
Optimal Control of Uncertain Nonlinear Systems

using RISE Feedback

K. Dupree, P. M. Patre, Z. D. Wilcox, and W. E. Dixon

email: {kdupree, pmpatre, zibrus, wdixon}@ufl.edu

Department of Mechanical and Aerospace Engineering

University of Florida, Gainesville, FL 32611

Abstract—A Hamilton-Jacobi-Bellman optimization scheme is
used along with a RISE feedback structure to minimize a
quadratic performance index while the generalized coordinates
of a nonlinear Euler-Lagrange system asymptotically track a
desired time-varying trajectory despite general uncertainty in the
dynamics, such as additive bounded disturbances and parametric
uncertainty. Motivated by recent previous results that use a
neural network structure to approximate the dynamics (i.e.,
the state space model is approximated with a residual function
reconstruction error), the result in this paper uses the implicit
learning capabilities of the RISE control structure to learn
the dynamics asymptotically. Specifically, a Lyapunov stability
analysis is performed to show that the RISE feedback term
asymptotically identifies the unknown dynamics, yielding semi-
global asymptotic tracking. In addition, it is shown that the
system converges to a state space system that has a quadratic
performance index which has been optimized by an additional
control element. Simulation results are included to demonstrate
the performance of the developed controller.

I. INTRODUCTION1

Optimal control theory involves the design of controllers

that can satisfy some tracking or regulation control objective

while simultaneously minimizing some performance metric.

A sufficient condition to solve an optimal control problem

is to solve the Hamilton-Jacobi-Bellman (HJB) equation. For

the special case of linear time-invariant systems, the solution

to the HJB equation reduces to solving the algebraic Riccati

equation. However, for general systems, the challenge is to find

a value function that satisfies the HJB equation. Finding this

value function has remained problematic because it requires

the solution of a partial differential equation that can not be

solved explicitly.

One common technique in developing an optimal controller

for a nonlinear system is to assume the nonlinear dynamics are

exactly known, feedback linearize the system, and then apply

optimal control techniques to the resulting system as in [1]–

[3], and others. For example, dynamic feedback linearization

was used in [1] to develop a control Lyapunov function to

obtain a class of optimal controllers. A review of the optimality
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of nonlinear design techniques and general results involving

feedback linearization as well as Jacobian linearization and

other nonlinear design techniques are provided in [4], [5]. A

review of inverse optimal control is provided in [6], where the

cost function is not a priori provided.

Motivated by the desire to eliminate the requirement for

exact knowledge of the dynamics, [7] developed one of the

first results to illustrate the interaction of adaptive control

with an optimal controller. Specifically, [7] first used exact

feedback linearization to cancel the nonlinear dynamics and

produce an optimal controller. Then, a self-optimizing adaptive

controller was developed to yield global asymptotic tracking

despite linear-in-the parameters uncertainty. The analysis in [7]

indicated that if the parameter estimation error could somehow

converge to zero, then the controller would converge to the

optimal solution.

Another method to compensate for system uncertainties is

to employ neural networks (NN) to approximate the unknown

dynamics. The universal approximation property states that a

NN can identify a function up to some function reconstruction

error. The use of NN versus feedback linearization allows for

general uncertain systems to be examined. However this added

robustness comes at the expense of reduced steady-state error

(i.e., generally resulting in a uniformly ultimately bounded

(UUB) result). NN controllers were developed in results such

as [8]–[13] to accommodate for the uncertainty in the system

and to solve the HJB equation. Specifically the tracking errors

are proven to be uniformly ultimately bounded (UUB) and

the resulting state space system, for which the HJB optimal

controller is developed, is only approximated.

Our contribution arises from incorporating an optimal con-

trol elements with an implicit learning feedback control strat-

egy developed in [14] with modifications in [15] that was

later coined the Robust Integral of the Sign of the Error

(RISE) method in [16], [17]. The RISE method is used to

identify the system and reject disturbances, while achieving

asymptotic tracking and the convergence of a control term

to the optimal controller. Inspired by the previous work in

[7]–[13], [18], [19], a system in which all terms are assumed

known (temporarily) is feedback linearized and a control law

is developed based on the HJB optimization method for a

given quadratic performance index. Under the assumption that

parametric uncertainty and unknown bounded disturbances are

present in the dynamics, the control law is modified to contain
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the RISE feedback term which is used to identify the uncer-

tainty. Specifically, a Lyapunov stability analysis is included to

show that the RISE feedback term asymptotically identifies the

unknown dynamics (yielding semi-global asymptotic tracking)

provided upper bounds on the disturbances are known and

the control gains are selected appropriately. As in previous

literature the control law converges to the optimal law, however

because our result is asymptotic rather than UUB the control

law converges exactly to the optimal law

II. DYNAMIC MODEL AND PROPERTIES

The class of nonlinear dynamic systems considered in this

paper is assumed to be modeled by the following Euler-

Lagrange [20] formulation:

P(t)ẗ + Yp(t> ṫ)ṫ +J(t) + I (ṫ) + �g (w) = �(w)= (1)

In (1), P(t) 5 Rq×q denotes the inertia matrix, Yp(t> ṫ) 5
R
q×q denotes the centripetal-Coriolis matrix, J(t) 5 R

q

denotes the gravity vector, I (ṫ) 5 R
q denotes friction,

�g (w) 5 R
q denotes a general nonlinear disturbance (e.g.,

unmodeled effects), �(w) 5 R
q represents the input control

vector, and t(w), ṫ(w), ẗ(w) 5 R
q denote the position, ve-

locity, and acceleration vectors, respectively. The subsequent

development is based on the assumption that t(w) and ṫ(w)
are measurable and that P(t), Yp(t> ṫ)> J(t), I (ṫ) and
�g (w) are unknown. Moreover, the following properties and
assumptions will be exploited in the subsequent development.

Property 1: The inertia matrix P(t) is symmetric, positive
definite, and satisfies the following inequality ;|(w) 5 Rq:

p1 k�k
2
� �WP(t)� � p̄(t) k�k

2
> (2)

where p1 5 R is a known positive constant, p̄(t) 5 R

is a known positive function, and k·k denotes the standard
Euclidean norm.

Property 2: The following skew-symmetric relationship is

satisfied:

�W
³
Ṗ (t)� 2Yp(t> ṫ)

´
� = 0 ;� 5 Rq= (3)

Property 3: If t(w)> ṫ(w) 5 L4, then Yp(t> ṫ), I (ṫ) and
J(t) are bounded. Moreover, if t(w)> ṫ(w) 5 L4, then the
first and second partial derivatives of the elements of P(t),
Yp(t> ṫ), J(t) with respect to t (w) exist and are bounded,
and the first and second partial derivatives of the elements of

Yp(t> ṫ), I (ṫ) with respect to ṫ(w) exist and are bounded.
Property 4: The desired trajectory is assumed to be designed

such that tg(w), ṫg(w), ẗg(w)>
...
t
g(w)>

....
t
g(w) 5 R

q exist, and

are bounded.

III. CONTROL OBJECTIVE

The control objective is to ensure that the system tracks

a desired time-varying trajectory, denoted by tg(w) 5 R
q,

despite uncertainties in the dynamic model, while minimizing

a given performance index. To quantify the tracking objective,

a position tracking error, denoted by h1(w) 5 R
q, is defined as

h1 , tg � t= (4)

To facilitate the subsequent analysis, filtered tracking errors,

denoted by h2(w), u(w) 5 R
q, are also defined as

h2 , ḣ1 + �1h1 (5)

u , ḣ2 + �2h2> (6)

where �1 5 R
q×q, denotes a subsequently defined positive

definite, constant, gain matrix, and �2 5 R is a positive

constant. The filtered tracking error u(w) is not measurable
since the expression in (6) depends on ẗ(w).

IV. OPTIMAL CONTROL DESIGN

In this section, a state-space model is developed based on

the tracking errors in (4) and (5). Based on this model, a

controller is developed that minimizes a quadratic performance

index under the (temporary) assumption that the dynamics

in (1), including the additive disturbance, are known. The

development in this section motivates the control design in

Section V, where a robust controller is developed to identify

the unknown dynamics and additive disturbance.

To develop a state-space model for the tracking errors in

(4) and (5), the inertia matrix is premultiplied by the time

derivative of (5), and substitutions are made from (1) and (4)

to obtain

Pḣ2 = �Yph2 � � + k+ �g> (7)

where the nonlinear function k (t,ṫ,tg,ṫg,ẗg) 5 R
q is defined

as

k , P (ẗg + �1ḣ1) + Yp(ṫg + �1h1) (8)

+J+ I

Under the (temporary) assumption that the dynamics in (1) are

known, the control input can be designed as

� , k+ �g � x> (9)

where x (w) 5 Rq is an auxiliary control input that will be
designed to minimize a subsequent performance index. By

substituting (9) into (7) the closed-loop error system for h2(w)
can be obtained as

Pḣ2 = �Yph2 + x= (10)

A state-space model for (5) and (10) can now be developed

as

}̇ = D (t> ṫ) } +E (t)x> (11)

where D (t> ṫ) 5 R2q×2q, E (t) 5 R2q×q, and } (w) 5 R2q

are defined as

D (t> ṫ) ,

�
��1 Lq×q
0q×q �P�1Yp

¸
>

E (t) ,
£
0q×q P�1

¤W
>

}(w) ,
£
hW1 hW2

¤W
>

where Lq×q and 0q×q denote a q × q identity matrix and
matrix of zeros, respectively. The quadratic performance index
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M (x) 5 R to be minimized subject to the constraints in (11)
is

M (x) ,

Z
4

0

µ
1

2
}WT} +

1

2
xWUx

¶
gw= (12)

In (12), T 5 R
2q×2q and U 5 R

q×q are positive definite

symmetric matrices to weight the influence of the states and

(partial) control effort, respectively. Furthermore, the matrix

T can be broken into blocks as:

T =

�
T11 T12
TW12 T22

¸
=

As stated in [8], [9], the fact that the performance index is

only penalized for the auxiliary control x(w) is practical since
the gravity, Coriolis, and friction compensation terms in (8)

can not be modified by the optimal design phase.

To facilitate the subsequent development, let S (t) 5

R
2q×2q be defined as

S (t) =

�
N 0q×q
0q×q P

¸
(13)

where N 5 R
q×q denotes a gain matrix. Based on the

development in Theorem 1 of ( [8], [9]), if �1, U, and N,
introduced in (5), (12), and (13), satisfy the following algebraic

relationships

N = NW = �
1

2

¡
T12 +T

W

12

¢
A 0 (14)

T11 = �W1N +N�1> (15)

U�1 = T22> (16)

then S (t) satisfies the Riccati differential equation, and the
value function Y (}> w) 5 R

Y =
1

2
}WS}

satisfies the HJB equation. Lemma 1 of ( [8], [9]) can be used

to conclude that the optimal control x (w) that minimizes (12)
subject to (11) is

x (w) = �U�1EW
µ
CY (}> w)

C}

¶W
= �U�1h2= (17)

V. RISE FEEDBACK CONTROL DEVELOPMENT

In general, the bounded disturbance �g(w) and the nonlinear
dynamics given in (8) are unknown, so the controller given

in (9) can not be implemented. However, if the control input

contains some method to identify and cancel these effects, then

}(w) will converge to the state space model in (11) so that x(w)
minimizes the respective performance index. As stated in the

introduction, several results have explored this strategy using

function approximation methods such as neural networks,

where the tracking control errors converge to a neighborhood

near the state space model yielding a type of approximate

optimal controller. In this section, a control input is developed

that exploits RISE feedback to identify the nonlinear effects

and bounded disturbances to enable }(w) to asymptotically
converge to the state space model.

To develop the control input, the error system in (6) is

premultiplied by P (t) and the expressions in (1), (4), and
(5) are utilized to obtain

Pu = �Yph2 + k+ �g + �2Ph2 � � = (18)

Based on the open-loop error system in (18), the control input

is composed of the optimal control developed in (17), plus a

subsequently designed auxiliary control term �(w) 5 Rq as

� , �� x= (19)

The closed-loop tracking error system can be developed by

substituting (19) into (18) as

Pu = �Yph2 + k+ �g + �2Ph2 + x� �= (20)

To facilitate the subsequent stability analysis the auxiliary

function ig (tg> ṫg> ẗg) 5 R
q> which is defined as

ig ,P(tg)ẗg + Yp(tg> ṫg)ṫg +J(tg) + I (ṫg) > (21)

is added and subtracted to (20) to yield

Pu = �Yph2 + k̄+ ig + �g + x� �+ �2Ph2> (22)

where k̄ (t,ṫ,tg,ṫg,ẗg) 5 R
q is defined as

k̄ , k� ig= (23)

The time derivative of (22) can be written as

Pu̇ = �
1

2
Ṗu + Q̃ +QG � h2 �U

�1u � �̇ (24)

after strategically grouping specific terms. In (24), the un-

measurable auxiliary terms Q̃(h1> h2> u> w), QG (w) 5 R
q are

defined as

Q̃ , �Ẏph2 � Ypḣ2 �
1

2
Ṗu +

·

k̄ (25)

+�2Ṗh2 + �2Pḣ2 + h2 + �2U
�1h2

QG , i̇g + �̇g=

Motivation for grouping terms into Q̃(h1> h2> u> w) and QG (w)
comes from the subsequent stability analysis and the fact that

the Mean Value Theorem, Property 3, and Property 4 can be

used to upper bound the auxiliary terms as
°°°Q̃(w)

°°° � � (k|k) k|k > (26)

kQGk � �1>
°°°Q̇G

°°° � �2> (27)

where |(w) 5 R3q is defined as

|(w) , [hW1 hW2 uW ]W > (28)

the bounding function �(k|k) 5 R is a positive globally

invertible nondecreasing function, and �l 5 R (l = 1> 2)
denote known positive constants. Based on (24), the control

term �(w) is designed based on the RISE framework (see [14]–
[16]) as

�(w) , (nv + 1)h2(w)� (nv + 1)h2(0) (29)

+

wZ

0

[(nv + 1)�2h2(�) + �vjq(h2(�))]g�>
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where nv> � 5 R are positive constant control gains. The

closed loop error systems for u(w) can now be obtained by
substituting the time derivative of (29) into (24) as

Pu̇ = �
1

2
Ṗu + Q̃ +QG � h2 �U

�1u (30)

�(nv + 1)u � �vjq(h2)=

VI. STABILITY ANALYSIS

Theorem 1: The controller given in (17) and (19) ensures

that all system signals are bounded under closed-loop opera-

tion, and the tracking errors are regulated in the sense that

kh1(w)k > kh2(w)k > ku(w)k$ 0 dv w$4= (31)

The boundedness of the closed loop signals and the result in

(31) can be obtained provided the control gain nv introduced in
(29) is selected sufficiently large (see the subsequent stability

analysis), and �1, �2 are selected according to the sufficient
conditions

�min (�1) A
1

2
�2 A 1> (32)

where �min (�1) is the minimum eigenvalue of �1> and � is
selected according to the following sufficient condition:

� A �1 +
1

�2
�2> (33)

where � was introduced in (29). Furthermore, x (w) converges
to an optimal controller that minimizes (12) subject to (11)

provided the gain conditions given in (14)-(16) are satisfied.

Remark 1: The control gain �1 can not be arbitrarily se-
lected, rather it is calculated using a Lyapunov equation solver.

Its value is determined based on the value of T and U=
Therefore T and U must be chosen such that (32) is satisfied.
Proof: Let D � R3q+1 be a domain containing �(w) = 0,

where �(w) 5 R3q+1 is defined as

�(w) , [|W (w)
p
R(w)]W = (34)

In (34), the auxiliary function R(w) 5 R is defined as

R(w) , � kh2(0)k� h2(0)
WQG(0)�

wZ

0

O(�)g� > (35)

where the auxiliary function O(w) 5 R is defined as

O(w) , uW (QG(w)� �vjq(h2)) (36)

where � 5 R is a positive constant chosen according to the
sufficient conditions in (33). As illustrated in [15], provided

the sufficient conditions introduced in (33) are satisfied, the

following inequality can be obtained

wZ

0

O(�)g� � � kh2(0)k� h2(0)
WQG(0)= (37)

Hence, (37) can be used to conclude that R(w) � 0.
Let YO(�> w) : D × [0>4) $ R be a continuously

differentiable positive definite function defined as

YO(�> w) , h
W

1 h1 +
1

2
hW2 h2 +

1

2
uWP(t)u +R (38)

which satisfies the following inequalities:

X1(�) � YO(�> w) � X2(�) (39)

provided the sufficient conditions introduced in (33) are satis-

fied. In (39), the continuous positive definite functions X1(�),
and X2(�) 5 R are defined as X1(�) , �1 k�k

2
, and

X2(�) , �2(t) k�k
2
> where �1, �2(t) 5 R are defined as

�1 ,
1

2
min {1>p1} �2(t) , max

½
1

2
p̄(t)> 1

¾
>

where p1, p̄(t) are introduced in (2). After taking the time
derivative of (38), ẎO(�> w) can be expressed as

ẎO(�> w) = 2h
W

1 ḣ1 + h
W

2 ḣ2 +
1

2
uW Ṗ(t)u + uWP (t) u̇ + Ṙ

After utilizing (5), (6), (30), and substituting in for the time

derivative of R(w), Ẏ (�> w) can be simplified as follows:

ẎO(�> w) � �2hW1 �1h1 + 2h
W

2 h1 + u
W Q̃(w) (40)

�(nv + 1 + �min
¡
U�1

¢
) kuk

2
� �2 kh2k

2
=

Based on the fact that

hW2 h1 �
1

2
kh1k

2 +
1

2
kh2k

2

the expression in (40) can be simplified as

ẎO(�> w) � uW Q̃(w)� (nv + 1 + �min
¡
U�1

¢
) kuk2 (41)

� (2�min (�1)� 1) kh1k
2
� (�2 � 1) kh2k

2 =

By using (26), the expression in (41) can be rewritten as

ẎO(�> w) � ��3 k|k
2
�

h
nv kuk

2
� �(k|k) kuk k|k

i
> (42)

where �3 , min{2�min (�1)�1> �2�1> 1+�min
¡
U�1

¢
} and

�1 and �2 are chosen according to the sufficient condition in
(32). After completing the squares for the terms inside the

brackets in (42), the following expression can be obtained

ẎO(�> w) � ��3 k|k
2 +

�2(k|k) k|k
2

4nv
� �X(�)> (43)

where X(�) = f k|k2, for some positive constant f, is a
continuous, positive semi-definite function that is defined on

the following domain:

D ,
n
� 5 R3q+1 | k�k � ��1

³
2
p
�3nv

´o
=

The inequalities in (39) and (43) can be used to show that

YO(�> w) 5 L4 in D; hence, h1(w), h2(w), and u(w) 5 L4 in

D. Given that h1(w), h2(w), and u(w) 5 L4 inD, standard linear
analysis methods can be used to prove that ḣ1(w), ḣ2(w) 5 L4
in D from (5) and (6). Since h1(w), h2(w), u(w) 5 L4 in D, the
assumption that tg(w), ṫg(w), ẗg(w) exist and are bounded can
be used along with (4)-(6) to conclude that t(w), ṫ(w), ẗ(w) 5
L4 in D. Since t(w), ṫ(w) 5 L4 in D, Property 3 can be used
to conclude thatP(t), Yp(t> ṫ), J(t), and I (ṫ) 5 L4 in D.
Thus from (1) and Property 4, we can show that �(w) 5 L4 in

D. Given that u(w) 5 L4 inD, it can be shown that �̇(w) 5 L4
in D. Since ṫ(w), ẗ(w) 5 L4 in D, Property 3 can be used to
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show that Ẏp(t> ṫ), J̇(t), İ (t) and Ṗ(t) 5 L4 in D; hence,
(30) can be used to show that u̇(w) 5 L4 in D. Since ḣ1(w),
ḣ2(w), u̇(w) 5 L4 in D, the definitions for X(|) and }(w) can
be used to prove that X(|) is uniformly continuous in D.
Let S � D denote a set defined as follows:

S ,

½
�(w)� D | X2(�(w)) ? �1

³
��1

³
2
p
�3nv

´´2¾
=

(44)

The region of attraction in (44) can be made arbitrarily large

to include any initial conditions by increasing the control gain

nv (i.e., a semi-global type of stability result) [15]. Theorem
8.4 of [21] can now be invoked to state that

f k|(w)k2 $ 0 dv w$4 ;|(0) 5 S= (45)

Based on the definition of |(w), (45) can be used to conclude
the results in (31) ;|(0) 5 S=
Since x (w)$ 0 as h2 (w)$ 0 (see (17)), then (22) can be

used to conclude that

�$ k̄+ ig + �g as u (w) , h2(w)$ 0= (46)

The result in (46) indicates that the dynamics in (1) converge

to the state-space system in (11). Hence, x (w) converges to an
optimal controller that minimizes (12) subject to (11) provided

the gain conditions given in (14)-(16) are satisfied.

VII. SIMULATION RESULTS

In order to examine the performance of the controller

proposed in (19) a numerical simulation was performed. The

simulation is based on the dynamics for a two-link robot:
�
�1
�2

¸
=

�
s1 + 2s3f2 s2 + s3f2
s2 + s3f2 s2

¸ �
ẗ1
ẗ2

¸
(47)

+

�
�s3v2ṫ2 �s3v2 (ṫ1 + ṫ2)
s3v2ṫ1 0

¸ �
ṫ1
ṫ2

¸

+

�
ig1 0
0 ig2

¸ �
ṫ1
ṫ2

¸
+

�
�g1
�g2

¸
>

where s1 = 3=473 nj ·p
2> s2 = 0=196 nj ·p

2> s3 = 0=242
nj ·p2> ig1 = 5=3 Qp · sec> ig2 = 1=1 Qp · sec> f2 denotes
frv(t2)> v2 denotes vlq(t2) and �g1 > �g2 denote bounded
disturbances defined as

�g1 = 0=1 sin(w) + 0=15 cos(3w)
�g2 = 0=15 sin(2w) + 0=1 cos(w)=

(48)

The desired trajectory is given as

tg1 = tg2 =
1

2
sin(2w)> (49)

and the initial conditions of the robot were selected as

t1 (0) = t2 (0) = 14=3 ghj

ṫ1 (0) = ṫ2 (0) = 28=6 ghj@ sec =

The weighting matrixes were chosen as

T11 =

�
20 2
2 20

¸
T12 =

�
�4 5
3 �6

¸

T22 = gldj
©
35> 35

ª
=
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Fig. 1. The tracking errors for the controller developed in (19).

which using (14), (15), and (16) yielded the following values

for N>�1, and U

N =

�
4 �4
�4 6

¸
�1 =

�
8=1 5=6
5=6 5=4

¸

U = gldj

½
1

35
>

1

35

¾
=

The control gains were selected as

�2 = 20 � = 20 nv = 75=

The tracking errors from the control inputs are shown in Fig.

1 and Fig. 2, respectively. To show that the RISE feedback

identifies the nonlinear effects and bounded disturbances, a

plot of the difference is shown in Fig. 3. As this difference

goes to zero, the dynamics in (1) converge to the state-space

system in (11), and the controller becomes optimal. To test

how the optimal controller performed for the unknown system

compared to feedback linearized system in (11), M (x) was
calculated for each. For this calculation the contribution of

RISE feedback term in (19) as well as the contribution of

k (t,ṫ,tg,ṫg,ẗg) and �g (w) in (9) are not considered. This is
due to the fact that it is the input x (w) that minimizes (12). For
the unknown system, M (x) was calculated to be 43=32. For the
feedback linearized system M (x) was calculated to be 40=41=
As expected, the perfectly feedback linearized system has a

lower performance index, however the difference between the

two values is less than 10%= These are preliminary results, and
further simulations and an experimental study are required for

more conclusive results.

VIII. CONCLUSION

A control scheme is developed for a class of nonlinear

Euler-Lagrange systems that enables the generalized coordi-

nates to asymptotically track a desired time-varying trajectory

despite general uncertainty in the dynamics such as additive

bounded disturbances and parametric uncertainty that does

not have to satisfy a linear-in-the-parameters assumption. The
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Fig. 2. The torques for the controller developed in (19)
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Fig. 3. The difference between the RISE feedback and the nonlinear effects
and bounded disturbances.

main contribution of this work is that a RISE feedback method

is augmented with an auxiliary control term that minimizes

a quadratic performance index based on a HJB optimization

scheme. Like the influential work in ( [8]–[13], [18], [19])

the result in this effort initially develops the HJB optimization

scheme based on a partially feedback linearized state-space

model assuming exact knowledge of the dynamics. However,

unlike previous results that use a neural network structure to

approximate the uncertain dynamics (i.e., the state space model

is approximated with a residual function reconstruction error),

the result in this paper uses the implicit learning capabilities

of the RISE control structure to learn the uncertain dynamics

asymptotically. That is, the dynamics asymptotically converge

to the state-space system that the HJB optimization scheme is

based on. The implication is that the use of the RISE feedback

structure compensates for the uncertain nonlinear dynamics

yielding a state space system with a quadratic performance

index that is optimized by an additional control element.
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