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Abstract— High-order sliding-mode observers are designed
for some classes of non linear systems with unknown inputs.
Conditions for the feasibility of the proposed approach are given
for both the SISO and MIMO cases under the conditions of
strong observability or strong detectability. Simulations confirm
the theoretical results.

I. INTRODUCTION

Sliding-mode-based robust state observation was success-

fully developed in recent years [1], [2], [3], [4], [5], and

the corresponding implementation issues were extensively

studied in [6] and [7]. Under appropriate conditions on the

system matrices the sliding-mode-based observation possess-

es such an attractive feature of insensitivity (which is more

than robustness) with respect to unknown inputs.

Step-by-step vector-state reconstruction by means of slid-

ing modes is studied by [1], [8], [9], [10]. These observers are

based on a system transformation into a triangular form and

successive estimation of the state vector using the equivalent

output injection. Unfortunately, the realization of step-by-

step observers via conventional sliding modes requires fil-

tration at each step which produces an intrinsic observation

error which cannot be removed.

To overcome this drawback, hierarchical observers based

on super-twisting algorithm were developed [11] which avoid

any filtration process. A modified version of the super-

twisting controller is also used in the step-by-step observer

by [10]. In [5] it is presented a different high-order sliding-

mode observer based on the reconstruction of the estimation

error by the robust exact sliding-mode differentiator [12].

This observer provides global finite time convergence of the

estimation error for systems with well defined relative degree

[13].

Here we study the observation problem for a class of

quasilinear systems with bounded but unknown nonlinear

functions using the quasicontinuous controller [14], [15]. The

notions of strong observability and strong detectability with
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respect to the unknown inputs are involved. In this paper we

provide:

global finite-time exact state observation for single

output strongly-observable quasilinear systems;

asymptotic state observation for single output quasilin-

ear strongly detectable systems;

extension of these methods for multiple outputs strongly

observable and strongly detectable quasilinear systems.

The overall observer scheme combines a linear Luenberger

observer for the known part of the system dynamics, a

finite time converging high-order sliding mode differentiator,

and another observer fed by a nonlinear compensation term

designed according to the quasi-continuous high order sliding

mode approach [14], [15].

The paper is structured as follows: Section II introduces

the main notions that will be used along the paper. Section

III studies the single output case while Section IV presents

the generalization of the presented methods to the multiple

outputs case. Section V presents some simulation results and

Section VI gives some concluding remarks.

II. FUNDAMENTALS

Consider system

ẋ = Ax + Bu + Dγ(t, x),
y = Cx,

(1)

where x ∈ X ⊆ Rn is the state vector, u ∈ Rq is

the known input vector, γ(t, x) ∈ Rm is the unknown

nonlinear functions vector, y ∈ Rp is the output, and the

known matrices A, B, C, D have appropriate dimension.

The distribution matrix D corresponding to the unknown

nonlinear functions vector γ(t, x) is used to define the main

concepts used along the paper.

Some definitions and important implications concerning

the properties of strong observability and strong detectability

are recalled in this section. Since such properties are not

affected by the nonlinear functions vector γ(t, x), only the

triple {A,D, C} is involved in the next definitions, and the

known inputs can be customarily set to zero with no loss of

generality.

Definition 1: [16] s0 ∈ C is called an invariant zero of

the triple {A,D, C} if rank R(s0) < n + rank (D), where

R is the Rosenbrock matrix of system (1)

R =

[

sI − A, −D
C, 0

]

. (2)

Definition 2: [17]. System (1) is said to be strongly ob-

servable if for any initial state x(0) and for any unknown
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input (i.e., the nonlinear function γ(t, x)), the condition

y(t) ≡ 0 ∀t ≥ 0 implies that x(t) ≡ 0 ∀t ≥ 0.

The following statements are equivalent ([17]).

(i) The system (1) is strongly observable.

(ii) The triple {A,C, D} has no invariant zeros.

Definition 3: [17]. System (1) is said to be strongly de-

tectable, for any initial state x(0) and for any unknown input

(i.e., the nonlinear function γ(t, x)), the condition y(t) ≡ 0
∀t ≥ 0 implies that x(t) → 0 with t → ∞ .

The following statements are equivalent ([17]).

(i) The system (1) is strongly detectable.

(ii) The system (1) is minimum phase (i.e. the invariant

zeroes of the triple {A,C, D} satisfy Re s < 0).

Obviously, when D = 0 (i.e. with no unknown inputs

acting on the system) the notions of strong observability and

strong detectability coincide, respectively, with the standard

observability and detectability properties.

Introduce the observability matrix of the pair (C, A)

P =
[

CT (CA)T · · · (CAn−1)T
]T

. (3)

Recall that system (1) is observable (in the absence of the

unknown input) if and only if the observability matrix P has

the full rank. In that case the matrix A−LC can be assigned

any arbitrary spectrum by choosing an appropriate column

matrix parameter L. The integer nO = rank(P ) is called

the observability index of the system.

III. SINGLE OUTPUT CASE

III-A. Problem statement

Consider the quasilinear system (1) with scalar output, i.e.

p = 1. The nominal matrices A, B, C and D have suitable

dimensions and are assumed known. In order to provide

for possibility to observe the systems with discontinuous

unknown inputs it is considered that the solution of the

equations are understood in the Filippov sense [18] and exists

for all t > 0.

Definition 4: [13] The relative degree of the system (1)

with respect to the nonlinearity is the number r such that

CAjD = 0, j = 1, ..., r − 2, CAr−1D 6= 0. (4)

Recall that the nonlinearity of the system is considered as

unknown. The next theorems were proven in [5].

Theorem 1: [5]. The system (1) is strongly observable if

and only if the output of the system (1) has relative degree

n with respect to the unknown input (i.e., the nonlinearity

γ(t, x)).
Theorem 2: [5]. The system (1) is strongly detectable if

and only if the relative degree with respect to the unknown

input (i.e., the nonlinearity γ(t, x)) exists, and the system is

minimum-phase. In that case also r ≤ nO is ensured.

The task is to build an observer providing for the asymp-

totic (or, preferably, finite-time converging) estimation of the

system state.

III-B. Strongly observable case

System (1) is supposed to satisfy the following assump-

tions.

Assumption 1: The system (1) is strongly observable.

Assumption 2: The scalar nonlinear function γ(t, x) is a

bounded Lebesgue-measurable function for all t and x ∈ X ,

|γ(t, x)| ≤ γ+.

The observer is built in the form

ż = Az + Bu + L(y − Cz), (5)

˙̂
ξ = (A − LC)ξ̂ + Gv(t), (6)

x̂ = ξ̂ + z, (7)

where z ∈ Rn is the state of the auxiliary Luenberger-like

observer (5), x̂ ∈ Rn is the estimate of x, the column vector

L = [l1, l2, ..., ln]T ∈ Rn is chosen so that the eigenvalues

of the matrix A−LC have negative real parts, which exists

due to Assumption 1. The matrix G, and the nonlinear

discontinuous function v(t) (observer compensation input)

will be designed along the paper.

The proposed observer is actually composed of two

parts. Equation (5) is a Luenberger observer providing a

“wrong.estimate z of x affected by a bounded error ξ = x−z
due to the presence of the unknown bounded nonlinear

function γ(·). System (6) will be designed to ensure the finite

time convergence of ξ̂ to ξ. The algebraic equation (7) will

thus ensure that the estimation error x− x̂ converges to zero

in finite time.

Suppose that Assumptions 1 and 2 hold, respectively.

Since the pair (C, A) is observable, stable eigenvalues can

be arbitrarily assigned to the matrix (A − LC) by choosing

an appropriate column gain vector L ([19]). Obviously the

pair (C, A − LC) is also observable, and its observability

matrix

P̃ =















C
C(A − LC)

...

C(A − LC)n−2

C(A − LC)n−1















(8)

is not singular. Set the gain matrix G as the unique solution

of the next equation

P̃ G = [0, 0, . . . , 0, 1]T (9)

The “quasi-continuous.arbitrary-order sliding mode con-

troller was suggested in [14], [15].

Define ξ = x − z, ξy = Cξ, ξ̃y = ξy − ξ̂y .

Let i = 1, ..., n − 1 and denote

ϕ0,n = ξ̃y, N0,n = |ξ̃y| (10)

Ψ0,n = ϕ0,n/N0,n = sign ξ̃y, (11)

ϕi,n = ξ̃
(i)

y + βiN
(n−i)/(n−i+1)
i−1,n Ψi−1,n, (12)

Ni,n = |ξ̃
(i)

y | + βiN
(n−i)(n−i+1)
i−1,n , (13)

Ψi,n = ϕi,n/Ni,n (14)
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where β1, ..., βn−1 are positive numbers.

The corrective term v of the observer (6) is set according

to the quasi-continuous n-sliding controller [14], [15]

v(t) = −αΨn−1,n(ξ̃y,
˙̃
ξy, ..., ξ̃

(n−1)

y ). (15)

It can be stated the following Theorem:

Theorem 3: Let Assumptions 1 and 2 be satisfied. Then

with sufficiently large α and βi, the state x of the system is

estimated in finite time by the observer (5)-(7), (9)-(14) .

Proof: Consider the linear Luenberger part of the

observer (5). Denote ξ = x − z, ξy = Cξ(t), then obtain

ξ̇ = (A − LC)ξ(t) + Dγ(t, x), (16)

ξy = Cξ(t). (17)

Recall that the matrix A − LC is Hurwitz. Considerthe

Lyapunov function V = 1
2ξT Hξ , where H is the symmetric

positive-definite matrix solution of the Lyapunov equation

H(A − LC) + (A − LC)T H = −I . Its derivative

V̇ = ξT (H(A − LC) + (A − LC)T H)ξ+

(ξT HD + DT Hξ)γ(t, x)

is negative definite with γ(t, x) = 0. Due to the boundedness

of γ(t, x), the same properties hold with sufficiently large

‖ξ‖. Thus obtain that the estimation error ξ converges to a

bounded vicinity of the origin.

Define now the output error vector ε, containing the output

error ξ̃y = ξ̂y − ξy and its first n − 1 derivatives:

ε =











ε1

ε2

...

εn











=













ξ̃y
˙̃
ξy
...

ξ̃
(n−1)

y













. (18)

Let us derive the explicit form for the successive deriva-

tives of the output estimation error ξ̃y up to the order n.

Considering Theorem 1, equation (9), and defining ξ̃ = ξ̂−ξ,

it yields

ξ̃
(j)

y = C(A − LC)j ξ̃, 1 ≤ j ≤ n − 1 (19)

ξ̃
(n)

y = C(A − LC)nξ̃ − CAn−1Dγ(t, x) + v(t),(20)

Notice that C(A − LC)n−1D = CAn−1D.

The equations (18)-(19) lead to the following mapping

ε = P̃ ξ̃ (21)

From the Assumption 1, we get that matrix P̃ is nonsin-

gular thus bijective implication ξ̃ = 0 ⇔ ε = 0 holds.

It has been shown that, under the Assumption 1, the system

(6), (9) can reconstruct the coordinates of the system (16)

exactly and in finite time, provided that the observer input

v(t) is selected in such a way that the vector ε is steered to

zero in finite time.

The ε dynamics takes the following Brunowsky chain-of-

integrators canonical form















ε̇1 = ε̇2

ε̇2 = ε̇3

. . .

ε̇n = C(A − LC)nξ̃ − CAn−1Dγ(t, x) + v(t)

(22)

where ξ̃y = ε1. The previously proven boundedness of vector

ξ together with assumption 2 allow us to guarantee the

existence of a known constant Γ such that

|C(A − LC)nξ̃ + CAn−1Dγ(x)| < Γ (23)

It was shown in [14], [15] that provided that the tuning

parameters β1, ..., βn−1, α are chosen sufficiently large in

the given order then the control law defined by (10)-(15)

stabilizes the error system ξ̃ = ξ − ξ̂ in finite time.

Obtain now that ξ̂ = x − z, then, by simple algebraic

manipulation, the state estimate x̂ = z + ξ̂ will satisfy the

equality x̂ = x starting from the moment when ε = 0.

III-B.0.a. Output error derivatives estimation: The

nth order quasi-continuous controller requires the availability

of the successive derivatives of the output estimation error

up to the order n−1. In order to reconstruct such derivatives

exactly and in finite time, the well known Arbitrary-Order

sliding-mode differentiator by A. Levant [12] can be used.

The separation results relevant to the combined use of the

above differentiator and any n-sliding homogenous controller

were discussed in [12].

III-C. Strongly detectable case

Introduce a new Assumption 3 which generalizes the

Assumption 1.

Assumption 3: System (1) is minimum phase and it has

relative degree r with respect to the unknown input (i.e.,

nonlinearity γ(t, x)), with r < n.

Remark 1: Assumption 3 is equivalent to the stability of

the invariant zeros of the system, and also means that the

system is strongly detectable in the sense of Definition 3.

Note also that Assumption 1 is obtained with r = n.

Let r ≤ n be the relative degree of system (1) with respect

to the nonlinearity γ(t, x), which means that

CAiD = 0, i = 0, ..., r − 2 CAr−1D 6= 0. (24)

As previously made, define the Luenberger-like observer

ż = Az + Bu + L(y − Cz). (25)

and consider the dynamics of the error vector ẽ = x − z:

˙̃e = (A − LC)ẽ + Dγ(t, x)
ξy = Cẽ

(26)

Under Assumption 3 it can be found a transformation

matrix T and a transformed state vector

(ξT
1 , ξT

2 )T = T ẽ = [T1 T2]
T ẽ
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such that

T (A − LC)T−1 =

[

A11 A12

A21 A22

]

,

TD =

[

D1

0

]

, CT−1 =
[

C1 0
]

(27)

where A21 ∈ R(n−r)×r, A22 ∈ R(n−r)×(n−r), and with the

matrices A11 ∈ Rr×r, A12 ∈ Rr×(n−r), CT
1 and D1 ∈ Rr

of the form

A11 =















0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
a1 a2 a3 · · · ar















(28)

A12 =















0 0 · · · 0
0 0 · · · 0
...

...
. . .

...

0 0 · · · 0
ar+1 ar+2 · · · an















(29)

D1 =











0
...

0
CAr−1D











CAr−1D 6= 0

, C1 =
[

1 0 ... 0
]

.

By the minimum phase assumption it follows that matrix

A22 is Hurwitz. The transformed system dynamics are

ξ̇1 = A11ξ1 + A12ξ2 + D1γ(t, x) (30)

ξ̇2 = A21ξ1 + A22ξ2 (31)

ξ̂y = C1ξ̂1 (32)

and the overall observer is constructed as

˙̂
ξ1 = A11ξ̂1 + Gv(t) (33)

˙̂
ξ2 = A21ξ̂1 + A22ξ̂2 (34)

x̂ = z + T−1

[

ξ̂1

ξ̂2

]

(35)

G =
[

0 0 · · · 0 1
]T

(36)

Define

ξ̃y = ξ̂y − ξy (37)

The compensation term v(t) in (33) is designed by means

of the same “quasi-continuous.arbitrary-order sliding mode

controller used in the previous subsection, but with order r
instead of n. Thus the form of v will be

v(t) = −αΨr−2,r−1(ξ̃y,
˙̃
ξy, ..., ξ̃

(r−1)

y ). (38)

The observer control (38) provides for the finite time

attainment of condition ξ̃y =
˙̃
ξy = . . . , ξ̃

(r−1)

y = 0. Thus,

unfortunately, in the actual case only the first r transformed

coordinates ξ1 are reconstructed exactly in finite time, which

coincide with the first r components of vector Tx. The next

Theorem shows that the “missing"vector state component ξ2

can be reconstructed asymptotically thanks to the minimum

phase property of the system.

Theorem 4: Consider system (1) and let Assumptions 3

and 2 be satisfied. Then the state x of the system is asymp-

totically estimated by the observer (25)-(35). In particular,

the first r coordinates of vector Tx are estimated exactly and

in finite time, while the remaining n − r state observation

errors tend exponentially to zero.

Proof: The boundedness of the estimation error ẽ
governed by the dynamic equations (26) follows from the

stability of the matrix A − LC exactly as in the proof

of Theorem 3. Furthermore, the triple (A − LC, D, C) is

minimum-phase. Let us now show the convergence of ξ̂1

and ξ̂2 to the actual values of ξ1 and ξ2 respectively. By

(30)-(34) the dynamics of the error variable ξ̃1 = ξ̂1 − ξ1 is

˙̃ξ1 = A11ξ̃1 − A12ξ2 − D1γ(t, x) + G(v(t)),

ξ̃y = C1ξ̃1

(39)

The dynamic of the rth coordinate of the vector ξ̃1 takes

the form

˙̃ξ1r
= A

(r)
11 ξ̃1 − A

(r)
12 ξ2 − CAr−1Dγ(t, x) + v(t),

where the superindex (r) is used to denote the rth row of the

corresponding matrix. Similarly to the proof of Theorem 3,

the boundedness of ξ̃ and γ(t, x) guarantees that there exist

a a known constant Γ such that

|A
(r)
11 ξ̃1 − A

(r)
12 ξ2 − CAr−1Dγ(t, x)| < Γ (40)

Thus, under adequate selection of its parameter gains, the

high-order sliding-mode compensation term (38) ensures the

finite time attainment of condition ξ̃y = ˙̃ξy = . . . , ξ̃
(r−1)

y =

0 which implies that ξ̂1 = ξ1 after a finite transient.

Denote ξ̃2 = ξ̂2−ξ2. The dynamics of ξ̃2 is easily derived

by considering (30)-(34) as

˙̃ξ2 = A21ξ̃1 + A22ξ̃2

Since the convergence of ξ̃1 to zero is achieved after a

finite time, and A22 is Hurwitz, thus also ξ̃2 → 0, which

proves the asymptotic convergence of ξ̂ to ξ. Such equality

yields that ξ̂ = T (x − z), and, pre-multiplying both terms

by the inverse of T , is possible to write down the expression

x = z + T−1ξ̂ which concludes the proof.

IV. MIMO CASE

Let us study in this Section the general case represented

by the system (1), by assuming that γ(t, x) is a nonlinear

functions vector with arbitrary dimension m > 1. Rewrite

the observability matrix P (given in 3) of system (1) in the

form

P =
[

PT
1 PT

2 · · ·PT
m

]

where Pi is the observability matrix of the pair (ci, A) and

ci (i = 1, ..., m) is the i-th row of the matrix C.

Here we restrict ourselves to the case when the system

has a well defined vector relative degree according to the

following definition.
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Definition 5: [13] System (1) is said to have a well

defined vector relative degree (r1, ..., rp) with respect to the

nonlinear vector γ(t, x) if

ciA
hDj = 0 i, j = 1, 2, ..., p, h = 0, 1, ..., ri − 2,

ciA
ri−1Dj 6= 0

(41)

and

rank Q = m, Q =





c1A
r1−1D1 ... c1A

r1−1Dm

...
cpA

rm−1D1 ... cpA
rm−1Dm



 .

(42)

Lemma 5: Let the output y of (1) have the vector relative

degree r = (r1, ..., rm) with respect to the nonlinear func-

tions vector γ(t, x). Then the vectors c1, ...,c1A
r1−1, ..., cm,

..., cmArm−1 are linearly independent.

Proof: Suppose that the contrary is true, i.e.

λ11c1 + λ12c1A + ... + λ1r1
c1A

r1−1 + ... + λm1cm +

λm2cmA + ... + λmrm
cmArm−1 = 0. (43)

Prove that λij = 0. Multiply (43) by D1, ..., Dm and

obtain m equalities. Due to (41) obtain that the rows of

the matrix Q are linearly dependent with the dependence

coefficients λ1r1
, ..., λmrm

, which contradicts to (42). Thus

λ1r1
= ... = λmrm

= 0. Now multiply (43) by AD1, ...,

ADm and obtain new m equalities. Taking into account

(41) obtain new linear dependence of the rows of Q with

the coefficients λ1r1−1, ..., λmrm−1. In that case the rows

(ciA
ri−1D1, ..., ciA

ri−1Dm) corresponding to rj = 1 do

not appear. Continuing this process obtain that all λij = 0.

We met the following Assumptions

Assumption 4: System (1) is minimum phase and it has a

well defined vector relative degree (r1, ..., rm) with respect

to the nonlinear functions vector.

Assumption 4 implies the strong detectability of the sys-

tem, and, according to Lemma 5, the total relative degree

r = r1 + ... + rm with respect to the nonlinear functions

vector γ(t, x) does not exceed the observability index nO =
rankP .

Assumption 5: The nonlinear functions vector γi(t, x)
(i = 1, 2, ..., m) are bounded functions fulfilling the restric-

tion |γi(t, x)| ≤ γ+
i .

Let rM = máx ri.

Choose a matrix L such that A−LC is an Hurwitz one and

implement the following linear, Luenberger-like observer

ż = Az + Bu + L(y − Cz). (44)

Like in the SISO case,that the triple (A − LC, D, C)
keeps the relative degree, observability index, unobservable

subspace Px = 0, and the minimum-phase property of the

original triple (A,D, C). The corresponding error system is

˙̃e = (A − LC)ẽ + Dγ(t, x),

where ẽ = x − z. Then in some new coordinates
[

ẽT
C ẽT

N

]T
= [T T

C T T
N ]T ẽ = T ẽ the system takes the

normal form

˙̃eC = AC ẽC + ACN ẽN + DCγ(t, x)
˙̃eN = ANC ẽC + AN ẽN

, ẽy = CC ẽC ,

where the observation errors ẽCi = (ẽT
Ci1, ..., ẽ

T
Ciri

)T ∈ Rri

are calculated as ẽCij = ciA
j−1(x − z), ẽN ∈ Rn−r , and

the system matrices have the form
[

AC ACN

ANC AN

]

= T (A − LC)T−1, (45)

AC =







A11 · · · A1,m

. . .

Am,1 · · · Amm






, ACN =







AC1

...

ACm







DC =







D11 ... Dm1

. . .

D1m ... Dmm






(46)

Aii =











0 1 · · · 0
...

...
...

0 0 · · · 1
aii,1 aii,2 · · · aii,ri











, (47)

Ai,j =











0 0 · · · 0
...

...
...

0 0 · · · 0
aij,1 aij,2 · · · aij,rj











, i 6= j, (48)

AC,j =











0 0 · · · 0
...

...
...

0 0 · · · 0
aCj,1 aCj,2 · · · aCj,n−r











, (49)

yj = CCjeCj , CCi =
[

1 0 ... 0
]

,

Dij =
[

0 ... 0 ciAri−1Dj

]T
. (50)

The matrix AN is Hurwitz by the minimum phase assump-

tion. The nonlinear part of the observer is chosen as

˙̂
ξ1 = AC ξ̂1 + GCv(t) (51)

˙̂
ξ2 = ANC ξ̂1 + AN ξ̂2 (52)

x̂ = z + T−1

[

ξ̂1

ξ̂2

]

(53)

where v ∈ Rm and GC = diag{G1 G2 ... Gm} and

Gi ∈ Rri is given by

Gi =
[

0 0 ... 0 1
]T

, i = 1, ..., m

The entries vi of vector v (i = 1, 2, ..., m) are computed

as per the quasi-continuous (ri − 1)-th order sliding mode

controller as

vi(ξ̃yi
) = −αΨri−2,ri−1(ξ̃yi

,
˙̃
ξyi

, ..., ξ̃
(r−2)

yi
). (54)
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where ξ̃yi
denotes the ith row of the vector ξ̃y .

The following Theorem is proven

Theorem 6: Under Assumptions 4, 5, with properly cho-

sen parameters the observer (44)-(53) provides after a finite-

time the convergence to zero of the estimation error TC(x−
x̂). The remaining error coordinates TNx are estimated

asymptotically.

The proof can be rather easily developed by following

similar procedure as that of Theorem 4, and is omitted for

brevity.

V. EXAMPLE

Consider the Chua’s Circuit [20] rewritten in the general

form (1) as

ẋ =





−αc α 0
1 −1 1
0 −β 0



x +





−α
0
0



 γ(t, x)

y = [0 0 1]x

(55)

where γ(t, x) = x3
1. The quasilinear system (55) satisfies

Assumption 1. The parameters of (55) are chosen as α =
10, β = 16, c = −0,143 and the initial conditions are given

by x0 = [0,1 0,1 0,1]T . The aforementioned choice of

parameters and initial conditions guaranteeing the chaotic

behavior of the Chua’s circuit, in addition it ensures that

both the state variables and its derivatives are bounded for

all t (i.e., ∃ γ+ : |x3
1| < γ+ ∀x ∈ X ).

The auxiliary Luenberger-like gain is chosen as L =
[−7,2203 −0,5747 6,43]T . The matrix G obtained by the

application of (9) takes the form G = [−0,0625 0 0]T .

The observer control v(t) is selected according to the 3th

order quasicontinuous-sliding-mode controller:

u = −30

¨̃ξy + 2(| ˙̃ξy| + |ξ̃y|
2/3)−1/2( ˙̃ξy + |ξ̃y|

2/3 sign ξ̃y)

|
¨̃
ξy| + 2(|

˙̃
ξy| + |ξ̃y|

2/3)1/2

(56)

with the output error derivative estimates
ˆ̃̇
ξy ,

ˆ̃̈
ξy provided

by the Levant differentiator with κ0 = 2(301/3), κ1 =
1,5(301/2), κ1 = 33.

The actual and estimated state variables, and the estimation

error, are shown in the Figure 1.
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Fig. 1. State reconstruction and estimation errors.

VI. CONCLUSIONS

High-order sliding-mode quasi-continuous state observers

are proposed for quasilinear systems under conditions of

strong observability and strong detectability. The finite-time-

convergent exact observation of the state is provided under

the conditions of strong observability, while in the case of the

strong detectability only a subset of the states are observed in

finite time, while other estimations are asymptotically exact.

A novel structure combining a Luenberger-like linear term

and the quasicontinuous high-order sliding-mode controller

[14], [15] has been proposed. The results are first presented

for systems with scalar output, and then extended to the

multiple output case.
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