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Abstract— We consider a motion coordination problem with
second order agent dynamics and examine the closed-loop
robustness with respect to switching topology, variation of link
gain, and unmodeled dynamics. In each case, we illustrate with
examples possible instability mechanisms and discuss under
what conditions stability is maintained.

I. INTRODUCTION

Motion coordination problems have been intensively stud-
ied during the past years, leading to significant results in
formation control, flocking, and consensus [1], [2], [3], [4],
[5], [6], [7], [8]. One of the challenges in the coordination
problem is the design of local rules that guarantee the desired
group behavior. The design and analysis of such rules make
use of graph theory and potential function methods. The
communication topology between agents is represented by
a graph while the interactions between agents are modeled
as artificial attraction/repulsion forces. The stability results
follow from a Lyapunov function constructed from potential
functions with the help of spectral properties of the graph
Laplacian.

When the velocities of the agents are directly manipulat-
able, first-order kinematic models [1], [3] are appropriate.
However, in many applications, only the acceleration of the
agents can be controlled by input forces and torques, thereby
leading to second or higher order dynamics [2], [5], [7], [8]
with mass inertia incorporated.

In this paper, we consider double integrator agent dynam-
ics with an undirected communication topology. We first
analyze a cooperative system with a switching communica-
tion topology. Such switching may occur due to the vehicles
joining or leaving a formation, transmitter/receiver failures,
limited communication/sensor range, or physical obstacles
temporarily blocking sensing between vehicles. For single
integrator dynamics, switching topology has been studied in
[1], [3] and stability under arbitrary switching has been as-
certained for classes of coordination algorithms. In contrast,
for second order dynamics, we illustrate with an example
that a switching sequence that triggers instability exists. We
then show that stability is maintained when switching is
sufficiently fast or slow so that is does not interfere with
the natural frequencies of the group dynamics.
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We next investigate stability properties when the link
weights are perturbed by small sinusoidal oscillations. Per-
turbations of link weights may result from quantization
and noise in the communication channels. In this paper
we make a simplifying assumption that the perturbation is
sinusoidal and transform the group dynamics into a form
that reveals a parametric resonance mechanism [9], [10],
[11]. This transformation employs the spectral properties of
the graph Laplacian and decouples the relative motion from
the motion of the center of the agents. When mass inertia
and damping terms are identical for all agents, we obtain
decoupled Mathieu equations [10], which make parametric
resonance explicit. For broader classes of mass and damping
matrices, we obtain coupled Mathieu equations and discuss
which frequencies lead to parametric resonance. Next, we
show that sinusoidal perturbations do not destabilize the
system if they are slow or fast enough.

We finally study the effect of input unmodeled dynamics,
such as fast actuator dynamics. Following standard singular
perturbation arguments [12], we prove that the stability of
the nominal design that ignores the effects of unmodeled
dynamics is preserved when the stable unmodeled dynamics
are sufficiently fast. As we illustrate with an example, how
fast the unmodeled dynamics must be is dictated by the graph
structure and the mass inertia matrix.

The subsequent sections are organized as follows: Section
II introduces the nominal system and discusses its stabil-
ity properties. We illustrate our instability example due to
switching in Section III-A, followed by a discussion on when
stability is maintained in Section III-B. We present a para-
metric resonance example in Section IV-A, which exhibits
decoupled Mathieu equations, and generalize it to coupled
Mathieu equations in Section IV-B. We then investigate the
effects of fast and slow sinusoidal perturbations in Sections
IV-C and IV-D. One of the contributions of Section IV is
to introduce parametric resonance, which is a well-studied
topic in structural mechanics, to cooperative control. Section
V studies unmodeled dynamics.

II. NOMINAL COOPERATIVE SYSTEM AND ITS STABILITY

We consider a group of agents which are represented by
the vectors xi ∈ Rp, i = 1, · · · ,n and their communication
structure is represented with a graph. If the ith and jth agents
have access to the relative information xi−x j, then the nodes
i and j in the graph are connected by a link. To simplify our
analysis, we assign an orientation to the graph by denoting
one of the nodes of each link to be the positive end. The
choice of orientation does not change the results because the
information flow is bidirectional. Suppose that ` is the total
number of links and recall that the n× ` incidence matrix D
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of a graph is defined as

di j :=

+1 if node i is the positive end of link j
−1 if node i is the negative end of link j
0 otherwise.

(1)

The cooperative control problem studied in this paper is
to achieve the following behaviors:

B1) Each agent reaches in the limit a common velocity
vector v(t) ∈ Rp prescribed for the group:

lim
t→∞
|ẋi− v(t)|= 0, i = 1, · · · ,n. (2)

B2) The relative position of the two agents connected by
link j:

z j :=
n

∑
i=1

di jxi (3)

converges to a prescribed value zd
j , j = 1, · · · , `.

The set points zd
j in B2 dictate the relative configuration

of the group. When the graph contains cycles, the sum of the
relative position vectors z j over each cycle must be zero; that
is, z = [zT

1 , · · · ,zT
` ]T must lie in the range space of DT ⊗ Ip

where ⊗ denotes the Kronecker product and Ip is the p× p
identity matrix. We thus assume throughout the paper that
zd = [(zd

1)
T , · · · ,(zd

` )
T ]T is designed to lie in the range space

of DT ⊗ Ip, which means that

zd = (DT ⊗ Ip)xc (4)

for some xc ∈ Rpn.
In this paper we assume that the agent dynamics are

double integrators:

miẍi = fi, i = 1, · · · ,n (5)

where mi and fi are the mass and the input force of agent i.
For this dynamic model, the controller

fi =−ki(ẋi− v(t))+miv̇(t)−
`

∑
j=1

di jδ j(z j− zd
j ) (6)

where ki, i = 1, · · · ,n, and δ j, j = 1, · · · , `, are positive gains,
achieves objectives B1-B2 above. This design is decentral-
ized because di j = 0 for links j that are not associated with
agent i. Although the model (5) and the controller (6) are
linear, it is not difficult to extend the analysis of this paper to
nonlinear systems using the passivity formalism introduced
in [7].

Defining x = [xT
1 , · · · ,xT

N ]T , ∆ = diag{δ1, · · · ,δ`}, M =
diag{m1, · · · ,mn}, K = diag{k1, · · · ,kn}, and using the
weighted Laplacian matrix L∆ = D∆DT of the graph (without
the subscript “∆”, L denotes the unweighted Laplacian L =
DDT ), we write the closed-loop dynamics (5)-(6) in the
compact form:

(M⊗ Ip)ẍ+(K⊗ Ip)ẋ+(L∆⊗ Ip)x = 0 (7)

where
x(t) := x(t)− xc−

∫ t

0
1n⊗ v(τ)dτ, (8)

xc is as in (4), and 1n denotes the n-vector of ones.

Note that objectives B1-B2 above translate to the asymp-
totic stability of the origin for

X = [ẋT zT ]T (9)

where
z = (DT ⊗ Ip)x = z− zd . (10)

We write the dynamics (7) in the X-coordinates as

Ẋ =
[(
−M−1K −M−1D∆

DT 0

)
⊗ Ip

]
X (11)

and note that X is restricted to the following subspace of
Rnp+mp:

Sx = {(ẋ,z)|ẋ ∈ Rnp,z ∈R(DT ⊗ Ip)}. (12)

Asymptotic stability for X = 0 then follows from the Lya-
punov function V1 = ẋT (M ⊗ Ip)ẋ + zT (∆⊗ Ip)z and the
LaSalle invariance principle.

III. INSTABILITY DUE TO SWITCHING TOPOLOGY

A. Example

For kinematic models described by single integrator dy-
namics, switching topology has been studied in [1], [3] and
the references therein, and stability under arbitrary switching
has been ascertained for classes of coordination algorithms.
In contrast, for the second order model (7), a switching
communication topology can trigger instability as we now
illustrate with an example.

Consider four agents with a bidirectional communication
topology that switches between a ring graph and a complete
graph. Let M = I, K = kI and ∆ = δ I for some constants k > 0
and δ > 0. Then, the closed-loop dynamics (7) become

ẍ+ kẋ+δ (Li⊗ Ip)x = 0 i = 1,2 (13)

where Li = DiDT
i is the Laplacian matrix for the ring graph

when i = 1, and for the complete graph when i = 2.
Because L1 and L2 admit the same set of orthonormal

eigenvectors q j, j = 1, · · · ,4 for their eigenvalues {0,2,2,4}
and {0,4,4,4}, respectively, the change of variables d j =
(qT

j ⊗ Ip)x, j = 1, · · · ,4 decouples the dynamics (13) into

d̈ j + kḋ j +δλ jid j = 0, (14)

where λ ji is the jth eigenvalue of the Laplacian Li, i = 1,2.
It then follows from standard results in switching systems
[13], [14], [15] that, if the damping k is small, and if
δλ j1 < 1 and δλ j2 > 1, then (14) is destabilized by a
switching sequence that selects i = 1 when dT

j ḋ j > 0 and i = 2
otherwise. Instability with this sequence follows from the
Lyapunov-like function V = ‖d j‖2 + ‖ḋ j‖2 which increases
along the trajectories of (14). Because the eigenvalues λ2i

and λ3i switch between the values 2 and 4 in our example,
if δ ∈ (1/4,1/2), then δλ j1 < 1 and δλ j2 > 1 indeed hold
for j = 2,3, thereby proving the existence of a destabilizing
switching sequence.

We demonstrate this instability with a simulation in Fig.
1. We choose p = 1, take the reference velocity v(t) in
B1 in Section II to be zero and select the target vectors
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zd
j in B2 as zero to achieve the agreement of xi’s, i =

1, · · · ,4. Although the controller (6) guarantees agreement
for any fixed connected graph, when the communication
topology switches between a complete graph and a ring graph
according to the sequence described above, Fig. 1 shows that
the relative distances between the agents diverge.

Fig. 1. A switching sequence described in Section III-A between the ring
and complete graphs destabilizes the relative motion of the agents under the
controller (6).

Since the dynamics (11) are exponentially stable, using
the concept of dwell-time [13], [16], [17], we can ensure
the stability of the origin of X if all graphs in the switching
sequence are connected and if the interval between consecu-
tive switchings is no shorter than some minimum dwell time
τ > 0, where estimates for τ can be obtained following [17].
In the next subsection, we employ the concept of an “average
graph” to show that fast, periodic switching also preserves
stability.

B. Fast Switching and Average Graph
Consider a periodic switching sequence σ(t) in which the

topology switches N−1 times, N ≥ 1, during one period T .
We label N graph Laplacians in T as Li

∆
, i = 1, · · · ,N and

denote their dwell times by τi, i = 1, · · · ,N, ∑
N
i=1 τi = T . We

thus study the switched system:

(M⊗ Ip)ẍ+(K⊗ Ip)ẋ+(Lσ(t)
∆
⊗ Ip)x = 0 (15)

where
Lσ(t)

∆
∈ {L1

∆,L2
∆, · · · ,LN

∆}. (16)

To determine the stability of (15)-(16), we investigate the
eigenvalues of the state transition matrix evaluated over a
period T :

Ξ(T,0) = eAN τN · · ·eA2τ2eA1τ1 , (17)

where
Ai =

(
0 In

−M−1Li
∆
−M−1K

)
⊗ Ip (18)

is the system matrix of (15) in the coordinates of (x, ẋ),
i = 1, · · · ,N. When τi’s are small, we rewrite (17) as

Ξ(T,0) =
N

∏
i=1

[I + τiAi +O(τ2
i )]

= I +
N

∑
i=1

τiAi +O(T 2)

= I +TAav +O(T 2) (19)

where
Aav =

(
0 I

−M−1Lav
∆

−M−1K

)
⊗ Ip (20)

and

Lav
∆ =

1
T

N

∑
i=1

τiLi
∆ (21)

is the average of the N graph Laplacians during the period
T .

Because the linear combination (21) preserves the struc-
ture of a Laplacian, Lav

∆
defines an average graph obtained

by superimposing the individual graphs i = 1, · · · ,N. In
this average graph, the links are weighted by τi/T , which
represents the relative dwell time of each graph constituting
the average. This means that, if the time-varying graph is
jointly connected as in [1], then the averaged graph described
by Lav

∆
is connected.

We finally show that, when T is sufficient small, connect-
edness of the average graph implies stability of (15)-(16). To
see this, note from (19) that the eigenvalues of Ξ(T,0) are
given by

κi = 1+T λi +O(T 2), i = 1, · · · ,2n, (22)

where λi’s are the eigenvalues of Aav. It follows from the
analysis in Section II that if the graph induced by the
averaged Laplacian Lav

∆
is connected, then all λi’s have

negative real parts, except the one, say λ1, at zero. This zero
eigenvalue results from the null space of Aav, spanned by a =
[1T

n 0T
n ]T , which is also the null space of Ai, i = 1, · · · ,N.

We thus conclude that Ξ(T,0)a = a, which implies κ1 = 1.
Then, for sufficiently small T , κi in (22), i = 2, · · · ,2n,
remain inside the unit circle and κ1 = 1 corresponds to the
motion of the center, thereby guaranteeing the asymptotic
stability of the subspace spanned by a = [1T

n 0T
n ]T . Note

that convergence to this subspace guarantees objectives B1-
B2 in Section II.

Lemma 1: Consider the closed loop dynamics (15)-(16)
with a switching signal σ(t) of period T . If the averaged
graph induced by (21) is connected, then there exists a
T ∗, such that for T < T ∗, the the subspace spanned by
a = [1T

n 0T
n ]T is asymptotically stable. �

IV. PARAMETRIC RESONANCE

A. Example

To illustrate parametric resonance in its most basic form,
in this example we study the cooperative system (7) with
M = I, K = kI and ∆ = δ I. To further simplify the notation
we consider the single degree-of-freedom case p = 1. The
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same analysis extends to p > 1 with the use of Kronecker
algebra. The graph is now time-invariant but the link gain δ

is perturbed by a cosine term ε cosωt, thus leading to the
closed-loop model

ẍ+ kẋ+(δ + ε cosωt)Lx = 0. (23)

Because the graph is undirected, the Laplacian matrix L
is symmetric, its eigenvalues λi, i = 1, · · · ,n, are real and
nonnegative, and L can be diagonalized by an orthonormal
matrix Q:

QT LQ = Ld := diag{λn, · · · ,λ1} (24)

where λn ≥ λn−1 ≥ ·· · ≥ λ1 = 0. If the graph is connected,
then only λ1 is zero, and the corresponding column in Q is

the vector
1√
n

1n. Thus, we let

Q = [ST 1√
n

1n] (25)

where S satisfies SST = In−1 and S1n = 0, and decompose x
as

x = ST d +
1n√

n
c, (26)

where d ∈ Rn−1 and c ∈ R.
The dynamics of c correspond to the evolution of the

center of x and can be obtained by premultiplying (23) by
1√
n 1T

n :
c̈+ kċ = 0. (27)

The solution c(t) approaches ċ(0)/k + c(0), which means
that the time-varying link gains do not affect the motion of
the center.

Next we derive the dynamic equations for d. Since SST =
In−1, we obtain from (26) that

d = Sx (28)

which, from (23), leads to

d̈ + kḋ +(δ + ε cosωt)SLx = 0. (29)

We further note from (26) that

SLx = SLST d (30)

and from (24)-(25) that

SLST = L̄d (31)

where L̄d = diag{λn, · · · ,λ2}. Substituting (30)-(31) into
(29), we obtain

d̈ j + kḋ j +(δ + ε cosωt)λn+1− jd j = 0, j = 1, · · · ,n−1,
(32)

which is a Mathieu equation [9], [10], [18] with the natural
frequency

√
δλn+1− j. It then follows from standard results

for the Mathieu equation that instability occurs when the
frequency of the perturbation is around ω = 2

√
δλi/r, r =

1,2,3, · · · , for each i = 2, · · · ,n. When damping k is zero,
parametric resonance occurs at these frequencies for arbi-
trarily small ε . For nonzero damping k, parametric resonance
occurs for sufficiently large values of ε .

B. Coupled Mathieu Equations

In the previous example, the assumptions that M = I and
K = kI played a crucial role in obtaining the decoupled
Mathieu equations (32). We now remove this assumption
and study the case where M, K and ∆ in (7) are diagonal
matrices with not necessarily identical entries. We then reveal
parametric resonance with an analysis of coupled Mathieu
equations as in [10, Section 5.4], [18], [11], [9]. When each
link gain δi is perturbed by εδ̄i cosωt, (7) becomes:

Mẍ+Kẋ+D(∆+ ε cosωt∆̄)DT x = 0 (33)

where ∆̄ = diag{δ̄1, · · · , δ̄`}. Premultiplying by the inverse of
M, we obtain

ẍ+M−1Kẋ+M−1L∆x+ ε cosωtM−1L
∆̄

x = 0. (34)

where L
∆̄

= D∆̄DT . The coordinate transformation y = T−1x,
where T is composed of the eigenvectors of M−1L∆, then
leads to

ÿ+T−1M−1KT ẏ+Λy+ ε cosωtT−1M−1L
∆̄

Ty = 0, (35)

in which
Λ = diag{λ̂n, · · · , λ̂1} (36)

and λ̂i’s are the eigenvalues of M−1L∆. Because a simi-
larity transformation brings M−1L∆ to the symmetric form
M−

1
2 L∆M−

1
2 , we conclude that λ̂i’s are real and nonnegative.

Because the null space of DT is spanned by 1n, one of
the eigenvalues of M−1D∆DT , say λ̂1, is zero and the
corresponding column in T is 1n. Similarly to (25)-(26), we
rewrite T as

T = [S 1n] (37)

and note that
x = Ty = Sd +1nc (38)

where d ∈Rn−1, and c∈R is the center of x. Then, it follows
from (35) and the decomposition (38) that

ÿ+T−1M−1KT ẏ+Λy+ ε cosωtT−1M−1L
∆̄

Sd = 0, (39)

since 1nc lies in the kernel of DT .
When the damping term K is small, the off-diagonal

entries of T−1M−1KT can be neglected, that is,

T−1M−1KT ≈ diag{k̄1, · · · , k̄n} := K̄ (40)

where k̄i is the ith diagonal entry of T−1M−1KT . The
dynamics in (39) can then be written as(

d̈
c̈

)
=−K̄

(
ḋ
ċ

)
−Λ

(
d
c

)
−ε cosωt

(
S∗M−1L

∆̄
S 0

ζ M−1L
∆̄

S 0

)(
d
c

)
(41)

where T−1 =
(

S∗

ζ

)
.

We note from (41) that the dynamics of d are decoupled
from that of c and that stability of the relative motion of the
agents is determined by the d-dynamics. Results for coupled
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Mathieu equations in [9], [10], [18] applied to (41) indicate
that parametric resonance occurs around the frequencies

ω =
2
√

λ̂ j

r
, j = 2, · · · ,n, r = 1,2,3 · · · (42)

and

ω =

√
λ̂ j±

√
λ̂k

r
j 6= k, j,k = 2, · · · ,n. (43)

For K̄ 6= 0, parametric resonance occurs at these frequen-
cies if ε is sufficiently large. When (42) is satisfied, the
corresponding mode, dn− j+1, is excited and the resulting
parametric resonance is called Subharmonic Resonance. The
parametric resonance resulting from (43) is known as Com-
bination Resonance because the excitation frequency ω is

a linear combination of two natural frequencies
√

λ̂ j and√
λ̂k [18]. Such resonances are well studied in structural

mechanics literature and are not further discussed here.

C. Fast Varying Perturbation

In the examples above instability occurs when the fre-
quency of the perturbation interferes with the natural fre-
quencies of the cooperative system. We now show that if
the perturbation is fast enough (large ω), the origin of X is
asymptotically stable. In the next subsection, we investigate
slow perturbations.

Defining τ f = ωt and denoting

d(·)
dτ f

= (·)′, (44)

we rewrite the perturbed model in (34) as

ω
2x′′+ωM−1Kx′+M−1(L∆ + ε cosτ f L

∆̄
)x = 0. (45)

Then, using the new variables z f = z(τ)/ω , and v f = x′, we
obtain from (45) that(

v′f
z′f

)
=

1
ω

(
−M−1K −M−1D(∆+ ε cosτ f ∆̄)

DT 0

)
︸ ︷︷ ︸

A f (τ f )

(
v f
z f

)
.

(46)
When ω is sufficiently large, the averaging method [12]

is applicable to (46) and the average of A f (τ f ) is given by

A f
av =

1
2π

∫ 2π

0
A f (t)dt (47)

=
(
−M−1K −M−1D∆

DT 0

)
, (48)

which has been proved to be asymptotically stable in Section
II. The following lemma is thus a consequence of [12,
Theorem 10.4]:

Lemma 2: Consider the closed-loop system (33). There
exists a ω f > 0 such that for ω > ω f , the origin of X is
asymptotically stable.�

D. Slowly Varying Perturbation

To analyze the system (34) with slowly varying pertur-
bation (small ω), we look at its system matrix As(t) in the
X-coordinates:

As(t) =
(
−M−1K −M−1D(∆+ ε cosωt∆̄)

DT 0

)
. (49)

For any fixed t, if ∆+ ε cosωt∆̄ > 0, that is

0≤ ε < min
i=1,··· ,`

δi

δ̄i
, (50)

it follows from the results in Section II that the equilibrium
X = 0 is asymptotically stable on Sx, which implies that
As(t) restricted to Sx is Hurwitz.

We next evaluate the derivative of As(t) as

Ȧs(t) =
(

0 εω sinωtM−1D∆̄

0 0

)
(51)

and compute its 2-norm:

‖Ȧs‖ =
√

λmax(ȦT
s Ȧs) (52)

= εω|sin(ωt)|

√
λmax

(
0 0
0 ∆DT M−2D∆

)
(53)

= εω|sin(ωt)|λmax(∆DT M−2D∆) (54)
≤ εωλmax(∆DT M−2D∆). (55)

Since ‖Ȧ‖ is bounded, we conclude from [19, Theorem
3.4.11] that for sufficiently small ω or ε , the origin of X
of the perturbed system (34) is asymptotically stable.

Lemma 3: Consider the closed-loop system (33). There
exists a ū > 0 such that for εω < ū, the origin of X is
asymptotically stable. �

V. UNMODELED DYNAMICS

We consider the following closed loop system with un-
modeled dynamics, i = 1, · · · ,N,

miẍi = Ciξi (56)
εξ̇i = Aiξi +Bi fi (57)

where (57) represents the unmodeled dynamics, ε > 0, Ai
is Hurwitz, and fi is defined in (6). When ε is small, the
unmodeled dynamics are fast. We further assume that the dc
gain of the unmodeled dynamics is CiA−1

i Bi = −I so that
the reduced model obtained by setting ε = 0 in (56)-(57)
is identical to (5). It then follows from standard singular
perturbation arguments (see, e.g. [12, Example 11.14]) that
there exists ε∗ such that for ε < ε∗, the origin of X is
asymptotically stable under the control (6).

To illustrate the dependence of ε∗ on the graph and the
mass inertia, we simplify the model in (56)-(57) by assuming
M−1K = kIp, ∆ = δ I`, A =−Ip, B = Ip and C = Ip:

miẍi = ξi (58)
εξ̇i = −ξi + fi. (59)
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Denoting x = [xT
1 , · · · ,xT

n ]T , ξ = [ξ T
1 , · · · ,ξ T

n ]T , ξ̄ = (M−1⊗
Ip)ξ and using (8), we rewrite (58)-(59) in the compact form: ẋ

ẍ
˙̄
ξ

 =

 0 In·p 0
0 0 In·p

− δ

ε
(M−1L⊗ Ip) − k

ε
In·p − 1

ε
In·p


︸ ︷︷ ︸

A

 x
ẋ
ξ̄



+

 0
−1n

M−11n

⊗ v̇. (60)

Then, using [4, Theorem 3], it is not difficult to show that
the 3n eigenvalues of A are the roots of the following n
characteristic polynomials:

s3 +
1
ε

s2 +
k
ε

s+
δ

ε
λ̄i = 0, i = 1, · · · ,n, (61)

where λ̄i’s are the eigenvalues of M−1L. A Routh-Hurwitz
argument further shows that the exact stability region in the
parameter space is given by

ε < ε
∗ =

k
δ λ̄max

, (62)

where λ̄max is the maximal eigenvalue of M−1L. For suffi-
ciently small ε , (62) is satisfied and the design in (6) guar-
antees stability despite the unmodeled dynamics. Denoting
mmin = mini mi, we note that a conservative upper bound of
λ̄max is n

mmin
, which implies from (62) that if ε < kmmin

δn , the
origin of X is stable.

Note that, since λ̄max is the maximal eigenvalue of M−1L,
ε∗ depends not only on the graph structure, but also on the
mass distribution of the agents. To illustrate this dependence,
we consider four agents with k = 2, δ = 1 and p = 1. We
compare ε∗’s under two graphs as in Fig. 2. When M =
diag{5,3,2,1}, we compute from (62) ε∗ = 1.4797 for the
star graph and ε∗ = 0.8154 for the tree graph, which means
that the star graph is more robust for this M. However, when
M = I4, ε∗ = 0.5,0.5858, respectively, for the star graph and
the tree graph, which implies that the star graph is now less
robust.

Fig. 2. The two graphs used in Section V to illustrate the dependence of
ε∗ on the graph structure and mass distribution.

CONCLUSIONS

For cooperative control technology to reach a mature state,
its robustness properties and limitations must be fully under-
stood. In this paper, we presented a preliminary investigation

of robustness with respect to switching topology, link gain
variation and unmodeled dynamics. We illustrated with an
example that switching topology can lead to instability and
showed that the closed-loop stability is maintained when
switching is sufficiently fast or slow. We then revealed a
parametric resonance mechanism by transforming the co-
operative system with time-varying link gains into Mathieu
equations. As in the case of switching graphs, stability is
maintained when the perturbation is slow or fast enough that
it does not interfere with the natural frequencies of the group
dynamics. Our main goal in this paper was to attract attention
to instability mechanisms rather than give complete recipes
for robustness. Future work will pursue robust redesigns and
extensions to nonlinear models and directed graphs.
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