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Abstract— In this paper we discuss the consensus problem for
a network of dynamic agents with undirected information flow
and random switching topologies. The switching is determined
by a Markov chain, each topology corresponding to a state of
the Markov chain. We show that in order to achieve consensus
almost surely and from any initial state the sets of graphs
corresponding to the closed positive recurrent sets of the
Markov chain must be jointly connected. The analysis relies
on tools from matrix theory, Markovian jump linear systems
theory and random processes theory. The distinctive feature of
this work is addressing the consensus problem with “Markovian
switching” topologies.

I. INTRODUCTION

A consensus problem, which lies at the foundation of
distributed computing, consists of a group of dynamic agents
who seek to agree upon certain quantities of interest by
exchanging information among them according to a set of
rules. This problem can model many phenomena involving
information exchange between agents such as cooperative
control of vehicles, formation control, flocking, synchroniza-
tion, parallel computing, etc. Thus the consensus problem has
been widely studied in the literature. Distributed computation
over networks has a long history in control theory starting
with the work of Borkar and Varaiya [1], Tsitsikils, Bertsekas
and Athans [15], [16], on asynchronous agreement problems
and parallel computing. Olfati-Saber and Murray introduced
in [11], [12] the theoretical framework for solving consensus
problems. Jadbabaie et al. studied in [6] alignment problems
involving reaching an agreement. Relevant extensions of the
consensus problem were done by Ren and Beard [10] and
by Moreau in [8].

The communication networks between agents may change
in time due to link failures, packet drops, appearance or
disappearance of nodes etc. Many of the variations in
topology may happen randomly which lead to considering
consensus problems under a stochastic framework. Hatano
and Mesbahi consider in [7] an agreement problem over
random information networks where the existence of an
information channel between a pair of elements at each time
instance is probabilistic and independent of other channels.
In [14] Salehi and Jadbabaie provide necessary and sufficient
conditions for reaching consensus in the case of a discrete
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linear system, where the communication flow is given by a
random graph process, independent of other time instances.
Under a similar model of the communication topology,
Porfiri and Stilwell give sufficient conditions for almost sure
convergence to consensus in [9].

In this paper we consider the discrete-time consensus
problem for a group of dynamic agents with undirected
information flow and random switching topologies. The
switching process is governed by a Markov chain whose
states correspond to possible communication topologies. The
advantage of having Markovian switching topologies resides
in their ability to model a topology change which depends on
the previous communication topology. Consider the example
of an agent which may adjust the power allocated to trans-
missions in order to overcome the failure of a link due to a
large distance between agents. The actions of such an agent
determines a change in the communication topology which
is dependent on the state of the network at previous time
instants. Our model is more general since it also includes the
case of independent random changes in the communication
flow; a case which benefited from significant attention in the
literature.

Notations: We will denote by 1 the n-dimensional vector
of all ones. We will use the same symbol for a vector of all
ones with n2 entries. It will be clear from the context what
dimension vector 1 has. Let {Fi}si=1 be a set of matrices.
By diag({Fi}si=1) we understand a block diagonal matrix
having on the block diagonal matrices F1, . . . , Fs. The
matrix diag( 1

n11
T ) is a block diagonal matrix having on

the block diagonal n×n matrices of all ones; diag( 1
n211

T )
represents a block diagonal matrix with n2×n2 matrices of
all ones on the main block diagonal. The symbol ⊗ denotes
the Kronecker product.

The outline of the paper is as follows. In Section II we
present the setup and formulation of the problem. In Section
III we state our main result and give an intuitive explanation.
In Section IV we provide first a set of theoretical tools used
in proving the main result and then we proceed with the
proof of the main theorem. In Section V we briefly discuss
extensions of our result.

II. PROBLEM FORMULATION

In this section we introduce the problem setup for the
almost sure convergence to consensus within a discrete-time
context. We consider a group of n dynamic agents for which
the information flow is modeled as an undirected graph G =
(V, E , A) of order n. The set V = {1, . . . , n} represents the
set of vertices, E ⊆ V ×V is the set of edges and A = [aij ]
is a symmetric adjacency matrix with aij being positive if
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a link exists between vertices (i, j) and zero otherwise. By
graph Laplacian we understand the matrix L whose entries
are:

lij =
{ ∑n

k=1,k 6=i aik j = i

−aij j 6= i

with i ∈ {1, . . . , n}. Equivalently we can write the Laplacian
of an undirected graph as L = D − A, where A is the
adjacency matrix of the graph and D is the diagonal matrix
of vertex degrees dii =

∑
i 6=j aij . Throughout this paper we

will consider (except Section V) undirected graphs.
Let s be a positive integer and let θ(k) be a finite-state

homogeneous Markov chain which takes values in a discrete
set S = {1, · · · , s}, with P its s × s transition probability
matrix, P = (pij) (rows sum up to one).

Definition 2.1: (Discrete-Time Markovian Random
Graph) Given a positive integer s, let G = {Gi}si=1 be a
set of (undirected) graphs of order n. By a discrete-time
Markovian random graph (DTMRG) we understand a map
G from S to G, such that

G(θ(k)) = Gθ(k)

for all positive integer values of k. In what follows this map
will be directly referred by Gθ(k). We note the Gθ(k) is a
discrete finite-state Markovian process, whose probabilistic
description is given by the probability transition matrix P .

We denote by X(k) the n-dimensional column vector
representing the state of the agents. We assume that the
information flow among agents is described by a DTMRG
Gθ(k) and we consider a linear discrete stochastic dynamic
system governing the evolution of the state vector:

X(k + 1) = Fθ(k)X(k), X(0) = X0, (1)

where the n× n random matrix Fθ(k) represents the state’s
updating rule corresponding to the current communication
graph and it takes values in a finite set of matrices {Fi}si=1.
The initial condition X0 is considered deterministic.

We define the agreement space as the subspace generated
by the vector of all ones A = span(1), where we denote by
1 the n-dimensional vector of all ones.

Definition 2.2: We say that the vector X(k) converges
almost surely to consensus if it asymptotically reaches the
agreement space in the almost sure sense

X(k) a.s−−→ A.

Definition 2.3: We say that the state vector X(k) reaches
average consensus almost surely if

X(k) a.s−−→ av(X0)1.

Problem 2.1: Given a DTMRG Gθ(k) and the state’s
updating rule Fθ(k), we derive necessary and sufficient con-
ditions such that the state vector X(k), evolving according
to (1), converges almost surely to average consensus for any
initial state X0.

For the most part of this paper we will consider an updating
rule given by

Fi = I − εLi, i ∈ S, (2)

where Li is the Laplacian of the undirected graph Gi and
ε < 1/maxi{

∑
j 6=i lij}. Let this updating rule be referred

to as protocol A1. Note that protocol A1 is a nearest
neighbor updating rule and it is appealing for its distributed
implementability.

III. MAIN RESULT

In this section we introduce the necessary and sufficient
conditions for reaching average consensus in the almost
sure sense together with some intuitive explanations of these
conditions. We defer the rigorous mathematical proof for
Section IV.

Let us first introduce the following definition borrowed
from [6].

Definition 3.1: (Jointly Connected Graphs) Given a posi-
tive integer s, let {Gi}si=1 be a set of undirected graphs. We
say that this set is jointly connected if the union of the graphs
in the set generates a connected graph where by union we
understand the union of the edges of all graphs in the set.

Consider the problem setup presented in Section II. By the
Decomposition Theorem of the states of a Markov chain (see
[5]) the state space S can be partitioned uniquely as

S = {T ∪ C1 ∪ · · · ∪ Cq},

where T is the set of transient states and C1, . . . , Cq are
irreducible closed sets of (positive) recurrent states. Since
θ(k) is a finite state Markov chain there exists at least one
(positive) recurrent closed set. We make the assumption that
the distribution of θ(0) is such that the probability of θ(0)
to belong to any of the sets T or Ci is non-zero. Let Gi =
{Gj1 , Gj2 , , Gj|Ci|} be the sets of graphs corresponding to
the states in the sets Ci with i ∈ {1, . . . , q} and where by
|Ci| we denote the cardinality of Ci.

Theorem 3.1: (almost sure convergence to average con-
sensus) Consider the stochastic system (1). Then, under
protocol A1, the random vector X(k) converges almost
surely to average consensus for any initial state X0 if and
only if each of the sets of graphs Gi corresponding to the
closed sets Ci are jointly connected.

We defer for the next section the proof of this theorem and
rather provide here an intuitive explanation. Regardless of the
initial state of θ(k), there exist a time instant after which θ(k)
will be constrained to take values only in one of the closed
sets Ci. Since Ci are irreducible and (positive) recurrent the
probability of θ(k) to visit each of the states belonging to
Ci will never converge to zero. Thus θ(k) will visit each
of these states infinitely many times and consequently since
the graphs corresponding to these states are jointly connected
the agents will be connected infinitely many times. This is
sufficient for the state vector X(k) to converge to consensus.
On the other hand if we assume the existence of at least one
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set Ci such that the corresponding set of graphs Gi is not
jointly connected, then with non-zero probability θ(k) may
be isolated in such a set after a while. Since the graphs
are not jointly connected, there will be at least one agent
which will not exchange information with the others. This is
enough to conclude (in the case of undirected graphs) that
there exists initial states such that with non-zero probability,
average consensus is not reached.

IV. PROOF OF THE MAIN RESULT

In this section we introduce a number of supporting results
and their proofs and detail the proof of Theorem 3.1. We start
by stating a number of results from the literature which will
be useful in our analysis and then we continue with a series
of corollaries and lemmas that will prove instrumental for
showing Theorem 3.1.

Theorem 4.1: ([17]) Let s be a positive integer and
{Ai}si=1 a finite set of n × n ergodic matrices with the
property that for each sequence of matrices Ai1 , . . . , Aij of
positive length the product matrix Aij · · ·Ai1 is an ergodic
matrix. Then for each infinite sequence Ai1 , Ai2 , . . . there
exist a vector c such that

lim
j→∞

AijAij−1 · · ·Ai1 = 1cT (3)

Lemma 4.1: (Lemma 2, [6]) Let m be a positive integer
with m ≤ 2 and let {Ai}mi=1 be a set of nonnegative n× n
matrices. Suppose the diagonal entries of each matrix Ai are
all positive and let µ and ρ denote the smallest and the largest
of these respectively. Then the following property holds:

A1A2 · · ·Am ≥
(
µ2

2ρ

)m−1

(A1 +A2 + . . .+Am) (4)

In the special case of doubly stochastic matrices we can
derive the following corollary from Theorem 4.1.

Corollary 4.1: Under the assumptions of Theorem 4.1,
if A1, . . . , As are doubly stochastic, then for each infinite
sequence Ai1 , Ai2 , . . . we have

lim
j→∞

AijAij−1 · · ·Ai1 =
1
n
11T . (5)

Proof: Follows immediately from Theorem 4.1 and
from the doubly stochastic property of matrices {Ai}si=1.

Lemma 4.2: Given a positive integer s, consider a set of
jointly connected undirected graphs {Gi}si=1 and a finite set
of indices {ik}jk=1 which contains (at least once) each of the
values {1, . . . , s}. Let {Fi}si=1 be a set of n×n (symmetric)
matrices given by Fi = I − εLi (as in (2)), where Li is
the Laplacian of the graph Gi. Then the matrix product
Fi1Fi2 . . . Fij is ergodic. The same property holds for the
matrix product (Fi1 ⊗ Fi1)(Fi2 ⊗ Fi2) . . . (Fij ⊗ Fij ).

Proof: The proof is based on Lemma 4.1 and it is
similar to the proof of Lemma 1 in [6]. By construction

all matrices {Fi}si=1 are non-negative matrices with positive
diagonal entries. Then by Lemma 4.1 we have

Fi1Fi2 . . . Fij ≥ γ(F1 + F2 + . . . Fs),

where γ > 0 depends on the largest and smallest entry of
matrices {Fi}si=1. We can further write

Fi1Fi2 . . . Fij ≥ γ(F1 + F2 + . . . Fs) = γsF,

where F = I − ε/s
∑s
i=1 Li. From the hypothesis that the

set {Gi}si=1 are jointly connected L =
∑s
i=1 Li corresponds

to the Laplacian of a connected undirected weighted graph.
Thus F is a stochastic ergodic matrix and as a consequence
there exist a finite positive number k such that all entries
of F k are positive. Then (Fi1Fi2 . . . Fij )

k ≥ γkF k and
therefore (Fi1Fi2 . . . Fij )

k has all entries strictly positive
which is enough to conclude its ergodicity. To derive the
ergodicity of the matrix product involving the Kronecker
product of matrices Fi’s notice that ((Fi1 ⊗ Fi1)(Fi2 ⊗
Fi2) . . . (Fij⊗Fij ))k = (Fi1Fi2 . . . Fij )

k⊗(Fi1Fi2 . . . Fij )
k

and since (Fi1Fi2 . . . Fij )
k has all entries strictly positive the

same is true for (Fi1Fi2 . . . Fij )
k ⊗ (Fi1Fi2 . . . Fij )

k.

Lemma 4.3: Let s be a positive integer and let {Aij}si,j=1

be a set of n × n doubly stochastic ergodic matrices. Let
P = (pij) be an s × s stochastic matrix corresponding to
an irreducible (positive) recurrent Markov chain. Consider
the ns × ns dimensional matrix Q whose (i, j)th block is
defined as Qij = pijAij . Then

lim
k→∞

Qk = (Φ⊗ I)diag(
1
n
11T ) (6)

where diag( 1
n11

T ) is an ns × ns block diagonal with
matrices 1

n11
T on the main diagonal. The matrix Φ is a

stochastic matrix whose entries depend on the properties of
matrix P :

(Φ)ij =
{
limk→∞(P k)ij if P is aperiodic
(P l)ij if P d = P, l ∈ {0, . . . , d}

(7)

Proof: The proof of this lemma is based on Corollary
4.1. We can express the (i, j)th block entry of matrix Qk as
follows:

(Qk)ij =
∑

1≤i1,...ik−1≤n

pii1Aii1pi1i2Ai1i2 . . . pik−1jAik−1j

(8)
Notice from (8) that as k goes to infinity in each of the (i, j)
block of matrix Qk there will be infinite sums containing
infinite products of ergodic (doubly stochastic) matrices of
the form Aii1Ai1i2 . . .. By Corollary 4.1 every such infinite
product of matrices converges to 1

n11
T . Therefore as k goes

to infinity we can express (8) as:

lim
k→∞

(Qk)ij =
1
n
11T lim

k→∞

∑
1≤i1,...ik−1≤n

pii1pi1i2 . . . pik−1j

(9)
It is not difficult to observe that the right-hand sum in (9)
is the (i, j)th entry of the matrix P k. Whether or not this
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sum will converge depends entirely on the properties of the
Markov chain behind the probability transition matrix P .
Thus as k goes to infinity the matrix Φ = P k will be a
stochastic matrix as in (7).

Lemma 4.4: Let s be a positive integer and consider a set
of n × n matrices {Fi}si=1 given by Fi = I − εLi (as in
(2)) where {Li}si=1 are the Laplacians of {Gi}si=1, a jointly
connected set of undirected graphs of order n. Let P be
an s × s probability transition matrix corresponding to an
irreducible (positive) recurrent finite-state Markov chain. Let
Q and Q̃ be defined as:

Q = diag({Fi}si=1)(P ⊗ I) (10)

and
Q̃ = diag({Fi ⊗ Fi}si=1)(P ⊗ I), (11)

where the matrices diag({Fi}si=1) and diag({Fi ⊗ Fi}si=1)
are ns × ns and n2s × n2s respectively block diagonal
matrices. Then

lim
k→∞

Qk = diag(
1
n
11T )(Φ⊗ I) (12)

lim
k→∞

Q̃k = diag(
1
n2
11T )(Φ⊗ I) (13)

where the matrices diag( 1
n11

T ) and diag( 1
n211

T ) are block
diagonal matrices of dimension ns × ns and n2s × n2s
respectively and Φ is a stochastic matrix given by

(Φ)ij =
{
limk→∞(P k)ij if the limit exists
(P l)ij if P d = P, l ∈ {0, . . . , d}.

(14)
Proof: Similar to (8) each block matrix (Qk)ij of the

matrix Qk can be expressed as

(Qk)ij =
∑

1≤i1,...ik−1≤s

pii1Aii1pi1i2Ai1i2 . . . pik−1jAik−1j

(15)
where this time Aij = Fi, ∀j. The reader should notice that
if we sum each of the probabilities product multiplying the
product of matrices in (15) we get p(k)

ij which is the (i, j)
entry of the matrix P k. Each of these product of probabilities
represent possible paths (sequence of transitions) of length
k from state i to state j. By an inductive argument we can
show that each of the n × n blocks of the matrix Qk can
be expressed as (Qk)ij = p

(k)
ij A

(k)
ij , where p(k)

ij is the (ij)th

entry of the matrix P k and A
(k)
ij are some n × n (doubly)

stochastic matrices.
By the irreducibility assumption we can always find a

path of state transitions which starts at a state i and ends
at a state j which contains (at least once) every possible
transition (hence transitions with nonzero probability) in
the Markov chain. Let l denote the length of such a path.
Clearly the probability of this path is nonzero and has the
general form pii1pi1i2 . . . pil−1j , with 1 ≤ i1, . . . , il−1 ≤ s.
Then the previously mentioned product of probabilities will
be part of the conditional probability p

(l)
ij = (P l)ij . Then

by (15) pii1pi1i2 . . . pil−1j is also encountered in the block
matrix (Ql)ij multiplying a sequence of matrices Fi, with
1 ≤ i ≤ s. Because this product of probabilities contains all
possible paths (and a matrix Fi is associated to a transition
from state i to any other state), then each of the matrices
Fi will appear at least once. On the contrary we would
have an isolated state which contradicts the hypothesis of
irreducibility. We can rewrite the block matrix (Ql)ij as
follows

(Ql)ij = pii1pi1i2 . . . pil−1jFiFi1 . . . Fil−1 + α,

where we denoted by α the rest of the terms in the
sum. By Lemma 4.2 the product of matrices FiFi1 . . . Fil−1

is an ergodic (doubly) stochastic matrix. We mentioned
above that (Ql)ij can be expressed as (Ql)ij = p

(l)
ij A

(l)
ij ,

where A
(l)
ij is a doubly stochastic matrix. Then A

(l)
ij =

1/p(l)
ij (pii1pi1i2 . . . pil−1jFiFi1 . . . Fil−1 + α). From the er-

godicity of FiFi1 . . . Fil−1 we can deduce immediately the
ergodicity of A(l)

ij . Let l∗ be the largest path length such that
we can arrive from any state i to any state j by traveling
through all possible state transitions. Then from the above
argument each n × n block of the matrix Ql

∗
is given by

(Ql
∗
)ij = p

(l∗)
ij A

(l∗)
ij where for the non-zero matrix blocks

we have that A(l∗)
ij are ergodic (doubly) stochastic matrices.

Some block can be zero if the conditional probability p(l∗)
ij is

zero. Then since limk→∞Qk = limk→∞(Ql
∗
)k, by Lemma

4.3 we can determine (12). In order to show (13) we follow
the same line as before and use the part of Lemma 4.2
involving the Kronecker products.

At this point we are ready for the proof of Theorem 4.1.

A. Sufficiency

Proof: Note first that the stochastic system (1) rep-
resents a discrete-time Markovian jump linear system for
which we can use results from the theory of Markovian jump
linear systems [2] to analyze it.

By defining the error vector e(k) as

e(k) = X(k)− av(X0)1, (16)

showing the almost sure convergence of the state vector to
average consensus, it is equivalent to showing that

‖e(k)‖2 a.s−−→ 0,

where by ‖ · ‖ we denoted the Euclidean norm.

Without loss of generality assume that the Markov chain
θ(k) is irreducible and (positive) recurrent. Thus we have
only one closed set of states corresponding to a jointly con-
nected set of graphs {Gi}si=1. At the end of the sufficiency
proof we will explain why we do not loose generality by
making this assumption.

Let the n × n symmetric matrix Q(k) denote the second
moment of the state vector X(k)

Q(k) = E[X(k)X(k)T ],
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where we used E to denote the expectation operator. Using
an approach similar to [2], consider the matrices Qi(k)

Qi(k) = E[X(k)X(k)Tχ{θ(k)=i}], i ∈ S (17)

where χ{θ(k)=i} is the indicator function of the event
{θ(k) = i}. Then the second moment Q(k) can be expressed
as the following sum:

Q(k) =
s∑
i=1

Qi(k). (18)

The set of discrete coupled Lyapunov equations governing
the evolution of the matrices Qi(k) is given by:

Qi(k + 1) =
s∑
j=1

pjiFjQj(k)FTj , i ∈ S, (19)

with initial conditions Qi(0) = qiX0X
T
0 where qi =

Pr(θ(0) = i).
We can further obtain a vectorized form of equations (19)

with the advantage of getting a discrete linear system

η(k + 1) = Λη(k), (20)

where η(k) is an n2s dimensional vector formed by the
columns of all matrices Qi(k) and Λ is an n2s×n2s matrix
with each n2 × n2 block given by (Λ)ij = pjiFj ⊗ Fj . The
initial vector η(0) has the following structure

η(0)T = [q1col1(X0X
T
0 )T , . . . , q1coln(X0X

T
0 )T , . . .

. . . , qscol1(X0X
T
0 )T , . . . , qscoln(X0X

T
0 )T ],

where by coli we understand the ith column of the con-
sidered matrix. We notice that the current setup satisfies all
the conditions of Lemma 4.4 (matrix Λ is just a transposed
version of the matrix Q̃ in (11)) and hence we get

lim
k→∞

Λk = (ΦT ⊗ I)diag(
1
n2
11T )

where Φ is given by (14). Using the observation that

11T

n2

[
qicol1(X0X

T
0 )T , . . . , qicoln(X0X

T
0 )T

]
= av(X0)2qi1

T ,

the limiting value of vector η(k) is given by

lim
k→∞

η(k)T = av(X0)2
[

s∑
j=1

Φj1qj1
T , . . .

s∑
j=1

Φjsqj1
T

]
,

where Φij are entries of the stochastic matrix defined in
(14). By collecting the entries of limk→∞ η(k) we obtain

lim
k→∞

Qi(k) = av(X0)2
(

s∑
j=1

Φjiqj

)
11

T

and from (18) we finally obtain

lim
k→∞

Q(k) = av(X0)211T (21)

since
∑s
i,j=1 Φjiqj = 1.

Through an almost identical process as in the case of the
second moment we find that

lim
k→∞

E[X(k)] = av(X0)1. (22)

From (21) and (22) we deduce that the second moment
of the error vector converges asymptotically (and thus expo-
nentially)

lim
k→∞

E[e(k)e(k)T ] = 0,

and therefore we can find some positive constants α and β
such that the following is satisfied

E[‖e(k)‖2] = trace(E[e(k)e(k)T ]) ≤ αβk‖e(0)‖2, (23)

for any positive k. Then by the generalized Markov inequal-
ity and by the first Borel-Cantelli Lemma [5] we conclude
the almost sure convergence of the error vector to zero and
implicitly the almost sure convergence of the state vector to
average consensus.

We now turn to explain why it was enough to assume
the Markov chain to be represented by a single closed
irreducible and (positive) recurrent set of states. According
to the initial distribution, with some probability the initial
state will belong to either a closed positive recurrent set of
states or to the transient set. The first case corresponds to the
problem setup for the sufficiency proof. In the second case
since the state is transient then there exist a finite positive
integer τ such that M(τ) belongs to a closed set Ci. Given
X(τ), we showed above that

X(k) a.s−−→ av(X(τ))1.

The state vector at time τ is given by

X(τ) = Fi1Fi2 . . . Fiτ−1X0

where {i1, i2, . . . , iτ−1} is a set of indices representing
states in the transient set. Since the matrices Fi are doubly
stochastic we have that 1TFi = 1T for 1 ≤ i ≤ s. Then

av(Xτ ) =
1TX(τ)

n
=
1TFi1 . . . Fiτ−1X0

n
= av(X0).

Therefore we have that

X(k) a.s−−→ av(X0)1.

B. Necessity

Proof: We show that if there exist at least one irre-
ducible closet set corresponding to a set of graphs which are
not jointly connected, then there exist some initial vectors X0

such that the state vector does not converge in probability to
consensus and hence does not converge in the almost sure
sense either. The complete probabilistic framework of the
Markovian jump linear system (1) can be found for example
in [2], pp.20. In our case the probabilistic description is rather
simplified since X0 was assumed deterministic. Let Ak(ε)
define the following event Ak(ε) = {ωk : ‖e(k)‖2 > ε} for
some positive ε, where e(k) is the error vector defined in
(16).

Suppose that there exist an irreducible and positive recur-
rent set Ci∗ such that the union of the graphs in Gi∗ are
not jointly connected. Conditioning on the initial state of
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the Markov chain, the probability of the event Ak(ε) can be
expressed as:

Pr(Ak(ε)) =
s∑
j=1

Pr(Ak(ε)|θ(0) = j)Pr(θ(0) = j).

By the assumption on the initial distribution of θ(k) we
have that Pr(θ(0) ∈ i∗) > 0. Since the union of graphs
corresponding to the set Ci∗ does not have a spanning tree,
then there exist at least two agents such that there is no
paths containing these two agents. Therefore we can find an
initial vector such that consensus is not reached implying
that we can find an ε such that Pr(Ak(ε)|θ(0) ∈ i∗) does
not converge to zero. As a consequence the state vector does
not converge to consensus almost surely since it does not
converge in probability to consensus.

V. DISCUSSION AND EXTENSIONS OF THE MAIN RESULT

We note that the proof of Theorem 3.1 is mainly based on
the results of Lemma 4.2 and Lemma 4.4. The key idea of
Lemma 4.4 is the fact that the matrix product Fi1Fi2 . . . Fik
(where {i1, . . . ik} ∈ S is a finite set of indices which
contains at least once all values between 1 and s) produces
an ergodic matrix. Thus for any protocol and communication
model among agents which conserve this property we can
potentially show almost sure convergence to the agreement
space.

We can extend our result to the case when the communi-
cations topologies are modeled by directed weighted graphs.
In this case the adjacency matrix Ai will not necessarily be
symmetric and therefore the matrices Fi will not satisfy in
general the doubly stochastic property. As pointed out at the
beginning of this section, in order to show the sufficiency part
of Theorem 3.1 we need the matrix product Fi1Fi2 . . . Fik
to be ergodic. Similar to the undirected graphs case, such
property is achieved if all the sets Gi are jointly strongly
connected. In [10] it is shown that Lemma 4.2 holds under a
weaker condition of existence of a directed spanning tree for
the union of graphs in each of the sets Gi. It turns out that
this condition is also necessary for almost sure convergence
to consensus. Thus in the case of directed graphs Theorem
3.1 can be reformulated as follows.

Theorem 5.1: Consider the stochastic system (1). Then
under protocol A1 the state vector X(k) converges almost
surely to consensus for any initial condition X0 if and only
if each of the graphs resulting from the union of graphs in
each set Gi admits a spanning tree.

As shown in [12], [13], average consensus can be reached
even in the case of directed graphs if the graphs are balanced.
By using protocol A1, balanced graphs generate doubly
stochastic matrices Fi. Then if we assume that each of the
sets Gi is either jointly strongly connected or it ”jointly”
posses a spanning tree, then we can show almost sure
convergence to average consensus identically as in the case
of undirected graphs and protocol A1. Although we will
not enter in details here it turns out that having all graphs

balanced is also a necessary condition to reach average
consensus.

VI. CONCLUSION

In this paper we analyzed a stochastic consensus problem
for a group of agents with undirected information flow. The
novelty of our approach consists in using for the first times
(to the authors’ knowledge) Markovian random graphs to
model the communication flows among agents, which has a
higher degree of generality then the ones considered until
now. We showed that a necessary and sufficient condition
for the state vector to converge to average consensus almost
surely consists in having the sets of (undirected) graphs cor-
responding to the positive recurrent closed sets of the Markov
chain jointly connected. Under the Markovian random graph
modeling, the dynamic stochastic equation determining the
evolution of the agents became a Markovian jump linear
system, which proved to be instrumental in showing the
almost sure convergence. Our analysis relied on several tools
from algebraic matrix theory, graph theory and Markovian
jump linear system theory.
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