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Abstract— The control synthesis problem for a class of linear
time-delay systems with actuator saturation is investigated in
this paper. The time delay is considered to be time-varying
and has a lower and upper bounds. A delay-range-dependent
approach is adopted and the corresponding existence conditions
of the stabilizing state-feedback controller are derived in terms
of LMIs. An estimate for the domain of attraction of the
origin can be obtained for the underlying systems with different
time-delay ranges. Two numerical examples are presented to
show the effectiveness and less conservatism of the developed
theoretical results.

I. INTRODUCTION

During the past decades, time-delay systems have been

widely studied and many analysis and synthesis results using

delay-dependent approach have also been reported in concern

of conservatism, see for example, [1], [4], [9], [12], [14],

[15]. Very recently, a new so-called delay-range-dependent

concept was proposed [7], [8], in which the delays are

considered to vary in a range and thereby more applicable

in practice. To further reduce conservatism, more appropriate

Lyapunov functional candidates for the underlying systems

are constructed such that new stability criterion is proposed

depending on the delay variation rate, upper and lower

bounds, see for example [5]. However, to the best of authors’

knowledge, delay-range-dependent control synthesis prob-

lems for linear time-delay systems have not been investigated

yet, which will be challenging due to the hard extension of

the existing stability results. In fact, how to build a tradeoff

between conservatism and extension to control synthesis of

adopted approach is still an open problem up to date.

In addition, actuator saturation are often the source of

system instability or performance degradation in many phys-

ical and industrial systems. Considerable attention has been

devoted to the kind of liner system subject to saturating

controllers, with or without time-delay in the system, see

for example, [6], [11]. Also, delay-dependent approach for

such systems with time-delay has been used to estimate

the domain of safe admissible initial states (domain of

attraction), see, [2], [3], [10]. To be more practical and

significant, the advanced and less conservative delay-range-

dependent idea is worth considering and attempting to solve

the control problems for time-delay systems with actuator
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saturation. Note that the expected control synthesis results

can not be obtained by simple fusion of the available results

on time-delay systems and constrained control.

In this paper, we are interested in designing a state

feedback controller for a class of linear time-delay systems

with actuator saturation. The time-delay is considered to be

time-varying and has a lower and upper bounds. The delay-

range-dependent approach is adopted and the corresponding

existence criterion of the stabilizing controller is derived via

LMI formulation. Furthermore, the domain of attraction of

the origin can be estimated for the underlying systems with

different time-delay ranges. Two numerical examples are

given to show the effectiveness and potential of the developed

theoretical results.

Notation: The notation used in this paper is fairly standard.

The superscript “T” stands for matrix transposition, and R
n

denotes the n dimensional Euclidean space. The space of

the continuously differentiable vector functions φ over [−d2,
0] is denoted by C1[−d2, 0]. In symmetric block matrices

or long matrix expressions, we use * as an ellipsis for the

terms that are introduced by symmetry and diag{·} stands

for a block-diagonal matrix. Matrices, if their dimensions

are not explicitly stated, are assumed to be compatible for

algebraic operations. The notation P > 0 (≥ 0) means P is

real symmetric and positive (semi-positive) definite. I and 0
represent respectively, identity and zero matrices.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a class of time-varying state-delayed systems

with the following dynamics:

ẋ(t) = Ax(t) +Adx(t− d(t)) +Bσ(Fx), t > 0

x(s) = φ(s), s ∈
[

−d2 0
]

(1)

where x(t) ∈ R
n is the state vector, A and Ad are constant

matrices with appropriate dimensions, F ∈ R
m×n is the

memoryless state feedback controller gain that has to be

designed. The actuator is described by the following non-

linearity

σ(Fx(t)) = [σ(f1x(t)), ..., σ(fmx(t))]
T

(2)

σ (fix(t)) ,







ui, if fix(t) > ui

fix(t), if − ui ≤ fix(t) ≤ ui

−ui, if fix(t) < ui

(3)

where fi is the ith row of F . In addition, for feedback matrix

F, we define

L(F ) , {x ∈ Rn : |fix| ≤ ui, i = 1, 2, ...,m}
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then L(F ) is the region in the state space where the control

input is linear in x.
The time-delay, d(t), is a time-varying continuous function

that satisfies

0 < d1 ≤ d(t) ≤ d2, 0 ≤ ḋ(t) ≤ µ (4)

where d1 and d2 are the delay lower and upper bounds,

respectively, and µ is the delay variation rate.

Now, for later development, we revisit the definition on

domain of attraction for system (1).

Definition 1: Denoting the solution of system (1) with the

initial condition x0 = φ ∈ C1[−d2, 0] by ψ(t, x0), then the

domain of attraction of the origin of system by (1) is

T ,

{

φ ∈ C1[−d2, 0] : lim
t→∞

ψ(t, x0) = 0
}

,

Our main purpose in this paper is to design a state

feedback controller for system (1) such that the closed-

loop system is asymptotically stable for all time-varying

delays satisfying (4). Also, we are interested by obtaining

an estimate of the domain of attraction Xδ ⊂ T , where

Xδ =
{

φ ∈ C1[−d2, 0] : max |φ| ≤ δ1,max |φ̇| ≤ δ2

}

with scalars δi > 0, i = 1, 2 that will be maximized in the

sequel.

III. MAIN RESULTS:

The stability problem based on the delay-range-dependent

idea has been studied for systems with time-varying delays,

however, the obtained conditions are generally hard to extend

to solve the stabilization problem, even for the absence of

actuator saturation. To overcome the difficulty, an appropriate

transformation will be proposed in this paper while dealing

with the constructed Lyapunov functional differential.

In addition, as shown in [6], to reduce the conservatism

of handling the actuator saturation, the technique of adding

auxiliary feedback matrix will be used here, namely, for two

matrices F,H ∈ R
m×n, a matrix set is introduced as:

W(α, F,H)

,











W ∈ R
m×n : W =







α1f1 + (1 − α1h1)
...

αmfm + (1 − αmhm)

















(5)

where hi is the ith row of H and αi = 0 or 1 (then we define

ψ(α) , {α ∈ Rm : αi = 1, 0} for later use). To satisfy the

actuator saturation, the technique requires that the auxiliary

matrix H also satisfies |hix| ≤ ui, i = 1, ...,m. To this end,

a subset of the set L(H) will be found and chosen to be an

ellipsoid of the form:

E(P, 1) , {x : xTPx ≤ 1}
where P > 0 will be determined. Combined E(P, 1) with

[

ui hi

∗ uiP

]

≥ 0, i = 1, ...,m

we can obtain that E(P, 1) ⊂ L(H) (see [6] for details).

Based on the above ideas, the following theorem gives the

existence conditions of a stabilizing state-feedback controller

for system (1) and the corresponding estimation of domain

of attraction.

Theorem 1: Consider system (1) and let 0 < d1 ≤ d2 and

µ > 0 be given constants. If there exist matrices X > 0, P̄ >
0, Q̄i > 0, i = 1, 2, 3, Z̄i > 0, i = 1, 2, M̄i, N̄i, S̄i, i =
1, ..., 5, Y, L, W (v, Y, L) ∈ W(α, Y, L) and W (s, Y, L) ∈
W(α, Y, L), ∀v, s ∈ ψ(α), such that the following hold









Π̄ d2N̄ d12M̄ d12S̄
∗ −d2Z̄1 0 0
∗ ∗ −d12(Z̄1 + Z̄2) 0
∗ ∗ ∗ −d12Z̄2









< 0 (6)

[

ui li
∗ uiP̄

]

≥ 0, i = 1, ...,m (7)

where li denotes the ith row of L, d12 , d2 − d1 and

Π̄ ,













Π̄11 Π̄12 Π̄13 Π̄14 Π̄15

∗ Π̄22 Π̄23 Π̄24 Π̄25

∗ ∗ Π̄33 Π̄34 Π̄35

∗ ∗ ∗ Π̄44 Π̄45

∗ ∗ ∗ ∗ Π̄55













, N̄ ,













N̄1

N̄2

N̄3

N̄4

N̄5













M̄ ,













M̄1

M̄2

M̄3

M̄4

M̄5













, S̄ ,













S̄1

S̄2

S̄3

S̄4

S̄5













with

Π̄11 ,
∑3

i=1
Q̄i + N̄1 + N̄T

1 +AX +BW (v, Y, L)

+ (AX +BW (v, Y, L))
T
,

Π̄12 , N̄T
2 − N̄1 + S̄1 − M̄1 +AdX,

Π̄13 , M̄1 + N̄T
3 , Π̄14 , −S̄1 + N̄T

4 ,

Π̄15 , N̄T
5 −X + P̄ + (AX +BW (s, Y, L))

T
,

Π̄22 , (µ− 1)Q̄3 + S̄2 + S̄T
2 − N̄T

2 − N̄2 − M̄2 − M̄T
2 ,

Π̄23 , M̄2 − N̄T
3 + S̄T

3 − M̄T
3 ,

Π̄24 , −S̄2 − N̄T
4 + S̄T

4 − M̄T
4 ,

Π̄25 , −X + S̄T
5 − N̄T

5 − M̄T
5 +XAT

d ,

Π̄33 , −Q̄1 + M̄3 + M̄T
3 , Π̄34 , −S̄3 + M̄T

4 ,

Π̄35 , −X + M̄T
5 , Π̄44 , −Q̄2 − S̄4 − S̄T

4 ,

Π̄45 , −S̄T
5 −X, Π̄55 , d2Z̄1 + d12Z̄2 − 2X,

then the underlying closed-loop system is asymptotically

stable and an estimate of the domain of attraction is given

by Γδ ≤ 1, where

Γδ = δ21[λmax(X
−1P̄X−1) + d1λmax(X

−1Q̄1X
−1)

+d2λmax(X
−1Q̄2X

−1) + d2λmax(X
−1Q̄3X

−1)]

+δ22[
1

2
d2
2λmax(X

−1Z̄1X
−1)

+
(d1 + d2)d12

2
λmax(X

−1Z̄2X
−1)] (8)
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Proof. See the Appendix for a sketch of proof and [13]

for the full one.

Remark 1: Note that condition (6) contains 22m LMIs

since that there are 2m elements in the matrix W (v, F,H)
and W (s, F,H), respectively, due to the special construction

of W(α, F,H) in (5).

Remark 2: From Theorem 1, it is seen that an optimiza-

tion procedure can be proposed to maximize the initial

conditions, i.e., to obtain a maximized estimate of domain of

attraction. As the method commonly adopted in the literature,

we also select δ1 = δ2 in (8), and an approximating

optimization problem can be obtained as:

P1: min r

s.t. (6), (7) and

[

w1I I
∗ X

]

≥ 0,

w2I − P̄ ≥ 0, w3I − Q̄1 ≥ 0, w4I − Q̄2 ≥ 0,

w5I − Q̄3 ≥ 0, w6I − Z̄1 ≥ 0, w7I − Z̄2 ≥ 0,

where r = ε∗w1+w2+d1w3+d2w4+d2w5+ (d1+d2)d12

2 w7.

In P1, wi, i = 1, ..., 7, are the introduced variables

for optimizing and ε (determined iteratively) represents the

relevant weighting in the optimization procedure. The reader

can refer to [11] for more details on how the approximating

optimization is realized. Then, a maximized estimate of

domain of attraction can be obtained by δmax = 1/
√

Λ,
where

Λ = λmax(X
−1P̄X−1) + d1λmax(X

−1Q̄1X
−1)

+d2λmax(X
−1Q̄2X

−1) + d2λmax(X
−1Q̄3X

−1)

+
1

2
d2
2λmax(X

−1Z̄1X
−1)

+
(d1 + d2)d12

2
λmax(X

−1Z̄2X
−1)

with X > 0, P̄ > 0, Q̄i > 0, i = 1, 2, 3, Z̄i > 0, i = 1, 2 are

the solution of P1.

Remark 3: In addition, the delay-range-dependent ap-

proach proposed here has been shown to be less conservative

in stability analysis and more applicable in practice [5].

Therefore, in this paper, the developed results on control

synthesis for time-delay systems with actuator saturation will

present less conservatism compared with the existing results

(using delay-independent [11] or delay-dependent approach

[2], [3]).

To compare our derived results with the cases of systems

with constant delay, we can select d1 = d2 = d in (1) and

readily obtain the following corollary.

Corollary 1: Consider system (1) with d1 = d2 = d and

µ = 0. If there exist matrices X > 0, P̄ > 0, Q̄ > 0,
Z̄ > 0, N̄i, i = 1, ..., 3, Y, L, W (v, Y, L) ∈ W(α, Y, L)
and W (s, Y, L) ∈ W(α, Y, L), ∀v, s ∈ φ(α), such that the

following hold
[

Π̄ dN̄
∗ −dZ̄

]

< 0 (9)

[

ui li
∗ uiP̄

]

≥ 0, i = 1, ...,m (10)

where li denote the ith row of L and

Π̄ ,





Π̄11 Π̄12 Π̄13

∗ Π̄22 Π̄23

∗ ∗ Π̄33



 , N̄ ,





N̄1

N̄2

N̄3





with

Π̄11 , Q̄+ N̄1 + N̄T
1 + (AX +BW (v, Y, L))

+ (AX +BW (v, Y, L))
T

Π̄12 , N̄T
2 − N̄1 +AdX, Π̄22 , −Q̄− N̄T

2 − N̄2,

Π̄13 , N̄T
3 −X + (AX +BW (s, Y, L))

T
+ P̄

Π̄23 , XAT
d − N̄T

3 , Π̄33 , dZ̄ − 2X

then the underlying closed-loop system is asymptotically

stable and an estimate of the domain of attraction is given

by

δ21
[

λmax(X
−1P̄X−1) + d1λmax(X

−1Q̄X−1)
]

+δ22

[

1

2
d2
2λmax(X

−1Z̄X−1)

]

≤ 1. (11)

Moreover, the stabilizing feedback controller gain is given

by F = Y X−1.
The proof of this corollary can be completed following the

similar lines as for Theorem 1. We omit it here for brevity.

Also, selecting δ1 = δ2 in (11), and the corresponding

approximating optimization problem becomes:

P2:

min r

s.t. (9), (10) and

[

w1I I
∗ X

]

≥ 0, w2I−P̄ ≥ 0, w3I−Q̄ ≥
0, w4I − Z̄ ≥ 0, where r = ε ∗ w1 + w2 + dw3 + 1

2d
2
2w4.

Then, a maximized estimate of domain of attraction can be

obtained by δmax = 1/
√

Λ, where

Λ = λmax(X
−1P̄X−1) + dλmax(X

−1Q̄X−1)

+
1

2
d2λmax(X

−1Z̄X−1)

with X > 0, P̄ > 0, Q̄ > 0, Z̄ > 0 are the solution of P2.

IV. NUMERICAL EXAMPLE

Now let us consider the following two illustrative exam-

ples to show the importance of our results. The first one is

provided to check the validness of the results dealing with

time-varying delays with ranges, while the second one is

borrowed from [2] and [3] to show the less conservatism of

the stabilization results.

Example 1: Consider a linear state-delayed system (1)

with the following matrices:

A =

[

−4.6 −2.5
1 0.9

]

, Ad =

[

0.3 1
0.1 −0.4

]

, B =

[

−1
6

]

Our purpose here is to design a stabilizing controller for

different time-delay range and estimate the domain of attrac-

tion for the above system. Now given a delay variation rate

µ = 1.5, ui = 1 and by solving P1 (with ε = 104), we first

obtain the upper bound d2 of the time-varying delays when a

lower bound is given (e.g. d1 = 1) , the different controller
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gains and the corresponding estimations of the domain of

attraction are also obtained. The detailed results are listed in

Table 1.

TABLE I

CONTROLLER GAINS CORRESPONDING TO DIFFERENT DELAY RANGES

d(t) δmax Controller gains

0.10 ≤ d(t) ≤ 0.50 7.52 [−0.11 − 0.07]
1.0 ≤ d(t) ≤ 2.0 3.81 [−0.11 − 0.17]
1.0 ≤ d(t) ≤ 3.0 2.17 [−0.13 − 0.26]

1.0 ≤ d(t) ≤ 3.906 (upper bound) 0.31 [−0.24 − 1.77]

Furthermore, given delay ranges 1 ≤ d(t) ≤ 3 and

1 ≤ d(t) ≤ 3.906, Fig. 1 illustrates the estimate of the

corresponding domain of attraction and trajectories of system

states starting from the initial conditions on the margin of

the circles. It is clearly observed from Fig. 1 that the state of

the examined system converges to origin within the estimated

domain of attraction despite actuator saturation and the time-

varying delays within different ranges.

Example 2: Consider the following linear delay system

(1) with:

A =

[

0.5 −1
0.5 −0.5

]

, Ad =

[

0.6 0.4
0 −0.5

]

, B =

[

1
1

]

,

and ui = 5.

Given d1 = d2 = d as a constant delay, and solving P2
(with ε = 103), we obtain a maximal admissible delay bound

equal to d = 2.248, δmax = 0.3272 and the corresponding

stabilizing controller gain F = [−2.82 0.21] . Table 2 gives

the detailed comparison of δmaxwith the results in [2] and

[3]:

TABLE II

COMPUTATION RESULTS OF EXAMPLE 2

Methods d = 0.35 d = 1.0 d = 1.854 d = 2.248
Theorem 5 in [2] 0.968 infeasible infeasible infeasible

Theorem 1 in [3] 2.852 1.7442 0.091 infeasible

Corollary 1 6.0044 2.4571 0.4521 0.3272

From the above two examples, one can see that our derived

results can not only solve the stabilization problems for the

systems involving time-varying delays with ranges and actu-

ator saturation based on the advanced delay-range-dependent

stability ideas, but also present much less conservatism for

upper bound of delay and for the estimate of domain of

attraction.

V. CONCLUSIONS

The control synthesis problem for a class of linear time-

delay systems with actuator saturation is investigated in this

paper. The time-delay is considered to be time-varying and

has a lower and upper bounds. A delay-range-dependent ap-

proach is used and the corresponding LMI-based stabilizing

state-feedback controller is derived. The domain of attraction

of the origin can be further estimated for the underlying

systems with different time-delay ranges.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0

0.5

1

1.5

 

 

δ
max

=2.17, 1≤ d(t)≤ 3

δ
max

=0.31, 1≤ d(t)≤ 3.906

Fig. 1. Estimates of the domain of attraction for different delay ranges
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VI. APPENDIX

Proof sketch of Theorem 1. Constructing a Lyapunov

functional for the system as follows

V(xt) , xT (t)Px(t) +
∑2

i=1

∫ t

t−di

xT (s)Qix(s)ds

+

∫ t

t−d(t)

xT (s)Q3x(s)ds+

∫ 0

−d2

∫ t

t+θ

ẋT (s)Z1ẋ(s)dsdθ

+

∫ −d1

−d2

∫ t

t+θ

ẋT (s)Z2ẋ(s)dsdθ (12)

where P = X−1P̄X−1, Qi = X−1Q̄iX
−1, i = 1, 2, 3, Zi =

X−1Z̄iX
−1, i = 1, 2. Then we have

V̇(xt) = 2xT (t)P ẋ(t)

+
∑2

i=1
{x(t)Qix(t) − xT (t− di)Qix(t− di)}

+xT (t)Q3x(t) + d2ẋ(t)Z1ẋ(t) −
∫ t−d1

t−d2

ẋ(s)Z2ẋ(s)ds

−(1 − ḋ(t))xT (t− d(t))Q3x(t− d(t))

−
∫ t

t−d2

ẋ(s)Z1ẋ(s)ds+ (d2 − d1)ẋ(t)Z2ẋ(t)

Note that the following equations are true for matrix T > 0
and any matrices Ni, Si and Mi, i = 1, ..., 5 with appropriate

dimensions:

2NX [x(t) − x(t− d(t)) −
∫ t

t−d(t)

ẋ(s)ds] = 0

2SX [x(t− d(t)) − x(t− d2) −
∫ t−d(t)

t−d2

ẋ(s)ds] = 0

2MX [x(t− d1) − x(t− d(t)) −
∫ t−d1

t−d(t)

ẋ(s)ds] = 0

2TX [−ẋ(t) +Ax(t) +Adx(t− d(t)) +Bσ(Fx)] = 0

where TX = [xT (t)T + ẋT (t)T ] and

NX = [xT (t)N1 + xT (t− d(t))N2 + xT (t− d1)N3

+xT (t− d2)N4 + ẋT (t)N5]

SX = [xT (t)S1 + xT (t− d(t))S2 + xT (t− d1)S3

+xT (t− d2)S4 + ẋT (t)S5]

MX = [xT (t)M1 + xT (t− d(t))M2 + xT (t− d1)M3

+xT (t− d2)M4 + ẋT (t)M5]

Then using these relations and similar techniques dealing

with the constrained control in [6], we can obtain:

V̇(xt) ≤ ζT (t)[Π + d2NZ−1
1 N T

+d12S(Z1 + Z2)
−1ST + d12MZ−1

2 MT ]ζ(t)

−
∫ t

t−d(t)

[ζT (t)N + ẋ(s)Z1]Z
−1
1 ×

[ζT (t)N + ẋ(s)Z1]
T ds

−
∫ t−d(t)

t−d2

[ζT (t)S + ẋT (s)(Z1 + Z2)] ×

(Z1 + Z2)
−1[ζT (t)S + ẋT (s)(Z1 + Z2)]

T ds

−
∫ t−d1

t−d(t)

[ζT (t)M + ẋ(s)Z2]Z2
−1 ×

[ζT (t)M + ẋ(s)Z2]
T ds

≤ ζT (t)[Π + d2NZ−1
1 N T + d12S(Z1 + Z2)

−1ST

+d12MZ−1
2 MT ]ζ(t)

By Schur complement, Π + AT (d2Z1 + d12Z2)A +
d2NZ−1

1 N T + d12S(Z1 + Z2)
−1ST + d12MZ−1

2 MT < 0
is equivalent to









Π d2N d12M d12S
∗ −d2Z1 0 0
∗ ∗ −d12(Z1 + Z2) 0
∗ ∗ ∗ −d12Z2









< 0 (13)

Note that (6) is equivalent to (13) by setting X =
T−1 , N̄ =XNX, M̄ =XMX, S̄ =XSX, Z̄1 = XZ1X,
Z̄2 = XZ2X, Y = FX and performing a congruence

transformation to (13) via diag{X, X, X, X, X, X, X,
X}, which means that (13) holds if (6) is satisfied. Then we

have V̇(xt) < −e ‖xt‖2
for a sufficiently small e > 0, and

accordingly,

xTPx ≤ V(xt) < V(x0)

≤ max
θ∈[−d2,0]

|φ(θ)|2 [λmax(P ) + d1λmax(Q1)

+d2λmax(Q2) + d2λmax(Q3)]

+ max
θ∈[−d2,0]

|φ̇(θ)|2[ 1
2
d2
2λmax(Z1)

+
(d1 + d2)d12

2
λmax(Z2)]

= Γ(φ, φ̇)

thus if the set Γ(φ, φ̇) ≤ 1, we readily know that xTPx ≤ 1
and all the trajectories of x(t) that start from Γ(φ, φ̇) ≤ 1
remain within xTPx ≤ 1 and thereby the control constraints

|hix| ≤ ui are also satisfied due to (7). Meantime, the

controller gain is given by F = Y X−1, and the estimate of

the domain of attraction can be obtained from Γ(φ, φ̇) ≤ 1,
namely Γδ ≤ 1 and this completes the proof. �
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