressed in the time domain using the changes of variables

t1 = x−v
α for the first integral of (8) and t2 = v−x

β for the

second one. This yields:

χ̄10(x, s) =

∫ x
α

0

e−st1χ10(x − αt1)dt1 (11a)

χ̄20(x, s) =

∫
L−x

β

0

e−st2χ20(x + βt2)dt2 (11b)

We now observe that χ̄10(x, s) and χ̄20(x, s) are the Laplace

transform of χ10(x) and χ20(x) on a truncated time interval,

[0, x
α ] for χ10(x) and [0, L−x

β ] for χ20(x). This is related

to the fact that the initial condition has an influence in a

given sector of the (x, t) plane. Since we also know that

the inverse Laplace transform of e−τsû(s) is the delayed

function u(t−τ), we obtain the following expressions in the

time domain:

χ1(x, t) =

{

χ10(x − αt) if x ≥ αt

χ1

(

0, t − x
α

)

if x < αt
(12a)

χ2(x, t) =

{

χ20(x + βt) if L − x ≥ βt

χ2

(

L, t − L−x
β

)

if L − x < βt
(12b)

We recover the classical solution obtained using the charac-

teristics form. This result enables to show the link between

the time domain and the frequency domain approaches.
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III. NONZERO SLOPE AND FRICTION

Nonzero slope and friction modify the characteristics

equations: they induce a coupling which appears as a source

term in the characteristics equations. But, as we will show

below, it is still possible to eliminate this coupling by using

a dynamic change of variable, which can easily be obtained

in the Laplace domain.

Using the characteristics change of variable leads to:

∂χ

∂t
+ D

∂χ

∂x
+ Eχ = 0 (13)

where χ(x, t) = Xξ(x, t) with ξ(x, t) =

(T0y(x, t), q(x, t))T , X =

(

β 1
−α 1

)

, D =

(

α 0
0 −β

)

,

and E = XBX
−1, with B =

(

0 0
−γ δ

)

.

In the horizontal frictionless case, the characteristics sys-

tem was diagonal because matrix B was zero. In the uniform

flow case with nonzero slope and friction, matrix B is non

zero, and matrix E in Eq. (13) is non diagonal. Then, the

solution in the time domain cannot be obtained as easily with

the characteristics variables as in the horizontal frictionless

case.

Still, the system can be diagonalized in the Laplace

domain, as will be shown below. We now turn back to the

original system (1).

A. Derivation of the Transfer Matrix

We apply Laplace transform to the linear partial dif-

ferential equations (1), using the classical relation d̂f
dt =

sf̂(s) − f(0), which yields:

∂ξ̂(x, s)

∂x
= A(s)ξ̂(x, s) + Bξ(x, 0) (14)

with

A(s) =
1

αβ

(

(α − β)s + γ −s − δ
−αβs 0

)

B =
1

αβ

(

(β − α) 1
αβ 0

)

.

Let us diagonalize matrix A(s):

A(s) = X (s)−1D(s)X (s) (15)

with X (s) =

(

s
λ2(s)

1
s

λ1(s)
1

)

, D(s) =

(

λ1(s) 0
0 λ2(s)

)

,

X (s)−1 = λ1(s)λ2(s)
s(λ1(s)−λ2(s))

(

1 −1
− s

λ1(s)
s

λ2(s)

)

, and where

λ1(s) and λ2(s) are the eigenvalues of A(s), given by:

λ1(s) =
(α − β)s + γ −

√

d(s)

2αβ
(16)

λ2(s) =
(α − β)s + γ +

√

d(s)

2αβ
(17)

with d(s) = (α + β)2s2 + 2[(α − β)γ + 2αβδ]s + γ2.

In the following, we will factorize d(s) as follows: d(s) =

(α + β)2[(s + b)2 − a2], with a2 = 4αβ(αδ−γ)(γ+βδ)
(α+β)4 and

b = (α−β)γ+2αβδ
(α+β)2 .

For subcritical flow, it is easy to prove that 0 < a < b.

B. Distributed Transfer Matrix

Once matrix A(s) is diagonalized, the distributed transfer

matrix relating the water depth ŷ(x, s) and the discharge

q̂(x, s) at any point x in the canal pool to the upstream and

downstream discharges is obtained as:

(

ŷ(x, s)
q̂(x, s)

)

= G(x, s)

(

q̂(0, s)
q̂(L, s)

)

(18)

with

g11(x, s) =
λ2(s)e

λ2(s)x+λ1(s)L − λ1(s)e
λ1(s)x+λ2(s)L

T0s(eλ2(s)L − eλ1(s)L)
(19a)

g12(x, s) =
λ1(s)e

λ1(s)x − λ2(s)e
λ2(s)x

T0s(eλ2(s)L − eλ1(s)L)
(19b)

g21(x, s) =
eλ1(s)x+λ2(s)L − eλ2(s)x+λ1(s)L

eλ2(s)L − eλ1(s)L
(19c)

g22(x, s) =
eλ2(s)x − eλ1(s)x

eλ2(s)L − eλ1(s)L
(19d)

C. Link with the Characteristics Form

We observe that in the case where γ = δ = 0, correspond-

ing to a frictionless horizontal channel, we have s
λ2(s)

= β

and s
λ1(s)

= −α. Therefore, we have X (s) = X, where

X is the matrix used to convert the equations into the

characteristics form.

The change of variable ζ̂(x, s) = X (s)ξ̂(x, s) can there-

fore be considered as an extension of the change of variable

χ(x, t) = Xξ(x, t) leading to the characteristics form.

Indeed, the two changes of variable enable to diagonalize

the system of equations. However, the change of variable

ζ̂(x, s) = X (s)ξ̂(x, s) is a dynamic one, since X (s) depends

on the Laplace variable s.

The solutions in terms of the generalized characteristic

variables is given by:

ζ̂1(x, s) = eλ1(s)xζ̂1(0, s) (20a)

ζ̂2(x, s) = e−λ2(s)(L−x)ζ̂2(L, s) (20b)

We see here that the diagonal form can also be interpreted

as traveling waves: one traveling downstream at “speed”

− s
λ1(s)

, the other one traveling upstream at “speed” s
λ2(s)

.

Moreover, it is possible to derive explicit expressions in

the time domain for the characteristics variables.

1) Explicit Expressions for the Characteristics: The

change of variable enables to diagonalize the system. Finally,

the solution in terms of the new characteristics variables

can be obtained directly in the frequency domain using Eqs.

(20). These expressions can also be translated into the time

domain. We introduce the filters F̂ (s) and Ĥ(l, s) defined

by:

F̂ (s) = s + b −
√

(s + b)2 − a2 (21)

Ĥ(l, s) = elF̂ (s) − 1 (22)
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Using inverse Laplace transform tables [1, pp. 1025-1027],

one can check that:

F (t) =
ae−bt

t
I1(at) (23)

H(l, t) =
ale−bt

√
t2 − l2

I1

(

a
√

t2 − l2
)

(24)

with I1(t) the modified Bessel function of order 1.

Using Eq. (21), we have:

λ1(s) = −r1 −
s

α
+

(α + β)

2αβ
F̂ (s) (25a)

λ2(s) = r2 +
s

β
− (α + β)

2αβ
F̂ (s) (25b)

with with r1 = αδ−γ
α(α+β) and r2 = βδ+γ

β(α+β) .

Therefore, we have:

e
λ1(s)x = e

−r1x
e
−

x
α

s

[

1 + Ĥ
( (α + β)

2αβ
x, s
)

]

e
−λ2(s)(L−x) = e

−r2(L−x)
e
−

L−x
β

s

[

1 + Ĥ
( (α + β)

2αβ
(L − x), s

)

]

Applying inverse Laplace transform to Eqs. (20) enables
us to express the generalized characteristics as a function of
their values at the boundary:

ζ1(x, t) = e
−r1x

[

ζ1

(

0, t −
x

α

)

+

∫ t

0

H
( (α + β)

2αβ
x, t − τ

)

ζ1

(

0, τ −

x

α

)

dτ
]

(26a)

ζ2(x, t) = e
−r2(L−x)

[

ζ2

(

L, t −
(L − x)

β

)

+

∫ t

0

H
( (α + β)

2αβ
(L − x), t − τ

)

ζ2

(

L, τ −

(L − x)

β

)

dτ
]

(26b)

The expressions (26) generalize the ones already obtained

in the horizontal frictionless case. The variable ζ1(x, t) is

obtained as the sum of its delayed value at x = 0 plus

its delayed convolution with an infinite dimensional kernel

H(l, t), multiplied by a damping coefficient e−r1x.

2) Explicit Expressions in the Time Domain: We now

use the expressions of the complex eigenvalues λ1(s) and

λ2(s) to obtain the explicit expression of the generalized

characteristics for the uniform flow case. The generalized

characteristics variables are given by:

ζ̂1(x, s) = q̂(x, s) +
T0s

λ2(s)
ŷ(x, s) (27a)

ζ̂2(x, s) = q̂(x, s) +
T0s

λ1(s)
ŷ(x, s) (27b)

Using Eqs. (25), expanding s/λ1(s) and s/λ2(s) and

rearranging, we get:

s

λ2(s)
= β − β2r2

s + δ
− (α + β)

2(s + δ)
F̂ (s) (28a)

s

λ1(s)
= −α +

α2r1

s + δ
+

(α + β)

2(s + δ)
F̂ (s) (28b)

We now use the inverse Laplace transform to express the

generalized characteristics ζ(x, t) as follows:

ζ1(x, t) = χ1(x, t) − β2r2T0ỹ(x, t)

− T0(α + β)

2

∫ t

0

F (t − τ)ỹ(x, τ)dτ (29a)

ζ2(x, t) = χ2(x, t) + α2r1T0ỹ(x, t)

+
T0(α + β)

2

∫ t

0

F (t − τ)ỹ(x, τ)dτ (29b)

where χ1(x, t) = q(x, t) + βT0y(x, t) and χ2(x, t) =
q(x, t) − αT0y(x, t) are the Riemann invariants for the

solution in the horizontal frictionless case (see Eqs. (2)),

ỹ(x, t) is defined by:

ỹ(t) =

∫ t

0

e−δ(t−τ)y(x, τ)dτ, (30)

and F (t) is the convolution kernel given by Eq. (23).

We therefore observe that even if the characteristics ap-

proach fails to diagonalize the system with a static change

of variable, it is still possible to diagonalize the system,

with a dynamic change of variable. This dynamic change of

variable can be considered as the extension of the change

of variable that leads to the Riemann invariants for the

horizontal frictionless channel case.

The change of variable includes a first order filter of the

water level, and a more complex infinite dimensional filter

with convolution kernel F (t).

We have therefore obtained a dynamic change of variable

which is the extension of the characteristic form in the

horizontal frictionless case. This change of variable includes

a first order filter, and an infinite dimensional filter, which

are both linked to the nonzero values of parameters γ and δ.

When γ = δ = 0, we recover the horizontal frictionless case,

and the variables ζ(x, t) coincide with the characteristics

variables χ(x, t).

3) Inverse Transform: The inverse transform can also be

expressed in the time domain as follows. Using the inverse

transformation ξ̂(x, s) = X (s)−1ζ̂(x, s), we have:

ŷ(x, s) =
λ1(s)λ2(s)

T0s(λ1(s) − λ2(s))
(ζ̂1(x, s) − ζ̂2(x, s))

q̂(x, s) =
1

λ1(s) − λ2(s)
(λ1(s)ζ̂2(x, s) − λ2(s)ζ̂1(x, s))

Standard manipulations lead to

ŷ(x, s) =
1

T0(α + β)
∆ζ̂(x, s)

+
1

T0(α + β)

[ F̂ (s) + cy
√

(s + b)2 − a2

]

∆ζ̂(x, s)

q̂(x, s) =
1

α + β
(αζ̂1(x, s) + βζ̂2(x, s))

+
α − β

2(α + β)

[ F̂ (s) + cq
√

(s + b)2 − a2

]

∆ζ̂(x, s)
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with

cy =
(α2 + β2)δ − (α − β)γ

(α + β)2

cq =
2αβ

(α + β)2
(2γ − (α − β)δ).

and ∆ζ̂(x, s) = (ζ̂1(x, s) − ζ̂2(x, s)).
Using inverse Laplace transform tables [1], we find:

L−1

{

F̂ (s)
√

(s + b)2 − a2

}

= ae−btI1(at)

and

L−1

{

1
√

(s + b)2 − a2

}

= e−btI0(at)

with I0(t) and I1(t) the modified Bessel functions of order

0 and 1, respectively.
Therefore, the inverse transformation from

(ζ1(x, t), ζ2(x, t)) to (y(x, t), q(x, t)) can be expressed
as:

y(x, t) =
1

T0(α + β)
∆ζ(x, t)

+
a

T0(α + β)

∫ t

0

e
−b(t−τ)

I1(a(t − τ))∆ζ(x, τ)dτ

+
cy

T0(α + β)

∫ t

0

e
−b(t−τ)

I0(a(t − τ))∆ζ(x, τ)dτ

(31a)

q(x, t) =
1

α + β
[αζ1(x, t) + βζ2(x, t)]

+
a(α − β)

2(α + β)

∫ t

0

e
−b(t−τ)

I1(a(t − τ))∆ζ(x, τ)dτ

+
cq(α − β)

2(α + β)

∫ t

0

e
−b(t−τ)

I0(a(t − τ))∆ζ(x, τ)dτ.

(31b)

with ∆ζ(x, t) = [ζ1(x, t) − ζ2(x, t)].
This enables us to compute the physical variables y(x, t)

and q(x, t) as functions of the characteristics variables

ζ1(x, t) and ζ2(x, t).
Together, the formulas (29), (26) and (31) provide an

explicit solution to the linearized Saint-Venant equations

around a uniform flow regime. Indeed, assuming zero ini-

tial conditions (but nonzero initial conditions could also

easily be introduced), one may first use (29) to trans-

form the system into the generalized characteristic variables

(ζ1(x, t), ζ2(x, t)). One can then compute the solution given

the boundary conditions, using Eqs. (26), and finally, go back

to the physical variables y(x, t) and q(x, t) using (31).

IV. MOTION PLANNING

In this section, we design a boundary controller that en-

ables to reach any pre-specified state ξ(x, Tr) at a given time

instant Tr. This is closely related to the exact controllability

problem. In the horizontal frictionless case, one may show

that this is possible if Tr is greater or equal to τ2. We extend

here this exact controllability result to the case of uniform

open channel flow with nonzero slope and friction.

A. Explicit Expressions for the Boundary Controls

Using Eqs. (26), we can express the desired final state

ζTr
(x) as a function of the boundary controls as follows:

ζ1Tr
(x) = e−r1x

[

ζ1

(

0, Tr −
x

α

)

+

∫ Tr

0

H
(

θx, Tr − τ
)

ζ1

(

0, τ − x

α

)

dτ

]

ζ2Tr
(x) = e−r2(L−x)

[

ζ2

(

L, Tr −
(L − x)

β

)

+

∫ Tr

0

H
(

θ(L − x), Tr − τ
)

ζ2

(

L, τ − (L − x)

β

)

dτ

]

with H(l, t) given by (24) and θ = (α+β)
2αβ . With the changes

of variables t = Tr − x
α for ζ1 and t = Tr − L−x

β for ζ2, we

obtain the following expressions:

ζ1Tr
(α(Tr − t)) = e−r1α(Tr−t)

[

ζ1(0, t)

+

∫ Tr

0

H(θα(Tr − t), Tr − τ) × ζ1(0, τ − Tr + t)dτ

]

ζ2Tr
(L − β(Tr − t)) = e−r2β(Tr−t)

[

ζ2(L, t)

+

∫ Tr

0

H(θβ(Tr − t), Tr − τ) × ζ2(L, τ − Tr + t)dτ

]

Then, choosing ζ1(0, t) such that:

ζ1(0, t) =



















0 if t < Tr − L
α

er1α(Tr−t)ζ1Tr
(α(Tr − t))

−
∫ Tr

0
H(θα(Tr − t), τ)

×ζ1(0, t − τ)dτ if t ≥ Tr − L
α

ensures that ζ1(x, Tr) = ζ1Tr
(x) for all x ∈ [0, L].

And choosing ζ2(L, t) such that:

ζ2(L, t) =



















0 if t < Tr − L
β

er2β(Tr−t)ζ2Tr
(L − β(Tr − t))

−
∫ Tr

0
H(θβ(Tr − t), τ)

×ζ2(L, t − τ)dτ if t ≥ Tr − L
β

ensures that ζ2(x, Tr) = ζ2Tr
(x) for all x ∈ [0, L].

These expressions give a solution to the motion planning

problem for an open channel, but in an implicit form.

V. FEEDBACK CONTROL

We now consider boundary feedback control of the open

channel, and look for stability conditions.
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A. Expressions in the Characteristics Variables

The boundary control inputs (q̂(0, s), q̂(L, s)) are related

to the boundary measurements as follows:
(

q̂(0, s)
q̂(L, s)

)

= K(s)

(

ŷ(0, s)
ŷ(L, s)

)

We now express this relationship in the characteristics vari-

ables. Using Eqs. (27), the control inputs in the characteris-

tics are related to the boundary discharges and measurements

as follows:
(

χ̂1(0, s)
χ̂2(L, s)

)

=

(

q̂(0, s)
q̂(L, s)

)

+

(

T0s
λ2

0

0 T0s
λ1

)

(

ŷ(0, s)
ŷ(L, s)

)

and we also have:
(

χ̂1(L, s)
χ̂2(0, s)

)

=

(

0 1
1 0

)(

q̂(0, s)
q̂(L, s)

)

+

(

0 T0s
λ2

T0s
λ1

0

)

(

ŷ(0, s)
ŷ(L, s)

)

Then, combining with the controller K(s), we get:
(

χ̂1(0, s)
χ̂2(L, s)

)

= GK(s)

(

χ̂1(L, s)
χ̂2(0, s)

)

with GK(s) defined by:

GK(s) =

[

K(s) +

(

T0s
λ2

0

0 T0s
λ1

)]

×
[

(

0 1
1 0

)

K(s) +

(

0 T0s
λ2

T0s
λ1

0

)]

−1

In the case of a diagonal controller, K =
(

k0(s) 0
0 kL(s)

)

, we have:

GK(s) =

(

0 k0(s)+T0s/λ2(s)
k0(s)+T0s/λ1(s)

kL(s)+T0s/λ1(s)
kL(s)+T0s/λ2(s)

0

)

B. Stability conditions

We now use the expressions derived above to study the

stability of the system with boundary controls. Let us first

recall the input-output relationship in the characteristics

variables:
(

ζ̂1(L, s)

ζ̂2(0, s)

)

= GP (s)

(

ζ̂1(0, s)

ζ̂2(L, s)

)

+

(

ζ̄10(L, s)
ζ̄20(0, s)

)

with GP (s) =

(

eλ1(s)L 0
0 eλ2(s)L

)

.

Then, we get the following closed-loop relationship:

(I−GK(s)GP (s))

(

ζ̂1(L, s)

ζ̂2(0, s)

)

= GK(s)G0(s)

(

ζ̄01(s, L)
ζ̄02(s, L)

)

Closed-loop stability can then be studied using the Nyquist

theorem, which provides a necessary and sufficient stability

condition [3]. However, this condition is not analytic, and is

difficult to test. This is why we choose here to propose a

simple sufficient condition of stability, based on the spectral

radius [3]:

Proposition 1: The closed-loop system is stable if the

transfer matrices GP (s) and GK(s) verify the following

inequality

ρmax(|GP (jω)GK(jω)|) < 1,∀ω ∈ [0,∞)

where ρmax(A) denotes the spectral radius of A, i.e. the

largest eigenvalue of of A ∈ C
n×n.

This condition extends the results obtained using Riemann

invariants to the case of open channel with slope and friction.

VI. CONCLUSION

We have derived in this article explicit formulations for

solutions of open channel flow including slope and friction

effects. These formulas have been obtained by first using the

Laplace transform to express the system in the frequency

domain, where the system can be diagonalized. This diag-

onalization extends the classical one leading to Riemann

invariants in the horizontal frictionless case. The inverse

Laplace transform is then used to go back to the time domain.

As a result, we have been able to derive explicit expressions

solving the motion planning problem for an open-channel

with nonzero slope and friction. Using this approach, we

have also extended existing results on the stability of the

closed-loop system.
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