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Abstract— Ionic polymer-metal composites (IPMCs) form an
important category of electroactive polymers and have many
potential applications in biomedical, robotic and micro/nano
manipulation systems. In this paper, a nonlinear, control-
oriented model is proposed for IPMC actuators. A key com-
ponent in the proposed model is the nonlinear capacitance
of IPMC. A nonlinear partial differential equation (PDE),
which can capture the fundamental physics in IPMC, is fully
considered in the derivation of nonlinear capacitance. A systems
perspective is taken to get the nonlinear mapping from the
voltage to the induced charge by analytically solving the
nonlinear PDE at the steady state when a step voltage is applied.
The nonlinear capacitance is incorporated into the circuit
model, which includes additionally the pseudocapacitance due
to the electrochemical adsorption process, the ion diffusion
resistance, and the nonlinear DC resistance of the polymer, to
capture electrical dynamics of IPMC. With electromechanical
coupling, the curvature output is derived based on the circuit
model. The proposed model is formulated in the state space,
which will be the starting point for nonlinear controller design.
Experimental verification shows that the proposed model can
capture the major nonlinearities in the electrical response of
IPMC.

I. INTRODUCTION

Ionic polymer-metal composites (IPMCs) form an im-
portant category of electroactive polymers (also known as
artificial muscles) and have built-in actuation and sensing
capabilities [1]. An IPMC sample typically consists of a thin
ion-exchange membrane (e.g., Nafion), chemically plated on
both surfaces with a noble metal as electrodes. When a
voltage is applied across an IPMC, transport of hydrated
cations and water molecules within the membrane and the
associated electrostatic interactions lead to bending motions,
and hence the actuation effect. Because of their softness,
resilience, biocompatibility and the capability of producing
large deformation under a low action voltage, IPMCs are
very attractive materials for many applications in the fields
of biomedical devices and biomimetic robots [2].

An accurate and practical mathematical model is desirable
in the application of IPMC. Extensive work has been done in
modeling of IPMC. Current modeling work can be classified
into three categories based on their complexity levels. Based
purely on the empirical responses, black-box models, e.g.,
[3], offer minimal insight into the governing mechanisms
within the IPMC. As a more detailed approach, the gray-
box models, e.g., [4], are partly based on physical principles
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while also relying on empirical results to define some of
the more complex physical processes. In the most complex
form, white-box models with partial differential equations
(PDEs), e.g., [5], attempt to explain the underlying physics
for the sensing and actuation responses of IPMCs, but they
are not practical for real-time control purposes. Bufalo et al.
applied mixture theory to the modeling of IPMC actuators
[6], but they only addressed the behavior under quasi-static
actuation. Chen and Tan [7] bridged the gap between the
empirical models and the physical models by exactly solving
the governing PDEs in the Laplace domain, and came up with
an infinite-dimensional transfer function relating the output
to the input. However, this control-oriented model was based
on a linear PDE which ignored the nonlinear terms in the
physical model. This approximation only holds when a small
voltage is applied. A nonlinear model is needed when a
relatively high voltage is applied to the IPMC to generate
large deformation.

Nonlinear behaviors of IPMC have been reported in liter-
ature. Chen et al. [8] employed the Preisach operator to cap-
ture the hysteresis in IPMC. Bonomo [9] reported a nonlinear
circuit model of IPMC. However, it is an empirical nonlin-
ear model and cannot capture the fundamental physics in
IPMC. Nemat-Nasser [10] captured a nonlinear capacitance
of IPMC with an assumption that there is asymmetric charge
distribution along the thickness direction and that cation-
depleted layer forms near the anode side when a relatively
high voltage is applied. However, the region without cation
depletion was still governed by the linear PDE.

Our proposed model is based on the original nonlinear
PDE, which can capture ion diffusion, water migration, and
electrostatic interactions in IPMC. The modeling work starts
from the analysis of the equilibrium of IPMC under a step
voltage input, which can be captured by a nonlinear ordinary
differential equation (ODE). Numerical analysis of the non-
linear ODE demonstrates an asymmetric charge distribution
along the thickness direction. The nonlinear term in the
original PDE cannot be ignored when a moderate voltage
(> 0.2V) is applied. Since the nonlinear ODE cannot be
explicitly solved, a systems perspective is taken to derive the
analytical nonlinear mapping from the voltage to the charge.
It is verified by the numerical solution, and is practically
useful in real-time control.

A nonlinear circuit model is employed to capture the elec-
trical dynamics of IPMC. It incorporates nonlinear capaci-
tance of IPMC derived from the nonlinear mapping function
between the charge and the voltage, ion diffusion resistance,
pseudocapacitance due to the electrochemical process at the
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polymer-metal interface [11], and nonlinear DC resistance
of the polymer [9]. Based on the electromechanical coupling
effect, the curvature output can be obtained from the electri-
cal dynamic model. The proposed model shows consistency
with the linear model when the voltage is small [5]. With
definition of state variable, input, and output, the proposed
model is formulated in the state space, which will be the
starting point for nonlinear control design. Parameters are
measured or identified through experiments. The proposed
model is validated in experiments.

The remainder of the paper is organized as follows.
The governing nonlinear PDE is reviewed in Section II.
Section III shows numerical and analytical analysis of the
nonlinear PDE at the steady state. In Section IV, a nonlinear
circuit model is introduced to capture the electrical dynamics
of IPMC. The derivation of curvature output of IPMC
and a nonlinear control-oriented model are also shown in
Section IV. Experimental validation of the proposed model
is presented in Section V. Finally, concluding remarks are
provided in Section VI.

II. GOVERNING NONLINEAR PDE

The governing PDE for charge distribution in an IPMC
was first presented in [5] and then used by Farinholt and
Leo [12] for investigating the actuation and sensing response.
Let D, E, φ , and ρ denote the electric displacement, the
electric field, the electric potential, and the charge density,
respectively. The following equations hold:

E =
D
κe

= −∇φ , (1)

∇ ·D = ρ = F(C+ −C−) , (2)

where κe is the effective dielectric constant of the polymer,
F is Faraday’s constant, and C+ and C− are the cation and
anion concentrations, respectively. Since the thickness of an
IPMC is much smaller than its length or width, one can
assume that D and E are restricted to the thickness direction
only. Fig. 1 shows the geometrics definition of IPMC.
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Fig. 1. Geometric definitions of an IPMC beam.

The continuity expression relates the ion flux to the cation
concentration,

∂J
∂x

= −∂C+

∂ t
. (3)

The flux of ion movement and water migration is

J = −dke

F
(
∂ 2E
∂x2 − F(1−C−ΔV )

RT
E(

∂E
∂x

+
FC−

ke
)). (4)

where d is the ionic diffusivity, R is the gas constant, T
is the absolute temperature, ΔV is the volumetric change.

With the continuity equation (3), one can derive the nonlinear
governing PDE in terms of the electric field,

∂ 2E
∂ t∂x

= d( ∂
3E
∂x3 − F(1−C−ΔV )

RT [ ∂
2E
∂x2 ·E +( ∂E

∂x )2]

−F2C−(1−C−ΔV )
RTke

∂E
∂x ). (5)

Many papers [5], [10], [12], [7] have mentioned that the
nonlinear term involving ∂E

∂x ·E can be ignored in (4) based
on the assumption

ρ(x) = ke
∂E
∂x

<< C−F, (6)

and come up with a linear PDE,

∂ρ
∂ t

−d
∂ 2ρ
∂x2 +

F2dC−

κeRT

(
1−C−ΔV

)
ρ = 0 . (7)

However, this assumption will not hold when a relatively
high voltage is applied, as to be shown later in this paper.

III. ANALYSIS OF PDE IN STEADY STATE

The key component in the model is the capacitance of
the IPMC. The first step of modeling work is to analyze the
nonlinear PDE at equilibrium when a step voltage is applied,
and find the mapping function from voltage to charge. At
equilibrium, J = 0, which implies

E ′′ (x)−aE ′ (x)E (x)−bE (x) = 0, (8)

where E ′(x) = dE(x)
dx and E ′′(x) = d2E(x)

dx2 and

a
�
=

F (1−C−ΔV )
RT

, b
�
=

F2C− (1−C−ΔV )
RTke

.

The following two conditions hold for the ODE:
1) The overall charge-balance condition leads to

E(h) = E(−h). (9)

2) The potential difference is equal to the applied voltage
∫ h

−h
E (x)dx = V. (10)

Note that x =−h is defined as the anode and x = h is defined
as the cathode in this section, so V � 0.

There are two approaches to solving the nonlinear ODE
(8), numerical solution and analytical solution. The numeri-
cal solution can show the charge distribution, electrical field,
electrical potential along x direction. The analytical solution
can provide a mapping function from voltage to charge,
leading to the nonlinear capacitance of IPMC. These two
approaches will be discussed next.

A. Numerical solution of PDE at the steady state

In order to numerically solve the second-order ODE (8),
one needs to know the boundary condition E(−h) and
E ′(−h), or E(h) and E ′(h). However, these conditions are
unknown. So we change the initial point to x = x0, where x0 is
defined as the zero charge density point, ρ(x0) = keE ′(x0) =
0. Note that x0 will also depend on the applied voltage.
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In order to satisfy the conditions (9) and (10), we run the
following steps recursively:

Step 1: Assign a value to x0 such that −h < x0 < +h, and
a very small value to E(x0) = E0;

Step 2: Integrate ODE (8) forward from x = x0 to x = h
and backward from x = x0 to x =−h, separately, to get E(x)
and E ′(x);

Step 3: If |E(−h)−E(h)| � ε , go to Step 4; If E(−h)−
E(h) > ε , decrease x0 = x0−ε1 and go to Step 2; if E(−h)−
E(h) < −ε , increase x0 = x0 + ε1 and go to Step 2;

Step 4: Integrate −∫ x
−h E (x)dx to get φ(x) with φ(−h) =

0;

Step 5: If |φ(h)+V |< ε2, go to Step 6; If φ(h)+V > ε2,
increase E0 = E0 + ε3 and go to Step 1; If φ(h)+V < −ε2,
decrease E0 = E0 − ε3 and go to Step 1;

Step 6: Calculate ρ(x) = keE ′(x) and integrate Q =∫ h
x0
ρ (x)Sdx, then stop.

In the steps above, ε , ε1, ε2 are small positive constants,
and S = WL is the surface area of IPMC. All the physical
parameters in the PDE are listed in Table I in Section V.
Fig. 2 shows the numerical simulation results when V =
2.61V. Fig 2(a) shows the asymmetric charge distribution
along the thickness direction. Two inset figures show the
details at the turning points of the curve. The negative charge
density near the anode approaches the saturation value C−F .
The charge density distribution also shows that (6) will not
hold in the region close to the boundaries. In other words,
the linear PDE will not hold when a relatively high voltage
is applied.

Numerical solution offers us insight into the charge dis-
tribution, electrical field and electrical potential along the
thickness direction for a given step voltage, but it does
not provide us an overall picture of the induced charge
versus applied voltage. Moreover, the numerical solution
takes recursive steps to find proper initial conditions, and
requires much computation which is not practical for control
purposes. An analytical solution is practical in real time
implementation. It is also the starting point in the derivation
of nonlinear capacitance of IPMC.
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Fig. 2. Numerical simulation of charge density for V = 2.61V.

B. Analytical solution of PDE at the steady state

Define y
�
= E and p

�
= E ′. Eq. (8) becomes

pdp
(ap+b)

= ydy. (11)

We integrate both sides of (11). On the left-hand side, we
integrate from p(x0) to p, while on the right-hand side, we
integrate from E(x0) to y:

p
a
− b

a2 ln
(a

b
p+1

)
=

1
2
y2 − E (x0)

2

2
. (12)

Since it is difficult to solve (12) to get p in terms of y, one
cannot continue to solve the ODE to get an explicit function
E(x). We take a systems perspective to solve this problem.
What we are really concerned about is how the total charge
is analytically related to the voltage input. Thus it is not
necessary to know the explicit function E(x).

By integrating both sides of (8) from x =−h to x = h, we
get

E ′ (h)−E ′ (−h)− a
2

(
E2 (h)−E2 (−h)

)−bV = 0. (13)

From (9) and (13), one can get

V =
1
b
(E ′(h)−E ′(−h)). (14)

The total charge Q can be obtained by integrating ρ(x) from
x = x0 to x = h, where ρ(x0) = 0:

∫ h

x0

ρ (x)Sdx = Q = (E (h)−E (x0))Ske. (15)

In Section III-A, Fig. 2(b) shows that E(x0) << E(h)
(E(x0) = 1.5× 10−23 and E(h) = 2× 107). So (15) can be
written as

E (h) = E (−h) =
Q
Ske

. (16)

Note that E ′(h) and E ′(−h) are the positive root and negative
root of (12), respectively, when y = E(h).

Define

k
�
=

1
2
(

Q
Ske

)2. (17)

Then (12) can be written as

p
a
− k =

b
a2 ln

(a
b

p+1
)

. (18)

Theorem 3.1: If k > 0, there exist two roots (p1, p2) for
(18) such that − b

a < p1 < 0 and p2 > 0. Furthermore, if k = 0,
then p1 = p2 = 0.

Proof: Define

χ(p) =
p
a
− b

a2 ln
(a

b
p+1

)
− k, p > −b

a
. (19)

Let’s start with the case when k > 0. Because χ(0) =−k < 0,
χ(p) is continuous in (− b

a ,+∞) and

lim
p→+∞

χ (p) = +∞ > 0, lim
p→− b

a

χ (p) = +∞ > 0,
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there exist p1 ∈ (− b
a ,0), p2 ∈ (0,+∞) such that χ(p1) = 0

and χ(p2) = 0. Since

χ ′(p) =
p

ap+b
, (20)

with p >− b
a , we can get χ ′(p) > 0 when p > 0 and χ ′(p) < 0

when 0 > p > − b
a . So χ(p) is monotonically increasing in

(0,+∞), and monotonically decreasing in (− b
a ,0). Then p1

and p2 should be unique. When k = 0, χ(0) = 0, implying
p1 = p2 = 0.

In order to get the mapping function from V to Q, we need
find out how k is related to the distance of two roots |p1− p2|.
As shown in Fig 3, the roots of (18) are the intersection
points (p1 and p2) of the following two curves:

η =
b
a2 ln

(a
b

p+1
)

= f (p) ,

η =
p
a
− k = λ (p) .

1ln2 p
b
a

a
b

k
a
p

(p1,0)

(p2,0) p

a
b

p

(0,-k)

Fig. 3. Illustration of solving for p1 and p2.

From Fig. 3, the negative root p1 will never hit the line
p =− b

a because p =− b
a is the asymptote of the logarithmic

function of η = ln( b
a p+1). The physical explanation of this

is the following. Since the negative ions cannot move and
the negative ion density are uniform in IPMC, b

ake
=C−F is

the bound of the negative charge density. So p >− b
a implies

that the layer of depletion of positive charges will not form,
although the positive charge density can be very close to
zero.

Then with (14), we can solve (18) to get

k = Γ(V )
�
=

{
Γ(V ) ,V > 0
0,V = 0

(21)

where

Γ(V )
Δ=

b
a2

(
aV

eaV −1
− ln

(
aV

eaV −1

)
−1

)
, (22)

With l′Hospital′s rule, limV→0Γ(V ) = 0. So k is a continuous
function of V . With (17) and (21), one can get the total charge
Q in function of V

Q = Ske

√
2Γ(V ). (23)

When V → 0, one can approximate Γ(V ) ≈ b|V |2
8 using its

Taylor series expansion around V = 0, then Q ≈
√

bVSke
2 ,

which is consistent with the charge in the linear case [5].

Fig. 4 shows the simulation results of charge versus
voltage at the steady state. It includes the simulation results
based on analytical solution of the nonlinear ODE, numerical
solution of the nonlinear ODE and numerical solution of
the linear ODE (which ignores the nonlinear term). One
can see that the analytical solution can match the numerical
solution well. When the voltage is small, one can ignore the
nonlinear term in the nonlinear PDE. However, if a relatively
large voltage is applied, the error between the nonlinear
model and the linear one becomes significant. The above
analytical analysis of PDE at the steady state will be helpful
for deriving the nonlinear capacitance of IPMC, which will
be discussed next.
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Fig. 4. Charge versus voltage at the steady state.

IV. NONLINEAR CIRCUIT MODEL

The above analysis can only capture the nonlinear ca-
pacitance of IPMC. A dynamic model needs to capture
the transient processes in IPMC. Bonomo [9] employed a
nonlinear circuit model to capture the electrical dynamics of
IPMC. However, it is only an empirical model. In this paper,
a nonlinear circuit model is also employed (Fig. 5), but it is
physics-based. It incorporates the nonlinear capacitance of
IPMC C1, pseudocapacitance Ca due to the electrochemical
adsorption process at the polymer-metal interface, ion dif-
fusion resistance Rc, electrode resistance Ra, and nonlinear
DC resistance of polymer Rdc.

U

+

-

+

-

VC1

Ra

Rc

Idc

Ca

IaI

Rdc

Is

Fig. 5. Circuit model of IPMC.

A. Nonlinear capacitance of IPMC

The nonlinear capacitance can be obtained by taking
derivative of (23),

C1 (V ) =
dQ
dV

= Ske
Γ′ (V )√
2Γ(V )

, (24)
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where Γ′(V ) is the first derivative of Γ(V ). From (22),

Γ′ (V ) =
b
a

(
1− eaV −1

aV

)
eaV −1−aVeaV

(eaV −1)2 . (25)

The proposed analytical solution of nonlinear capacitance
captures the fundamental physics in the IPMC. It is repre-
sented by a function in terms of physical parameters and
dimensions, and is geometrically scalable.

B. Pseudocapacitance due to adsorption

For an electrochemical surface process, e.g., the so-called
underpotential deposition of H [13], the following holds:

M+H3O
+ + e

K� MHads +H2O, (26)

where M is the substrate (usually a noble metal, Pt, Rh, Ru
or Ir). Since IPMC has Pt as electrode and some electrolyte
in the polymer, the underpotential deposition process should
be incorporated into the model [11]. The adsorption current
due to this electrochemical process can be represented by
[13]:

Ia = Ca(V )
dV
dt

, (27)

where

Ca(V )
�
=

q1SF
RT

K1cH+e−
VF
RT

(K1cH+ + e−
VF
RT )2

, (28)

q1 is some constant (For H on polycrystalline Pt, q1 =
210 μC/cm2 [13]), K1 = k1

k−1
, k1, k−1 are the chemical rate

constants for forward and reverse directions of (26), and cH+

is the concentration of H+.

C. Nonlinear DC resistance

The current response under a step voltage input will not
vanish at the steady state [9] because of the DC resistance
of polymer. One can approximate the nonlinear DC current
by a series of polynomial functions Y (V ). In this paper, we
use a third-order polynomial function:

Idc = sign(V )(Y1|V |+Y2|V |2 +Y3|V |3) Δ=Y (V ) . (29)

Note that Idc is supposed to be an odd function of V . That’s
why sign(V ) appears in (29).

D. Curvature output

The stress is proportional to the charge density σ =
α0ρ [5], where α0 is the coupling constant. The moment
generated by IPMC can be derived as:

M = Wα0ke

(
sign(V )2h

√
2Γ(|V |)−V

)
. (30)

If one takes V → 0,

M →Wα0keV
(
h
√

b−1
)
≈Wα0keVh

√
b, (31)

which is consistent with the moment reported in the linear
case [5]. With (30), one can then obtain the curvature output

κ = Ψ(V )
Δ=

3α0ke

(
sign(V )2h

√
2Γ(|V |)−V

)
2Yeh3 . (32)

where Ye is the equivalent Young’s modulus of IPMC.

E. Nonlinear control-oriented model

The objective of this work is to derive a control-oriented
nonlinear model which can be used in controller design.
Based on the circuit model (Fig. 5) and the curvature output
(30), the model structure is shown in Fig. 6.

s
1

ca RR
1

VCa

+

-

U I V

Ia

VC1

1 Vdt
dV

+
-

X

VY

+

+

Idc

Is

Fig. 6. Model structure.

From (27) and (29), one can get

dV
dt

=
U−V
Ra+Rc

−Y (V )

C1(V )+Ca (V )
. (33)

Defining the state variable x = V , the control input u = U ,
and the system output y = κ , one can obtain a first-order
nonlinear dynamic model in the state space:

ẋ = − x+Y (x)(Ra +Rc)−u
(C1 (x)+Ca (x))(Ra +Rc)

,

y = Ψ(x) . (34)

V. EXPERIMENTAL VERIFICATION

Some physical parameters can be directly measured
through the experiments, such as temperature T , dimensions
L, W, h, equivalent Young’s modulus of IPMC Ye, electrodes
resistance Ra. Some parameters are physical constants, such
as R, F, q1. Other parameters (Y1,Y2,Y3,Rc,K1,C−,ke,α0)
can be identified by a model fitting process.

The current responses under a series of step voltage
inputs are measured in order to identify those unmeasured
parameters. Fig. 7 shows the initial current and DC currents
in the current step response. The initial current Is0 is the
current when the capacitors are uncharged (V = 0). The DC
current Is∞ is the current when the capacitors have been fully
charged. When V = 0, from Fig. 6, one can get

Is0 =
U

Ra +Rc
. (35)

Fig. 7(a) shows that the initial current is a linear function of
step voltage. One can obtain the linear resistance Ra +Rc by
calculating the slope of Is0 versus U . Fig. 7 shows that the
DC current can be approximated by a third-order polynomial
function of V (29), thus the coefficients Y1, Y2, Y3 can be
identified. cH+, K1,ke can be tuned to fit the transient process
with the model. Fig. 8 shows the current responses under 1.0
V. One can conclude that the proposed model can capture
both the transient process and the steady state in current
responses under step voltage inputs. Identification of α0 was
reported in [7]. Table I shows all the parameters in the model.

The model is further verified through an experiment to
examine the current response under a sinusoid voltage input
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TABLE I

PARAMETERS IN THE MODEL.

F R T Ra
96487 C/mol 8.3143 J/mol · K 300 K 18Ω
Rc L W h
48Ω 22 mm 10 mm 100 μm
C − κe cH+ K1

1091 mol/m3 1.34×10−6 F/m 1×10−6 mol/m3 4×105

α0 Ye q1
0.129 J/C [7] 0.56 GPa [7] 210 μC/cm2 [13]
Y1 Y2 Y3

1×10−5 A/V 1×10−4 A/V2 1×10−4 A/V3
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Fig. 7. Initial current and DC current versus voltage step.
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Fig. 8. Current response under step voltage input of 1.0 V.

with frequency 0.01 Hz and amplitude 3 V. Fig. 9 shows that
the model can predict the current response well.

0 50 100 150 200 250 300
−4

−2

0

2

4

V
ol

ta
ge

 (
V

)

0 50 100 150 200 250 300
−40

−20

0

20

40

Time (s)

C
ur

re
nt

 (
m

A
)

Experimental data
Simulation data

Fig. 9. Current response under a sinusoid voltage input.

VI. CONCLUSIONS AND FUTURE WORK

In this work, a nonlinear, control-oriented model is pro-
posed for IPMC actuation. It is derived based on the nonlin-
ear dynamics-governing PDE. Numerical analysis of the non-

linear PDE at the steady state shows an asymmetric charge
distribution along the thickness. A systems perspective is
taken in analytical analysis of nonlinear PDE to obtain a non-
linear mapping from the voltage to the induced charge, which
represents the nonlinear capacitance of IPMC. A nonlinear
circuit model is employed to capture the electrical dynamics
of IPMC, including the nonlinear capacitance of IPMC, the
ion diffusion resistance, the pseudocapacitance due to the
electrochemical process at the polymer-metal interface, and
nonlinear DC resistance of polymer. The proposed model
is described in the state space, which will be the starting
point of nonlinear control of IPMC. The proposed model is
validated experimentally by the electrical responses of IPMC.

Future work will be focused on the following: 1) incor-
porating mechanical dynamics into the model; 2) design of
nonlinear controller and nonlinear system analysis; 3) appli-
cation to IPMC-actuated biomedical devices and biomimetic
robots which require large deformation of IPMC.
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