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Abstract— The output feedback stabilization problem of a
class of nonlinear interconnected systems is considered. A novel
decentralized dynamic output feedback controller is proposed,
where local, projection operator based, reduced-order observers
are employed to estimate the subsystems’ states. The proposed
design algorithm is characterized by the separation property of
the observer-controller design. The closed-loop system driven by
the proposed decentralized dynamic output feedback controller
is asymptotically stable. The effectiveness of the proposed
control strategy is illustrated with simulation examples.

I. INTRODUCTION

Decentralized control uses local information available at

each subsystem level for the controller implementation. This

feature overcomes the limitations of centralized control,

which requires sufficiently large communication bandwidth.

Moreover, decentralized controllers are simpler and more

practical than centralized controllers. Most of the proposed

decentralized control strategies assume the availability of

the subsystems’ states; see, for example, [1], [2]. However,

the availability of the states of each subsystem cannot be

guaranteed in practice, which restricts the applications of

decentralized state feedback controllers. This motivated the

development of decentralized output feedback controllers

that incorporate local observers to estimate the states of the

subsystems; see, for example, [3]–[5].

In this paper, we consider the stabilization problem of a

class of large-scale interconnected systems modeled by

ẋi = Aixi + Bi1ui1 + Bi2ui2(x), (1)

yi = Cixi, i = 1, . . . , N (2)

where xi ∈ R
ni , ui1 ∈ R

mi1 , yi ∈ R
pi are the state,

input and output vectors, respectively, of the i-th subsystem,

x = [x⊤
1 · · · x⊤

N ]⊤ ∈ R
n is the state vector of the

whole system with n =
∑N

i=1 ni, and ui2(x) models the

unknown interconnection of the i-th subsystem with other

subsystems. Several decentralized dynamic output feedback

control strategies have been recently proposed for the above

nonlinear interconnected system in [4]–[7], where the con-

troller design has certain degree of interdependence with the

observer design. In [5], [7], decentralized dynamic output

feedback controllers were developed based on the distance

to uncontrollable (unobservable) pair of matrices. In [4],

[6], the controller and the observer designs were formulated

together in the linear matrix inequalities framework, and

then the resulting convex optimization problem was solved

to obtain the parameters of the controller and the observer.

However, the local observers used in [4]–[7] are full-order

observers. In [4]–[6], local full-order Luenberger-type ob-

servers were used, while in [7], local full-order sliding mode

observers were employed. The application of local reduced-

order Luenberger-type observers has been investigated in [8].

However, the controller and the observer designs in [8] are

still interdependent.

In this paper, we propose a decentralized dynamic output

feedback controller that incorporates local projection oper-

ator based reduced-order observers to estimate the subsys-

tems’ states, for which the observer design is independent

of the controller design. The closed-loop system driven by

the proposed decentralized compensator is guaranteed to be

asymptotically stable.

II. PRELIMINARIES

We consider the nonlinear interconnected system described

by (1) and (2), where Bi1 ∈ R
ni×mi1 (mi1 ≤ ni) is

of full rank, the pair (Ai, Bi1) is controllable, and the

pair (Ai, Ci) is observable. The interconnection of each

subsystem satisfies the following quadratic constraint as, for

example, in [4], [5],

(Bi2ui2)
⊤

(Bi2ui2) ≤ α2
i x

⊤
Γ
⊤
i Γix, (3)

where αi is a known positive constant and Γi ∈ R
ni×n is a

known interconnection matrix. We assume that rank (Bi2) =
rank (CiBi2) = mi2 (mi2 ≤ pi) and the system zeros of

the system model given by the triple (Ai, Bi2,Ci) are in

the open left-hand complex plane, that is,

rank

[

sIni
− Ai Bi2

Ci O

]

= ni + mi2, (4)

for all s such that ℜ(s) ≥ 0.

The control objective is to design controllers ui1 that

stabilize the closed-loop system under the assumption that

only the system outputs yi are available. In the following, we

first design local, projection based reduced-order observers

to obtain asymptotic estimates x̂i of each subsystem’s state

vector xi. Then we propose and analyze a decentralized

dynamic output feedback controller of the form,

ui1 = Kix̂i = (Ki1 + Ki2) x̂i, (5)

where x̂i is an asymptotic estimate of the i-th subsystem’s

state vector, Ki1 is a chosen pre-feedback gain matrix so that

Aci = Ai +Bi1Ki1 is Hurwitz, and Ki2 is a feedback gain

matrix to be defined later. In the next section, we first design
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a local projection operator based reduced-order observer to

obtain an asymptotic estimate x̂i.

III. LOCAL REDUCED-ORDER OBSERVER DESIGN

In this section, we use the projection operator based

reduced-order observer, first introduced in [9], to design local

observers for the subsystems. For the i-th subsystem, we can

decompose the state vector xi as

xi = (Ini
− M iCi)xi + M iCixi = qi + M iyi,

where M i ∈ R
ni×pi and qi = (Ini

− M iCi)xi. If M i is

chosen so that

(Ini
− M iCi)Bi2 = O, (6)

then we have

q̇i = (Ini
− M iCi)ẋi

= (Ini
− M iCi)(Aix + Bi1ui1 + Bi2ui2)

= (Ini
− M iCi)(Aiqi + AiM iyi + Bi1ui1). (7)

If qi(t0) = (Ini
− M iCi)xi(t0), then we have xi(t) =

qi(t) + M iyi(t) for t ≥ t0, where qi(t) is obtained by

solving (7). However, because xi(t0) is assumed to be

unknown, x̂i = qi + M iyi is only an estimate of xi. Thus,

in order to ensure convergence or improve the convergence

rate, we add an extra term to the right-hand side of (7) to

obtain

q̇i = (Ini
− M iCi) (Aiqi + AiM iyi + Bi1ui1

+ Li(Ciqi + CiM iyi − yi)
)

= (Ini
− M iCi) (Aiqi + AiM iyi + Bi1ui1

+ LiCi(qi + M iyi − xi)
)

. (8)

Let ei = x̂i − xi be the estimation error of the i-th subsys-

tem’s state vector. Taking into account (1), (6) and (8), we

obtain the equation governing the estimation error dynamics,

ėi = ˙̂xi − ẋi

= q̇i − (Ini
− M iCi)ẋi

= (Ini
− M iCi)(Ai + LiCi)(qi + M iCixi − xi)

= (Ini
− M iCi) (Ai + LiCi) ei. (9)

It follows that (CiBi2)
†(CiBi2) = Imi2

, where the super-

script † denotes the Moore-Penrose pseudo inverse. A general

solution to (6) is given by

M i = Bi2

(

(CiBi2)
† + Zi

(

Ipi
− (CiBi2)(CiBi2)

†
))

,
(10)

where Zi ∈ R
mi2×pi is a design parameter matrix. Let

Πi = Ini
− M iCi. (11)

It follows from (10) that Πi = Π
2
i , so Πi is a projection

matrix. Thus, there exist an invertible matrix T i whose

columns are eigenvectors of Πi such that

T−1
i ΠiT i =

[

Ini−mi2
O

O O

]

. (12)

A proof of the above fact can be found in [10, pp. 156–158

and pp. 194–195].

Remark 1: Usually, in order to find the invertible matrix

T i, a common way is to compute the eigenvectors of Πi

directly. However, this approach is numerically unstable. An

efficient and numerically stable way of constructing T i can

be found in the proof of Theorem 2 of [9]. We summarize

the method here. Let

F i = (CiBi2)
† + Zi

(

Ipi
− (CiBi2)(CiBi2)

†
)

,

and Si = F iCi. It is easy to verify that SiBi2 = Imi2
, so

rankS = mi2. Thus we can find a full rank matrix W i ∈
R

ni×(ni−mi2) such that SiW i = O. Then, we can choose

the invertible matrix T i to be T i = [W i Bi2], which is

shown to satisfy (12) in [9].

Consider now the following coordinate transformation,

ẽi = T−1
i ei. (13)

It follows from (9) that

˙̃ei = T−1
i ΠiT iT

−1
i (Ai + LiCi)T iẽi

= T−1
i ΠiT i

(

Ãi + L̃iC̃i

)

ẽi, (14)

where

Ãi = T−1
i AiT i =

[

Ãi11 Ãi12

Ãi21 Ãi22

]

, (15)

L̃i = T−1
i Li =

[

L̃i1

L̃i2

]

, (16)

C̃i = CiT i =
[

C̃i1 C̃i2

]

, (17)

with Ãi11 ∈ R
(ni−mi2)×(ni−mi2), L̃i1 ∈ R

(ni−mi2)×pi ,

C̃i1 ∈ R
pi×(ni−mi2). Let

ẽi =
[

ẽ⊤
i1

ẽ⊤
i2

]⊤
, (18)

with ẽi1 ∈ R
ni−mi2 . Using the above notation (15)–(18)

and (12), we can represent (14) as
[

˙̃ei1

˙̃ei2

]

=

[

Ãi11 + L̃i1C̃i1 Ãi12 + L̃i1C̃i2

O O

] [

ẽi1

ẽi2

]

. (19)

It is shown in [9] that if we choose

qi(t0) = (Ini
− M iCi)vi, (20)

for arbitrary vi ∈ R
ni , then ẽi2(t) = 0 for all t ≥ t0.

Then, the dynamics of the estimation error ẽi are completely

determined by the dynamics of ẽi1 , that is,

˙̃ei1 =
(

Ãi11 + L̃i1C̃i1

)

ẽi1 . (21)

Thus, if L̃i1 is chosen such that the matrix Ãi11 + L̃i1C̃i1

is Hurwitz, then we have ẽi1(t) → 0 as t → ∞. It is

also shown in [9] that the detectability of the pair (Ai,Ci)
guarantees the detectability of the pair (Ãi11 , C̃i1). Thus, we

can choose qi(t0) satisfying (20) and

Li = T i

[

L̃i1

O

]

(22)
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such that the estimation error ei = x̂i − xi, where x̂i =
qi + M iyi, of the full-order observer described by (8) will

asymptotically converge to zero as t → ∞.

Note that the dynamics of the estimation error ẽi are com-

pletely determined by the (ni −mi2)-dimensional dynamics

given by (21). Therefore, we can construct a reduced-order

observer with only (ni −mi2) observer states. Applying the

transformation from ei to ẽi to qi, we obtain

q̃i = T−1
i qi. (23)

It follows from (23) and (8) that

˙̃qi = T−1
i ΠiT iT

−1
i

(

AiT iq̃i + AiM iyi + Bi1ui1

+ Li(CiT iq̃i + CiM iyi − yi)
)

= T−1
i ΠiT i

(

T−1
i AiT i + T−1

i LiCiT i

)

q̃i

+ T−1
i ΠiT iT

−1
i (AiM i − Li + LiCiM i)yi

+ T−1
i ΠiT iT

−1
i Bi1ui1.

Using the notation introduced in (15)–(17), we have

˙̃qi = T−1
i ΠiT i

(

Ãi + L̃iC̃i

)

q̃i

+ T−1
i ΠiT iT

−1
i

[

Bi1ui1

+
(

AiM i − T iL̃i (Ipi
− CiM i)

)

yi

]

. (24)

Let q̃i = [q̃⊤
i1

q̃⊤
i2

]⊤, where q̃i1
∈ R

ni−mi2 and q̃i2
∈ R

mi2 .

It follows from (12) and (24) that ˙̃qi2
(t) = 0. Therefore,

choosing q̃i2
(t0) = 0 guarantees that q̃i2

(t) = 0 for t ≥ t0.

We can thus remove mi2 observer states from the observer

dynamics described by (24). Let

G̃i = AiM i − T iL̃i (Ipi
− CiM i) . (25)

The resulting reduced-order observer is given by

˙̃qi1
=

(

Ãi11 + L̃i1C̃i1

)

q̃i1
+

[

Ini−mi2
O

]

× T−1
i

(

G̃iyi + Bi1ui1

)

, (26)

x̂i = T i

[

Ini−mi2

O

]

q̃i1
+ M iyi, (27)

with q̃i1(t0) = 0.

IV. DECENTRALIZED DYNAMIC OUTPUT FEEDBACK

CONTROLLER CONSTRUCTION

We now present a method to determine Ki2. This method

is based on the results of [5]. To proceed, we define the

distance, δ(A, B), between the pair (A, B) and the set of

pairs with an uncontrollable purely imaginary mode as

δ(A, B) = min
ω∈R

σmin

([

jωI − A B
])

,

where σmin(·) denotes the smallest singular value. The

above definition is an adaptation of the distance between

the pair (A, B) and the set of uncontrollable pairs intro-

duced by [11]. Moreover, δ(A, ǫB) is a continuous function

of ǫ in ([5], [12], [13]). An efficient bisection algorithm

for computing δ(A, B) can be obtained by substituting

(A⊤, B⊤) into the algorithm presented in [12], where the

distance between the pair (A, C) and the set of pairs with

an unobservable purely imaginary mode is considered.

To proceed, we need the following lemma which is a

modification of a result found in [12].

Lemma: For the quadratic matrix equation,

A⊤P + PA + PRP + Q = O, (28)

if R = R⊤ ≥ 0, Q = Q⊤ > 0, A is Hurwitz and the

associated Hamiltonian matrix,

H =

[

A R

−Q −A⊤

]

,

has no eigenvalues on the imaginary axis (i.e. H is hyper-

bolic), then there exist symmetric positive definite solutions

P to the quadratic matrix equation (28).

Proof: If R = R⊤ ≥ 0, A is Hurwitz, and the

Hamiltonian matrix H has no eigenvalues on the imaginary

axis, there exist symmetric matrices P = P⊤ to the

quadratic matrix equation (28). A proof of this fact is given

in [14]. On the other hand, we can rearrange (28) to obtain

A⊤P + PA = −PRP − Q. Because R = R⊤ ≥ 0,

P = P⊤ and Q = Q⊤ > 0, therefore −PRP − Q is

negative definite. In addition, A is Hurwitz, so P is positive

definite, which concludes the proof of the lemma.

Proposition: For the controllable pair (Aci, Bi1), if

δ

(

Aci,
√

2βBi1

(

B⊤
i1Bi1

)− 1

2

)

>
√

2β, (29)

where β =
∑N

i=1 α2
i λmax(Γ

⊤
i Γi), there exists a γ∗

i > 0 such

that there exist symmetric positive definite solutions P c
i to

the quadratic matrix equation,

A⊤
ciP

c
i + P c

iAci + P c
iRiP

c
i + Qi = O, (30)

where Ri = 2(Ini
− Bi1(B

⊤
i1Bi1)

−1B⊤
i1) and Qc

i = (β +
γi)Ini

for γi ∈ [0, γ∗
i ).

Proof: The following proof is based on the results

of [7]. Let f(ǫ) = δ(Aci,
√

2ǫBi1(B
⊤
i1Bi1)

− 1

2 ) −
√

2ǫ.

The composite function, δ(A,
√

2ǫBi1(B
⊤
i1Bi1)

− 1

2 ), is a

continuous function of ǫ, because δ(A, ǫBi1(B
⊤
i1Bi1)

− 1

2 )
and

√
2ǫ are continuous functions of ǫ. Hence, f(ǫ) is a

continuous function of ǫ. It follows from (29) and the

continuity of f(ǫ) that there exists a γ∗
i > 0 such that

δ

(

Aci,
√

2(β + γi)Bi1

(

B⊤
i1Bi1

)− 1

2

)

>
√

2(β + γi),

(31)

for γi ∈ [0, γ∗
i ). For the quadratic matrix equation (30), the

associated Hamiltonian matrix is,

Hi =

[

Aci Ri

−Qc
i −A⊤

ci

]

.

It can be shown that the above Hamiltonian matrix Hi has no

eigenvalues on the imaginary axis if (31) is satisfied. A proof

of this result is given in [5], [7]. Then it follows from the

lemma that there exist symmetric positive definite solutions

P c
i to the quadratic matrix equation (30) for γi ∈ [0, γ∗

i ),
which concludes the proof of the proposition.
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Theorem: For the interconnected system with the i-th
subsystem, i = 1, . . . , N , modeled by (1), if condition (29)

is satisfied, there exists a γ∗
i > 0 such that the closed-loop

system driven by the decentralized dynamic output feedback

controller (5) is asymptotically stable, where

Ki2 = −
(

B⊤
i1Bi1

)−1

B⊤
i1P

c
i , (32)

and P c
i is a positive definite solution to the quadratic matrix

equation (30) for γi ∈ [0, γ∗
i ).

Proof: Substituting (5) into (1), we obtain

ẋi = Aixi + Bi1Kix̂i + Bi2ui2(x)

= (Aci + Bi1Ki2)xi + Bi1Kiei + Bi2ui2(x).(33)

Then it follows from (9) and (11) that

ėi = Πi (Ai + LiCi) ei. (34)

Recall that Li in (22) is chosen such that Ãi11 + L̃i1C̃i1

is Hurwitz. Thus, there exists a symmetric positive definite

matrix P̃
o

i11
such that

(

Ãi11 + L̃i1C̃i1

)⊤

P̃
o

i11
+P̃

o

i11

(

Ãi11 + L̃i1C̃i1

)

= −Q̃
o

i11
,

(35)

where we select Q̃
o

i11
to be a symmetric positive definite

matrix such that

λmin

(

Q̃
o

i11

)

> σ2
max (Bi1KiT iΥi) , (36)

where T i satisfies (12) and Υi = [Ini−mi2
O⊤]⊤.

It follows from the proposition that if condition (29)

is satisfied, there exists a γ∗
i > 0 such that there exist

symmetric positive definite solutions P c
i to the following

quadratic matrix equation (30) for γi ∈ [0, γ∗
i ). Let P c =

diag[P c
1 · · · P c

N ] and P o = diag[P o
1 · · · P o

N ], where P o
i

is defined to be

P o
i = T−⊤

i

[

P̃
o

i11
O

O Imi2

]

T−1
i (37)

with T i satisfying (12) and P̃
o

i11
satisfying (35). Now we

consider the following Lyapunov function candidate,

V = x⊤P cx + e⊤P oe =
N

∑

i=1

(

x⊤
i P c

ixi + e⊤
i P o

i ei

)

.

Evaluating the time derivative of V (x, e) on the solutions

of (33) and (34), we obtain

V̇ =
N

∑

i=1

(

2x⊤
i P c

i ẋi + 2e⊤
i P o

i ėi

)

=
N

∑

i=1

[

2x⊤
i P c

i (Aci + Bi1Ki2)xi

+ 2x⊤
i P c

i (Bi1Ki) ei + 2x⊤
i P c

i (Bi2ui2)
]

+
N

∑

i=1

2e⊤
i P o

i Πi (Ai + LiCi) ei. (38)

Using the inequality, 2a⊤b ≤ a⊤a + b⊤b, where a and b

are arbitrary vectors, we obtain

2x⊤
i P c

i (Bi1Ki) ei ≤ x⊤
i P c

iP
c
ixi + e⊤

i Qiei, (39)

where Qi = (Bi1Ki)
⊤(Bi1Ki), and

2x⊤
i P c

i (Bi2ui2) ≤ x⊤
i P c

iP
c
ixi + (Bi2ui2)

⊤
(Bi2ui2) .

(40)

Let βi = α2
i λmax(Γ

⊤
i Γi). It follows from (3) and (40) that

2x⊤
i P c

i (Bi2ui2) ≤ βi

N
∑

j=1

x⊤
j xj + x⊤

i P c
iP

c
ixi. (41)

It follows from (38), (39) and (41) that

V̇ ≤
N

∑

i=1

[

2x⊤
i P c

i (Aci + Bi1Ki2)xi

+ 2x⊤
i P c

iP
c
ixi + βi

N
∑

j=1

x⊤
j xj





+
N

∑

i=1

[

2e⊤
i P o

i Πi (Ai + LiCi) ei + e⊤
i Qiei

]

=
N

∑

i=1

(

V̇ci + V̇oi

)

,

where

V̇ci = x⊤
i (2P c

i (Aci + Bi1Ki2) + 2P c
iP

c
i + βIni

) xi,
(42)

and V̇oi = 2e⊤
i P o

i Πi(Ai +LiCi)ei +e⊤
i Qiei. Substituting

the gain matrix Ki2 into (42), we obtain

V̇ci = x⊤
i

(

A⊤
ci

P c
i + P c

iAci
+ βIni

+ 2P c
i (I − Bi1

(

B⊤
i1Bi1

)−1

B⊤
i1)P

c
i

)

xi.

Because P c
i satisfies (30), we have V̇ci = −γix

⊤
i xi < 0. It

follows from (13) and (37) that V̇oi can be rewritten as

V̇oi = 2ẽ⊤
i T⊤

i T−⊤
i

[

P̃
o

i11
O

O Imi2

]

T−1
i Πi

× T iT
−1
i (Ai + LiCi) T iẽi

+ ẽ⊤
i (Bi1KiT i)

⊤
(Bi1KiT i) ẽi. (43)

Recall that ẽi = [ẽ⊤
i1

0
⊤]⊤. It follows from (12), (15)–(17),

(35) and (43) that

V̇oi = 2

[

ẽi1

0

]⊤ [

P̃
o

i11
O

O Imi2

]

×
[

Ãi11 + L̃i1C̃i1 Ãi12 + L̃i1C̃i2

O O

] [

ẽi1

0

]

+

[

ẽi1

0

]⊤

(Bi1KiT i)
⊤

(Bi1KiT i)

[

ẽi1

0

]

= 2ẽ⊤
i1

P̃
o

i11

(

Ãi11 + L̃i1C̃i1

)

ẽi1 + ẽ⊤
i1

Q̃i11
ẽi1

= −ẽ⊤
i1

Q̃
o

i11
ẽi1 + ẽ⊤

i1
Q̃i11

ẽi1

= −
(

λmin

(

Q̃
o

i11

)

− λmax

(

Q̃i11

))

‖ẽi1‖2
2, (44)
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where

Q̃i11
=

[

Ini−mi2

O

]⊤

(Bi1Ki1T i)
⊤

× (Bi1Ki1T i)

[

Ini−mi2

O

]

= (Bi1Ki1T iΥi)
⊤

(Bi1Ki1T iΥi)

and

λmax

(

Q̃i11

)

= σ2
max (Bi1Ki1T iΥi) . (45)

Using (36) and (45), we obtain, V̇oi < 0. Thus,

V̇ ≤
N

∑

i=1

(

V̇ci + V̇oi

)

< 0,

which implies that the closed-loop system is asymptotically

stable. The proof of the theorem is complete.

Remark 2: In the proof, the selection of Q̃
o

i11
for the

calculation of P̃
o

i11
in (35) is not arbitrary. The matrix Q̃

o

i11

must satisfy (36), because the resulting P̃
o

i11
is essential in

the subsequent closed-loop system stability analysis. This

seems to couple the observer design with the controller

design. However, Q̃
o

i11
does not affect the observer design.

Thus, as in the linear case, the so-called separation property

of the observer-controller design holds.

V. EXAMPLE

In this section, we illustrate the performance of our

proposed decentralized dynamic output feedback controller

on a nonlinear interconnected system adapted from [5]. The

original system in [5] is stable even without control, so we

modify the original system to make it more challenging to

control.

The system consists of two subsystems. The first subsys-

tem’s dynamics are

ẋ1 =

[

0 1
0 0

]

x1 +

[

0
1

]

u11 +

[

1
1

]

u12(x).

where u12(x) = 0.2 cos (x4)
∑5

i=1 xi/
√

10. The second

subsystem’s dynamics are

ẋ2 =





0 1 0
0 0 1

−40.8−41.5−9.35



x2 +





0
0
1



u21 +





1
1
1



u22(x).

where u22(x) = 0.2 cos (x1)
∑5

i=1 xi/
√

15. We have β =
0.08. The initial conditions for the plant are chosen to be

x1(0) = [1 5]⊤ and x2(0) = [1 5 5]⊤, respectively and

for the observer are set to zero. It is easy to check that

the uncontrolled system is unstable. We choose K11 =
[−1.5 −1.25] and K21 = 0 such that

δ

(

Ac1,
√

2βB11

(

B⊤
11B11

)− 1

2

)

= 0.5660 >
√

2β,

and

δ

(

Ac2,
√

2βB21

(

B⊤
21B21

)− 1

2

)

= 0.5578 >
√

2β.
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Fig. 1. Decentralized controller performance for the first subsystem.

Then we select γ1 = 0.1 and γ2 = 0.01. Solving the

quadratic matrix equations, we obtain two different P c
1 and

four different P c
2, and we select

P c
1 =

[

0.4872 0.2182
0.2182 0.2847

]

,

P c
2 =





4.7139 3.9301 0.9243
3.9301 3.8380 0.8229
0.9243 0.8229 0.2566



 .

It follows from (32) that K12 = [−0.2182 −0.2847] and

K22 = [−0.9243 −0.8229 −0.2566]. We select H1 =
H2 = 0 and we obtain M1 = [1 1]⊤, M2 = [1 1 1]⊤,

T 1 =

[

0 1
2 1

]

and T 2 =





0 0 1
5 0 1
0 5 1



 .

Then it follows from (11) that

Π1 =

[

0 1
−1 1

]

and Π2 =





0 0 0
−1 1 0
−1 0 1



 ,

which result in G̃1 = [−0.5 0]⊤ and G̃2 = [0 −18.53 0]⊤.

Simulation results for the first subsystem are shown in Fig. 1,

while for the second subsystem in Fig. 2. In Fig. 3, plots of

the control inputs u11 and u21 versus time, are shown. As can

be seen from the above figures, the proposed decentralized

control strategy performs well.
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Fig. 2. Decentralized controller performance for the second subsystem.

VI. CONCLUSIONS

An effective decentralized dynamic output feedback con-

troller has been proposed and analyzed for the stabilization

problem of a class of nonlinear interconnected systems.

The proposed control strategy uses local projection operator

based reduced-order observers to estimate the subsystems’

states for feedback implementation. The controller and ob-

server can be designed independently of each other, i.e.,

the separation property of the observer-controller design

procedure holds.
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