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Abstract— A new approach to the reconfigurable control
of piecewise affine (PWA) systems after actuator and sensor
faults is presented. The approach extends the concept of virtual
actuators and virtual sensors from linear to PWA systems on the
basis of the fault-hiding principle. The weak fault-hiding goal is
introduced as a relaxation of the asymptotic fault-hiding goal.
Sufficient linear matrix inequality conditions for the existence
of input-to-state stabilizing virtual actuators and sensors are
given that lead to a tractable computational algorithm. The
stability of the reconfigured closed-loop system is verified. The
approach is evaluated using a system of interconnected tanks.

I. I

In this paper, a new reconfigurable control strategy for piecewise
affine (PWA) systems is presented. Reconfigurable control responds
to severe component failures that break the control loop by restruc-
turing the control loop on-line [1]. Control reconfiguration is an
active fault-tolerant control methodology that uses the estimate f̂
of the fault f , which is obtained from a diagnosis component (FDI)
(Fig. 1). As opposed to passive fault-tolerant control approaches [2],
[3], in reconfigurable control the controller is changed to match
the faulty plant once the fault has been isolated [4]. For switched
systems, adaptive schemes [5] and output feedback controller
redesign have been developed (see for example [6]). For PWA
systems, model-predictive control has been used for fault-tolerant
control [7].

y
df

f
^

ur
Controller Plant

FDIControl reconfiguration

Execution
-

Supervision

Fig. 1. Active fault-tolerant control scheme.

This approach is based on the idea of keeping the nominal
controller in the loop by inserting a reconfiguration block between
the faulty plant and the nominal controller when a fault occurs. The
reconfiguration block is chosen to hide the fault from the controller
and, at the same time, to ensure that the faulty plant controlled
by the nominal controller together with the reconfiguration block
remains globally input-to-state stable. The fault-hiding approach
was previously developed for linear and Hammerstein systems and
lead to virtual actuators for the actuator fault case and to virtual
sensors for the sensor fault case (see [8]–[12]); until now, the fault-
hiding approach was not available for PWA systems. The extension
from linear to PWA systems is hard due to the following complexity
property: For continuous PWA systems with more than 2 states,
the problem of deciding whether or not all system trajectories are
bounded is undecidable [13].
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The motivation for studying PWA systems is at least twofold.
Firstly, PWA systems are receiving wide attention due to the fact
that the PWA framework [14] provides a way to describe dynamic
systems exhibiting switching between a multitude of linear dynamic
regimes, see also [15]. Such switching can be due to piecewise-
linear characteristics such as dead-zone, saturation, hysteresis or
relays. Secondly, PWA systems may result from piecewise linear
approximations of complex nonlinear dynamics.

In this paper, we extend the fault-hiding approach from linear
to PWA systems. It is assumed here that the fault isolation task
is solved and that the fault model is known [4]. To be precise,
we 1) present a reconfiguration block that satisfies the fault-
hiding principle for PWA systems after actuator and sensor faults,
2) show a systematic computationally tractable approach to finding
stabilizing gains in the reconfiguration block, and 3) demonstrate
the feasibility of the approach by means of an example.

This paper is organized as follows. Notations, PWA systems and
nonlinear stability concepts are introduced in Section II. Actuator
and sensor faults as well as related reconfiguration problems are
stated in Section III. The solution to the stable reconfiguration
problem is given in Section IV along with a conceptual algorithm.
An example illustrates the feasibility of the approach in Section V.
The paper concludes in Section VI. Technical proofs are collected
in Appendix A.

II. P

A. Notations

Lower case bold letters denote vectors (x), capital bold letters
denote matrices (A), and script capitals denote spaces (L). Systems
are denoted by Σ1,Σ2, . . ., where the indices distinguish different
systems; the interconnection of two systems through common
input/output variables is denoted by (Σ1,Σ2). Corresponding dynam-
ical operators are denoted by Ω1,Ω2 with the same distinction. The
restriction of a system operator with multiple outputs to a specific
output y is denoted by Ω

y

P
. R denotes the reals, and R+ := [0,∞).

For 1 ≤ p ≤ ∞, and for a measurable signal x : R+ → R
n, we say

that x ∈ Lp(R+,R
n) if ‖x‖p < ∞, where ‖x‖p :=

(∫

R+
‖x(t)‖pdt

)1/p

and ‖x‖∞ := sup0≤τ≤t |x(τ)|. The space of locally integrable functions
is denoted by Lloc

1
. The pseudoinverse of a matrix A satisfying

all four Moore-Penrose conditions [16] is denoted by A+. The
notation A ≺ 0 (A � 0) means that the matrix A is negative
(semi-) definite. Likewise, the symbol ≻ (�) denotes positive (semi-
) definiteness. Linear matrix inequalities (LMI) are understood as
linear semi-definite programs. A polyhedron is the intersection of
a finite number of half-spaces [17].

The following comparison functions are used to formulate sta-
bility definitions for nonlinear systems [18]. A function F : S → R
defined on a set S ⊂ Rn containing zero is positive definite if
F(x) > 0 holds for all x ∈ S , x , 0, and F(0) = 0. A class K
function is a function α : R+ → R+ which is continuous, strictly
increasing, and satisfies α(0) = 0. Any function α that satisfies
these requirements is said to be in the class K , also denoted by
α ∈ K . A class K∞ function is a function α ∈ K that is additionally
unbounded, i.e. lims→∞ α(s) = ∞. A class KL function is a function
β : R+ ×R+ → R+ such that β(·, t) ∈ K∞ for any fixed t, and for
each fixed r ≥ 0, β(r, t) → 0 as t → ∞. The notation x ≡ 0 is an
abbreviation for ∀t > 0 : x(t) = 0.
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B. Piecewise affine systems

In this paper, we consider nominal systems ΣP that are modeled
in PWA state-space form

ΣP :























ẋ(t) = Ai x(t) + bi + Buc(t) + Bd d(t), x(0) = x0

for x ∈ Λi, i ∈ {1, . . . , p}

y(t) = Cx(t), z(t) = Cz x(t),

(1)

with the state x(t) ∈ Rn, the control input uc(t) ∈ R
m, the

disturbance d(t) ∈ Rk, the measured output y(t) ∈ Rr and the
relevant output z(t) ∈ Rq at time t ∈ R+. Ai, i ∈ {1, . . . , p},
is a family of system matrices, bi, i ∈ {1, . . . , p}, is a family of
affine terms, B is the input matrix, Bd is the disturbance input
matrix that defines the structure of disturbance influence, C is
the measurement matrix, and Cz is the relevant output matrix.
All matrices are of compatible dimensions. Each of the pairwise
disjoint sets Λi corresponds to a mode of the PWA system (1)
in the sense that if x(t) ∈ Λi, then the system is described by
the i-th affine system represented by the tuple (Ai, bi, B, Bd,C,Cz)
at time t. The sets Λi are here described by polyhedra such that
∀i , j : int(Λi) ∩ int(Λ j) = ∅ and

⋃p

i=1
Λi = R

n, and switching is
triggered when the state trajectory crosses a boundary hyperplane.

Assumption 1: The right-hand side of the system (1) is assumed
to be globally continuous in x, uc and d.
However, the PWA system needs not necessarily have a smooth
right-hand side. Note that Assumption 1 guarantees that the sys-
tem (1) is locally Lipschitz-continuous and consequently for any
uc ∈ L

loc
1

(Rm), d ∈ Lloc
1

(Rk), and x0 ∈ R
n, it has a unique

and globally defined solution. Also, sliding modes cannot occur
as solutions of the PWA system (1). Associated with the system
ΣP is the dynamical operator ΩP : Lloc

1
(Rm) × Lloc

1
(Rk) × Rn →

Lloc
1

(Rr) × Lloc
1

(Rq),

(y, z) = ΩP(uc, d, x0). (2)

The control input uc is generated by a (possibly dynamical, not
necessarily PWA) nominal controller ΣC described by the operator
ΩC : Lloc

1
(Rr) × Lloc

1
(Rr) ×Rn → Lloc

1
(Rm),

uc = ΩC(r, y, xc0), (3)

where r denotes the reference input, and xc0 is the controller initial
state, giving rise to the nominal closed-loop system (1), (3).

C. Lyapunov-like stability notions

We use the following Lyapunov-based stability definitions.
Definition 1 (0-global exponential stability (0-GES)): The sys-

tem (1) with inputs uc, d ≡ 0 is called 0-globally exponentially
stable, if all solutions globally satisfy

|x(t)| ≤ c|x(0)|e−λt ∀t ≥ 0, where c, λ > 0.
For systems with inputs, the notions of input-to-state stability

(ISS) and input-to-output stability (IOS) are useful to characterize
the boundedness of solutions x of the system (1) in the presence
of inputs. The definition is given with respect to (w.r.t.) the control
input uc for ease of notation.

Definition 2 (Input-to-state stability [19]): The system (1) with
d ≡ 0 is called input-to-state stable (ISS) w.r.t the input uc,

if ∃β ∈ KL, γ ∈ K∞ : |x(t)| ≤ β(|x0|, t) + γ(‖uc‖∞) (4)

for all inputs uc, all initial states x0, and all times t ≥ 0, where x(t)
is the solution of (1).

Definition 3 (Input-to-output stability [20]): The system (1)
with d ≡ 0 is called input-to-output stable (IOS) w.r.t. the input uc

and the output y, if

∃β ∈ KL, γ ∈ K∞ : |y(t)| ≤ β(|x0|, t) + γ(‖uc‖∞) (5)

for all inputs uc, all initial states x0, and all times t ≥ 0, where y
is the output of the system (1).

Assumption 2: The nominal closed-loop system (1), (3) without
faults is IOS w.r.t. the input (r, d) and the output (x,uc).

Proposition 1 (IOS of series-interconnected systems [21]):

Let the system























v̇(t) = f (v(t), p(t),u(t)), v(t) ∈ Rs

ẇ(t) = g(w(t),u(t)), w(t) ∈ Rn

p(t) = h1(w(t),u(t)), q(t) = h2(v, p,u)

(6)

be such that the v-subsystem with the input (p,u) and output q is
IOS, and the w-subsystem is IOS w.r.t. the input u and the output
p. Then, the series connection (6) is IOS w.r.t. the input u and the
outputs p, q.

The following proposition, which is central to most of the
subsequent proofs, summarizes prior results on the incremental
stability and ISS of continuous PWA systems [22], [23].1

Proposition 2 (PWA ISS and incremental stability):
Consider the PWA system (1) with the right-hand side
f (x,uc, d) := Ai x+ bi +Buc +Bd d, and suppose that Assumption 1
holds. If there exists a matrix X ∈ Rn×n, X = XT ≻ 0 that satisfies
the LMI

X Ai + AT
i X ≺ 0, i = 1, . . . , p, (7)

then the system (1) is 0-GES for uc = d = 0, globally ISS w.r.t.
(uc, d), and for any two points x1, x2 ∈ R

n, it holds that

(x1 − x2)T X ( f (x1,uc, d) − f (x2,uc, d))

≤ −β(x1 − x2)T X(x1 − x2). (8)

That is, the system is quadratically incrementally stable. The
number β > 0 depends only on the matrix X.

III. R 

A. Fault model

Faults f in actuators and sensors are modeled by changed input
and output maps. In other words, the nominal system (1) (Fig. 2a))
is changed to the faulty PWA system

ΣP f :























ẋ f (t) = Ai x f (t) + b f ,i + B f u f (t) + Bd d(t)

for x f ∈ Λi, i ∈ {1, . . . , p}, x f (0) = x0

y f (t) = C f x f (t), z f (t) = Cz x f (t),

(9)

where neither Ai, Bd,Cz nor the dimensions of any signals or
matrices change (Fig. 2b)). In case of actuator faults, columns of
B f that correspond to faulty or failed actuators are scaled or set to
zero, respectively. It is assumed that Bd is unaffected by actuator
faults, and that the faulty system satisfies Assumption 1. Blockage
of actuators in given positions is modeled by means of a changed
affine term b f ,i. Sensor faults are modeled in the same way by means
of a changed measurement matrix C f . To compare the faulty and
nominal systems, the faulty system starts from the nominal initial
state x0.

Associated with the faulty plant is the operator ΩP f : Lloc
1

(Rm)×

Lloc
1

(Rk) ×Rn → Lloc
1

(Rr) × Lloc
1

(Rq),

(y f , z f ) = ΩP f (u f , d, x0). (10)

B. Fault-hiding approach

After the fault, the nominal controller (3) with y = y f and uc =

u f is generally not suitable for controlling the faulty plant (9). In
particular, in the case of component failures, the loop is partially
open. It is assumed that a fault diagnosis component provides the
model (9). The reconfiguration problem now consists in finding
a new controller ΣCr based on the faulty model (9) such that the
reconfigured closed-loop system (ΣP f ,ΣCr) shown in Fig. 2b) meets
the original control goals as closely as possible. The new controller

1Lyapunov-characterizations of incremental stability were first presented
in [24] and ISS results for locally Lipschitz systems were published in [25].
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Fig. 2. a) Nominal closed-loop system, b) reconfigured closed-loop system
with new controller, c) reconfigured closed-loop system for fault-hiding.

may use all available control input signals, also those ignored by
the nominal controller.

This reconfiguration problem is equivalent to a closed-loop
model-matching problem, which we will, however, not solve di-
rectly. Instead, we impose a special structure on the new controller
ΣCr, which is factored into the original nominal controller ΣC and
a so-called reconfiguration block ΣR: ΣCr = (ΣC ,ΣR). This approach
offers the following advantages: 1) If the nominal controller is a
human operator, e.g. a pilot, then the fault-hiding approach reduces
the difficulty linked to dealing with a faulty system. Namely, it may
help reducing training efforts for large numbers of fault scenarios
and stress during fault situations. 2) If the controller is automatic
and the fault affects small parts of the plant only, then large
parts of the nominal controller are still valid and should be kept
instead of performing a complete redesign, which may be costly
and time-consuming. The fault-hiding strategy allows for minimum-
invasive alterations of the loop by hiding the fault from the nominal
controller.

The reconfiguration approach adopted here, therefore, consists in
augmenting the closed loop by means of a dynamical reconfigura-
tion block ΣR described by the operator ΩR : Lloc

1
(Rm)×Lloc

1
(Rr)×

R
n → Lloc

1
(Rm) × Lloc

1
(Rr),

(u f , yc) = ΩR(uc, y f , ζ0), (11)

whose realization is deferred to Section IV-A.

Together with the faulty plant (9), the reconfiguration block (11)
forms the reconfigured plant ΣPr = (ΣP f ,ΣR) described by the
operator ΩPr : Lloc

1
(Rm) × Lloc

1
(Rk) ×Rn → Lloc

1
(Rr) × Lloc

1
(Rq)

(yc, z f ) = ΩPr(uc, d, x0, ζ0) (12)

to which the nominal controller (3) is connected by means of the
signal pair (uc, yc) (see Fig. 2c).

From a control point of view, it is of interest to at least recover
the nominal closed-loop stability for the reconfigured closed-loop
system (3), (9), (11).

Problem 1 (Stability recovery): Consider the nominal
controller (3) and the faulty PWA system (9). Find a
reconfiguration block (11) such that {(ΣP,ΣC) ISS w.r.t. r, d} ⇒
{(ΣPr,ΣC) ISS w.r.t. r, d}.

The following additional goal makes sure that the original
controller ”sees” the fault-free plant behavior when attached to the
reconfigured plant. It implies that the nominal controller remains
part of the overall reconfigured closed loop and will be used to
solve Problem 1.

Definition 4 (Weak fault-hiding goal): The reconfigured plant
ΩPr meets the weak fault-hiding goal, if

∀x0, ∃ζ0 : Ω
yc

Pr
(·, ·, x0, ζ0) −Ω

y

P
(·, ·, x0) = 0.

We speak of weak fault-hiding because the initial state
ζ0 depends on x0. The weak fault-hiding goal is a relax-
ation of the asymptotic fault-hiding goal (where in addition,
limt→∞Ω

yc

Pr
(·, ·, x0, ζ0) − Ω

y

P
(·, ·, x0) = 0) and the strict fault-hiding

goal (where ζ0 must not depend on x0) [26].

IV. RM

A. Reconfiguration block

The reconfiguration operator (11) is realized for actuator and
sensor faults by the combination of a state observer

ΣO :























˙̂x f (t) = Aδ,i x̂ f (t) + b f ,i + B f u f (t) + Ly f (t)

for x̂ f ∈ Λi, i ∈ {1, . . . , p}, x̂ f (0) = x̂ f ,0

Aδ,i := Ai − LC f .

(13)

and a so-called virtual actuator

ΣV :



































˙̃x(t) = A j x̃(t) + b j + Buc(t), x̃(0) = x̂ f ,0

for x̃ ∈ Λ j, j ∈ {1, . . . , p}

yc(t) = Cx̃(t)

u f (t) = Mx∆(t) + N juc(t) + B+
f
b∆, j

(14)

with the definitions

x∆(t) := x̃(t) − x̂ f (t), e(t) := x̂ f (t) − x f (t) (15)

A∆, j := A j − B f M, B∆, j := B − B f N j, b∆, j := b j − b f , j.

The reconfiguration block ΣR = (ΣO,ΣV ) contains an observer (13)
for the faulty plant with the state x̂ f . The virtual actuator (14)
contains a reference model for the desired plant behavior with the
state x̃, and a feedback and feedforward structure to shape the
behavior of the faulty plant. The PWA virtual actuator ΣV together
with the state observer ΣO realizes the reconfiguration block (11)
with ζ0 = (x̂T

f ,0
, x̃T

0
)T (Fig. 3). Both subsystems are initialized at

equal values at reconfiguration time t = 0. The affine input B+
f
b∆, j

compensates the difference in the affine terms between the nominal
and the faulty plant, which arises, for example, from blocking
actuators. The compensation is successful if and only if

b∆, j ∈ im B f .

The observer error subsystem Σe and difference system Σ∆ are
governed by the following differential equations, which are easily
obtained from the definitions of e and x∆:

Σe : ė(t) = k(x f (t) + e(t)) − k(x f (t)) − Bd d(t) (16a)

where k(ξ) := Aδ,iξ + b f ,i, ξ ∈ Λi, i ∈ {1, . . . , p}, (16b)

Σ∆ : ẋ∆(t) = k∆(x̃(t)) − k∆(x̃(t) − x∆(t)) + LC f e(t),

+ B∆, juc(t), x̃ ∈ Λ j, j ∈ {1, . . . , p} (16c)

where k∆(η) := A∆, jη + b f , j, η ∈ Λ j, j ∈ {1, . . . , p}. (16d)

The virtual actuator may be interpreted as an approach to
matching the reconfigured plant behavior to the nominal plant
behavior. The reference model for x̃ is central to this idea. The
common feedback gains L ∈ Rn×r and M ∈ Rn×n will be designed
to simultaneously stabilize the observer error e as well as the
difference system state x∆ for all modes. The feedforward gains
N j ∈ R

m×m represent additional freedom available to achieve
additional objectives. Due to space limitations, their systematic use
is not discussed here.

Remark 1: The PWA virtual actuator is a generalization of the
linear virtual actuator [8]–[11], [27]. Although it appears to be quite
different from its linear counterpart, the basic idea of predicting
the difference between the state trajectories of the nominal and
faulty plant starting from the same initial state, and using that
predicted difference for state feedback, is the same. In the linear
case, that difference can be lumped into a single difference state
due to the superposition principle. In PWA systems, superposition
does not hold any longer, hence both systems must be independently
predicted. This fact renders the initialization problem more difficult.
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Fig. 3. PWA reconfiguration block in the closed-loop system.

B. Weak fault-hiding

It is shown that the reconfiguration block (13), (14) with the
faulty plant (9) satisfies the weak fault-hiding goal.

Theorem 1 (Weak fault-hiding): Consider the faulty PWA sys-
tem (9). The reconfigured plant (9), (13), (14) achieves the weak
fault-hiding goal.

Proof: The model of the reconfigured plant is given by the
equations (subscript j defined by x̃ ∈ Λ j)



















˙̃x(t)
ė(t)
ẋ∆(t)



















=



















A j x̃(t) + b j

k (x̃(t) − x∆(t)) − k (x̃(t) − x∆(t) − e(t))
k∆(x̃(t)) − k∆(x̃(t) − x∆(t)) + LC f e(t)



















+
(

BT 0 BT
∆, j

)T
uc(t) −

(

0 BT
d

0
)T

d(t), (17a)

yc(t) =
(

C 0 0
)



















x̃(t)
e(t)
x∆(t)



















,



















x̃(0)
e(0)
x∆(0)



















=



















x̂ f ,0

x̂ f ,0 − x0

0



















(17b)

This model shows that the dynamical equation for the reference
state x̃ is decoupled from the observer error e and the difference
state x∆. Moreover, the output yc depends only on the x̃. Fault
hiding is achieved by setting x̂ f ,0 = x0.
The latter matching initialization x̂ f ,0 = x0 is practically not
achievable, because x0 is unmeasurable. However, if the observer
is also run with the nominal PWA model (1) before the fault,
and the diagnosis delay and reconfiguration time are small, then
approximately matching initialization is achievable, and the caused
system trajectory offset is small.

C. Stability

In this section, we provide sufficient conditions for the global ISS
properties of the observer error and difference system dynamics
(Theorems 2, 3), and show that these conditions also imply the
global ISS of the reconfigured closed-loop system (Theorem 4).

Theorem 2 (Observer error ISS): Consider the faulty PWA sys-
tem (9), and suppose that Assumption 1 holds. If there exist matrices
Xs ∈ R

n×n and Ys ∈ R
n×r that satisfy the linear matrix inequalities

Xs = XT
s ≻ 0 (18a)

Xs Ai + AT
i Xs − YsC f − CT

f YT
s ≺ 0, i = 1, . . . , p, (18b)

then the system (13) with L := X−1
s Ys is an observer for the faulty

system (9) with 0-GES error dynamics for d ≡ 0. The observer

error (15) satisfies the dynamics (16a), (16b) whose solutions satisfy
the relation

|e(t)| ≤ ce−a(t−t0)|e(t0)|, (19)

where the real numbers c > 0 and a > 0 depend only on Xs and
Ys. Furthermore the observer error dynamics (16a), (16b) are ISS
w.r.t. the disturbance input d.

Proof: See Appendix A.
Theorem 3 (Difference system ISS): Consider the faulty PWA

system (9) and suppose that Assumption 1 holds. If there exist
matrices Xa ∈ R

n×n and Ya ∈ R
m×n that satisfy the linear matrix

inequalities

Xa = XT
a ≻ 0 (20a)

Ai Xa + Xa AT
i − B f Ya − YT

a BT
f ≺ 0, i = 1, . . . , p, (20b)

then the difference system (16c), (16d) of the virtual actuator (14)
with M := Ya X−1

a is 0-GES for uc, e ≡ 0. Therefore, all solutions of
the unforced (i.e. uc, e ≡ 0) difference system (16c), (16d) satisfy
the relation

|x∆(t)| ≤ ce−a(t−t0)|x∆(t0)|, (21)

where the real numbers c > 0 and a > 0 depend only on Xa and
Ya. Furthermore, the difference system (16c), (16d) is ISS w.r.t. the
input (uc(t), e(t)).

Proof: See Appendix A.
Theorem 4 (Closed-loop stability): Suppose that all assump-

tions of Theorems 2 and 3 hold. Then, the reconfigured closed-loop
system consisting of the controller (3), the faulty PWA system (9),
the PWA observer (13), and the PWA virtual actuator (14) is
globally ISS w.r.t. the input (r, d).

Proof: See Appendix A.
Remark 2: The obtained stability results are valid whether or not

the reconfiguration block initial state satisfies x̂ f ,0 = x0, x̃(0) = x̃0,
as becomes clear from the proof of Theorem 4 while observing that
x̂ f ,0 only affects e(0) and x∆(0).

D. Reconfiguration algorithm

The design procedure for the reconfiguration block is summa-
rized in Algorithm 1. Steps 1-4 describe the nominal closed-loop
operation before any faults occur. Once faults are detected in step
4, the actual observer and virtual actuator design proceeds in steps
5-10, which is the gains calculation phase. After completed gain
calculations, the reconfigured closed-loop system is run in step 11.

Algorithm 1 Synthesis of stabilizing PWA virtual actuator

Require: PWA model Ai, bi, B, C, i ∈ {1, . . . , p}

1: Initialize the nominal closed-loop system (1), (3), (13),

(14), with C f = C, B f = B, b f ,i = bi, L = 0, M = 0,

Ni = I, x(0) = x0, xc(0) = xc0, x̂ f (0) = x0, x̃(0) = x0.

2: repeat

3: Run nominal closed-loop system

4: until actuator or sensor fault f detected and isolated

5: Construct fault model b f ,i, B f , C f and update the PWA

observer (13) and virtual actuator (14)

6: Solve LMI (18) and (20) for Xs, Ys, Xa, Ya

7: Compute L = X−1
s Ys and M = YaX−1

a

8: Update PWA observer (13) with L

9: Wait for observer convergence for specified time interval

10: Update PWA virtual actuator (14) with M and initialize

x̃(tr) = x̂ f (tr)

11: Run reconfigured closed-loop system (3), (9), (13), (14)

Result: Globally ISS reconfigured closed-loop system.
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If the LMI (18), (20) are infeasible, a stabilising reconfiguration
block might still exist, but cannot be found with the described
sufficient (but not necessary) LMI conditions.

V. E

A successful application of Algorithm 1 to the model of a two-
tanks system is presented in this section. The plant consists of tanks
T1, T2 with levels h1, h2 interconnected by valves uL, uU , where T1

is filled via pump uP (Fig. 4). With state x = (h1, h2)T and input
vector u = (uP, uL, uU )T , the plant is described by the model (1)
with p = 22 and

B = 10−3

(

8.1 −3.2 −3.4
0 3.2 3.4

)

, Bd =

(

1
0

)

, B f = 10−3

(

8.1 0 −0.68
0 0 0.68

)

C =

(

1 0
0 1

)

, C f =

(

0 0
0 1

)

,

and controlled by two affine decentralized controllers


















uP(t)
uL(t)
uU (t)



















=























50 · (r1(t) − y1(t)) + 4 ·
∫ t

0
(r1(τ) − y1(τ))dτ

50 · (r2(t) − y2(t)) + 4 ·
∫ t

0
(r2(τ) − y2(τ))dτ

0.8























.

The controlled quantities are the levels h1, h2, for which the
control aims (i) stability, and (ii) regulation to a given setpoint, are
formulated. In the process, an abrupt failure of the level sensor for
h1 ( f1 : y f ,1(t > t f 1) = 0) at time t f 1 = 60 s and a failure of the
lower valve and gain reduction for the upper valve ( f2 : u f ,L(t >
t f 2) = 0, u f ,U (t > t f 2) = 0.2uU (t > t f 2)) at fault time t f 2 = 80 s.
The plant is excited by reference steps of 0.35 m for the level h1

at time t = 30 s and of 0.03 m at time t = 100 s for the level
h2. The steps drive the process through a large operating regime,
and thus realistically describe a startup procedure. A leak of tank
T1 represents a disturbance d. Note that the fault breaks the loop
at several points and the reconfiguration method must change the
control loop structure to meet the control objectives.

Fig. 5 shows the behavior of the successfully reconfigured plant,
the discrete modes of ΣP f , ΣO, and ΣV , as well as d(t), e(t), and
x∆(t). Times t < t f 1 correspond to steps 1-3 of Algorithm 1. The
application of steps 4-11 of Algorithm 1 result in the matrices

L =

(

0 83.9
0 5.4

)

, M =



















60 61.4
0 0
−3.9 700.5



















, N =



















1 0 0
0 0 0
0 4.3 5



















. (22)

The matrix N may be arbitrary according to Algorithm 1, and
is designed to recover the equilibrium using a synthesis method
that will be described in a future publication. The observer was
augmented for unknown-input observation to obtain an unbiased
state estimate in spite of the disturbance. The figure shows that the
virtual actuator successfully keeps x∆ small.

VI. C

In this paper a new approach to reconfigurable control of piece-
wise affine systems was presented that works by placing a reconfig-
uration block between the faulty plant and the nominal controller.
The idea generalizes fault-hiding-based ideas known from the linear
framework to piecewise affine systems (Theorem 1). It was shown
how the gains of the reconfiguration block may be determined as a
feasible solution to a set of linear matrix inequalities (Theorems 2,

LC

uP

uL
f2

d

uU

h1

T1 T2

h2

LC

f1

Fig. 4. Two-tank system with nominal control loops.

Fig. 5. Control reconfiguration to pump uP after valve faults.

3) in order to obtain an input-to-state stable reconfigured closed-
loop system (Theorem 4). The complexity of the problem is the
same as that of general PWA observation and stabilization problems,
and sufficient but not necessary conditions have been derived.

The approach bears potential for further extension by explicitly
incorporating performance recovery and disturbance rejection goals
in addition to the stabilization goal.
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A A. P

Proof of Theorem 2: The case without disturbance is equivalent
to the case considered in [28]. To show ISS of the error dynam-
ics (16a), (16b) w.r.t. the disturbance input d, construct an ISS-
Lyapunov function V(e) = 1

2
eT Xe, and use Proposition 2 to obtain

V̇(e) = eT Xė = eT X(k(x f + e) − k(x f ) − Bd d)

≤ −aeT Xe − eT XBd d, a > 0.

This is already a Lyapunov characterization of ISS [25]. �

Proof of Theorem 3: By Proposition 2, the difference sys-
tem (16c), (16d) is exponentially stable for uc(t) = e(t) = 0 and
ISS w.r.t. its inputs uc and e if the condition

X̃(Ai − B f M) + (Ai − B f M)T X̃ ≺ 0, X̃ = X̃T ≻ 0

is satisfied for all i = 1, . . . , p, which is equivalent to Condi-
tion (20) after pre-and postmultiplication with X̃−1, reordering,
and a linearizing change of variables Xa = X̃−1 as well as Ya =

MXa. The exponential decay rate of the initial state follows from
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Proposition 2. We now show that the difference system is ISS w.r.t.
uc and e. Consider the quadratic function V(x∆) = 1

2
xT
∆

Px∆. Using
Proposition 2, its derivative along solutions of (16c), (16d) satisfies

V̇(x∆) = xT
∆P

(

k∆(x̃) − k∆(x̃ − x∆) + LC f e + B∆, juc

)

≤ −axT
∆Px∆ + xT

∆PLC f e + xT
∆PB∆, juc

≤ −axT
∆Px∆ + xT

∆PLC f e + xT
∆PB̃∆uc

where B̃∆ is a constant matrix that satisfies the condition ∀i :
‖B∆, j‖ ≤ ‖B̃∆‖, and some constant a > 0. This is a Lyapunov
characterization of ISS [25], and the difference system (16c), (16d)
is ISS w.r.t. the input (uc, e). �

Proof of Theorem 4: Closed-loop stability is established by
using Theorem 1, nominal closed-loop IOS (Assumption 2) and the
established stability properties of the observer error and difference
systems together with Proposition 1. The equivalent closed-loop
block diagram is shown in Fig. 6.

uc

yc
e

Σ
Δ

ΣC
ΣeΣx~

d
~xr

x
Δ

Fig. 6. Transformed closed-loop system (3), (9), (13), (14).

First, consider the feedback connection (Σe,Σ∆) (shaded block
in Fig. 6), to which the signals uc, d, and x̃ are external inputs.
Normally, to conclude ISS of feedback connections, a small-gain
argument is needed. In this case, however, Σe is exponentially stable
for arbitrary interconnection inputs x̃, x∆, which we use as follows.
From Theorem 2, the error dynamics are 0-GES for arbitrary inputs
x̃ and x∆ and ISS w.r.t. the disturbance d. In other words, we have
that |e(t)| ≤ βe(|e(0)|, t)+γd(‖d‖∞) for some βe ∈ KL, γd ∈ K∞. The
difference system is globally exponentially stable with uc = e = 0
for arbitrary x̃ and ISS w.r.t. uc and e, hence we have |x∆(t)| ≤
β∆(|x∆(0)|, t)+γu(‖uc‖∞)+γe(‖e‖∞) for some β∆ ∈ KL, γu, γe ∈ K∞.
Observing that |(e(t)T , x∆(t)T )T | ≤ |e(t)| + |x∆(t)|, and inserting the
above relations, the interconnection satisfies the relation

|(e(t), x∆(t))T | ≤ βe(|e(0)|, t) + β∆(|x∆(0)|, t) + γd(‖d‖∞)

+ γu(‖uc‖∞) + γe(‖e‖∞)

≤ βe(|e(0)|, t) + β∆(|x∆(0)|, t) + γe

[

βe(|e(0)|, t)

+γd(‖d‖∞)
]

+ γd(‖d‖∞) + γu(‖uc‖∞)

≤ βe(|e(0)|, t) + γe(βe(|e(0)|, t)) + β∆(|x∆(0)|, t)

+ γe(γd(‖d‖∞)) + γd(‖d‖∞) + γu(‖uc‖∞),

where we have used the fact that ‖e‖∞ ≤ βe(|e(0)|, t)+γd(‖d‖∞). We
have obtained an ISS-characterization for the interconnected system
(Σe,Σ∆), where clearly [βe(|e(0)|, t)+γe(βe(|e(0)|, t))+β∆(|x∆(0)|, t)] ∈
KL and [γe(γd(‖d‖∞)) + γd(‖d‖∞) + γu(‖uc‖∞)] ∈ K∞ hold. We
conclude that the subsystem (Σe,Σ∆) is ISS w.r.t. the input (uc, d, x̃),
hence also IOS for the output (e, x∆). The system (Σx̃,ΣC) is IOS for
the input (r, d) and the output (uc, x̃) by Assumption 2. The series
connection ((Σx̃,ΣC), (Σe,Σ∆)) representing the reconfigured closed-
loop system is IOS w.r.t. the input (r, d) and the output (e, x∆) by
Proposition 1. �
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