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Abstract— We consider a class of non-standard networked
control problems where (i) there is a limit on the number of
times control signals can be transmitted to the plant, and (ii)
the links over which the transmission takes place are lossy in
the sense that there is a nonzero probability with which packets
carrying control signals are dropped. The framework is that of
discrete-time LQG optimal control where the control has access
to noisy state measurements, and the objective is minimization
of the expected value of a quadratic performance index under
the nontraditional constraints introduced above. When there is
a limitation on the number of control actions, we show that
the optimal policy involves thresholding the optimal estimate
of the state. When there is also a lossy link, and the control
is allowed to receive acknowledgements from the plant as to
whether the transmitted packets were received or not, we show
that the optimal policy is again of the threshold type, involving
off-line computation.

I. INTRODUCTION

As wireless sensing and control become increasingly ap-

plicable in fields ranging from real time alarm systems to

aeronautical guidance, the theoretical foundation in these

areas has grown likewise [1]. In the past few years, new and

nontraditional constraints in the implementation of systems

have been introduced, with respect to how information is

collected and how transmissions can be made [2]. The desire

to exchange information reliably and efficiently in a remote

and distributed setting validates the need for research that

provides guidelines on how to do this.

Point to point estimation in the presence of noise has

been well studied and can be considered fairly complete

[3], even when the receiver does not know with certainty

whether a signal is present or not [4]. However, constraints

in such problems that until recently have not been considered

are opening a fresh and challenging field for investigation.

Problems with limitations in the number of times a channel

may be used (such as in control and transmission/estimation

schemes) have been introduced in [5]. Specifically, these

problems deal with finite horizon problems, say of length N ,

in which a channel is used to communicate some information

to minimize a cost function, but may only be used M < N

times [6], [7], [8]. Such a limitation arises naturally in many

applications, from financial settings to sensor networks.

In addition to efficient power usage, extensive study has

been conducted with respect to optimal design of networked

control systems when physical links limit the reliability of

information transfer. Indeed, in [1] and [9] the problem has

been extensively studied for linear systems and under both
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TCP as well as UDP information structures. That is, control

systems in which observation and control packets have

nonzero probability of being lost are considered, along with

information structures in which acknowledgement signals

may or may not be present.

A number of related contributions have been made with

respect to optimal control policies that must account for

unreliability. Papers on the topic incorporate a variety of tools

to handle the unreliability, including stability analysis and

information theory [10], [11], [12]. The thresholding policies

that one finds in the solutions to usage limitation problems,

as in [6], also appear in event based control [13].

In this paper we are concerned with a new framework

which utilizes both types of nontraditional constraints: usage

of channels is limited and information packets may be

dropped. We build on the analysis of control systems in

which control actions may only be made a limited number

of times, as introduced in [14]. We study this problem in

the setting of networked control systems in which physical

links may fail with nonzero probability. The model is made

formal in Section II. We see in Section III that when the

cost function involves a rank one matrix, a multi-dimensional

control system under limited control usage can be studied

with decision regions as subsets of R rather than subsets

of Rn, which simplifies the computation substantially. In

Section IV, we then address the problem of optimal control

usage in scalar systems with nonzero probability of control

packet loss. Section V presents numerical results, and con-

cluding remarks and discussion on future work can be found

in Section VII.

II. PROBLEM FORMULATION

Consider a plant described by

xk+1 = Axk + αkBuk + wk, k = 0, 1, ...N − 1,

where xk ∈ Rn is the state, uk ∈ Rn is the control, and

wk ∈ Rn is a zero-mean i.i.d. Gaussian process with positive

definite covariance matrix Σw. Note that there are as many

control channels as the dimension of the state; in view of this

assumption, we take B to be invertible. The variable αk ∈
{0, 1} is an i.i.d. Bernoulli random variable with P [αk =
0] = α, N denotes the decision horizon and the initial state

is Gaussian. The measurement at time k is

yk = xk + vk, k = 0, 1, ...N − 1,

where vk, which models observation noise, is an i.i.d. Gaus-

sian process with zero mean and covariance matrix Σv. We

assume the noise processes wk, vk and the initial state x0 to
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be independent. Now let Ik denote the information available

to the controller at time k:

Ik = {yk
0 , αk−1

0 , uk−1
0 }, k = 1, ..., N − 1; I0 = y0

where yk
0 denotes the set of observations from time 0 to

time k, and similar convention applies to αk−1
0 and uk−1

0 .

This information structure reflects the TCP protocol - ac-

knowledgements are provided to the controller to let it know

whether a control action transmitted has been recieved or not.

Consider the class of policies consisting of a sequence of

functions π = µ0, µ1, ..., µN−1, where µk maps Ik into the

control space Ck, which are restricted such that the control

can map Ik into Ck = Rn a limited number of times. For all

other k, we have Ck = 0. Control policies of this form are

called admissible and our goal is to find an admissible policy

π that minimizes Jπ = E
{

∑N
k=0 xT

k Qxk

}

with Q ≥ 0.

Note that the restriction on control sets simply corresponds

to a zero control for times during which control is not

allowed to act. We assume that control is mapped into

Rn only M ≤ N times. Also we do not include a direct

penalty for control but there is an indirect penalty in terms

of limitation on the number of times it can act.

III. SYSTEMS WITH VECTOR STATE SPACE AND

LOSSLESS CONTROL

In this section, we present the optimal policy for problems

in which A = aI (but we take a = 1 w.l.o.g.), α = 0
(reliable control) and Q = ggT for some g ∈ Rn. Let s and t

respectively denote the number of control actions left and the

number of decision instances left. Given M and N and going

backwards in time, t increases from t = 1 to t = N while

s takes values in max{0, M − (N − t)} ≤ s ≤ min{t, M}.

Thus given t, N , and M such that 1 ≤ M ≤ N , the maximal

interval in which s can take values is 0 ≤ s ≤ t.

As in [14], the solution is obtained by a dynamic program-

ming argument starting with t = 1, and going backwards

in time (or forward in t) to t = N . For each value of t,

we consider the potential values s can take which are given

above. From a particular decision and control state (s, t),
we decide either to go to stage (s − 1, t − 1) or (s, t − 1)
depending on whether we decide to act at stage (s, t) or not.

Similarly, we see that we must have arrived to (s, t) either

from (s, t + 1) or (s + 1, t + 1).
To proceed with this approach, we start with t = 1 and

note that 0 ≤ s ≤ 1. When s = 0, we must have u(0,1) = 0,

where u(0,1) is the optimal control input at this stage. Since

(0, 1) can only lead to (0,0), we can calculate the optimal

cost-to-go from (0, 1) and denote it as J(0,1). Then, we

must consider stage (1,1), which can only lead to (0,0), and

calculate the corresponding optimal control u(1,1) and the

associated cost-to-go, J(1,1).

Continuing the process for higher values of t and s, it

is possible to obtain expressions for optimal control and

associated cost-to-go at an arbitrary stage (s,t). We write

J
(0)
(s,t) for the optimal cost-to-go when a control input is not

used at stage (s,t) and J
(1)
(s,t) when a control input is used.

The control input for stage (s,t) will be written as u(s,t).

In the analysis to derive these expressions, which have

been omitted due to page limitations but can be found in

[8], an important property makes the development possible.

By Lemma 3.1 of [14], we know that for every k ∈ [0, N−1],
xk − E{xk|Ik} is independent of the control policy being

used. We denote the error covariance matrix by Σk|k−1 :=

Cov(xk − E{xk|y
k−1
0 }). The evolution of Σk|k−1 is given

by

Σk+1|k = Σk|k + Σw

Σk|k = Σk|k−1 − Σk|k−1[Σk|k−1 + Σv]−1Σk|k−1

Another useful property is that the decision whether to

transmit or not depends only on the projection of the best

estimate of the current state onto a one dimensional manifold,

making decision regions subsets of R. The computational

complexity is kept low, due to the fact that Q is a rank one

matrix. If Q was of rank higher than 1, say m, we would be

forced to choose decision regions as subsets of Rm.

By induction we find from our analysis that the optimal

control policy is a threshold policy on a projection of the

best estimate of the plant state, which can be recursively

generated by a Kalman filter. Furthermore, the threshold

at time k is a function of four variables: N (the decision

horizon), tk (number of decision instances left, sk (number

of control actions left) and Σk|k−1 (the error covariance). The

error covariance Σ0|−1 is known and all other values can be

iteratively calculated. For a given N the thresholds can be

computed entirely offline using the procedure described in

this section. On the other hand, the best estimates for state

must be calculated online with a Kalman filter and initial

condition x̂0|−1 = E{x0}.

Thus, starting with x̂0|−1 = E{x0}, s0 = M , t0 = N , the

optimal control policy can be implemented by the following

algorithm: For each k, 0 ≤ k ≤ N − 1,

1) Look up the threshold τ+
(sk,tk) corresponding to the

current stage from a table generated (further below).

2) Observe yk and update the state estimate to x̂k|k using

the Kalman filter recursion.

3) Apply the control policy

u(sk,tk) =

{

0 if |gT x̂k|k| < τ+
(sk,tk)

−B−1x̂k|k if |gT x̂k|k| ≥ τ+
(sk,tk)

4) Update sk+1 according to whether a control is used

and tk+1 = tk − 1

We finally give the iterations to calculate the thresholds

τ+
(sk,tk) for a given horizon N ≥ 1 and arbitrary pair of

integers (s, t) such that 1 ≤ s ≤ t ≤ N . The cost-to-go

functions can be written as

J
(0)
(s,t) = 2E{(gT xN−t)

2|yN−t
0 } + gT Σwg + Λ(s,t−1)

+

∫

|gT x̂N−t+1|N−t+1|≤τ
+
(s,t−1)

∆(s,t−1)

× f
(0)

gT x̂N−t+1|N−t+1|y
N−t
0

d(gT x̂N−t+1|N−t+1)

J
(1)
(s,t) = E{(gT xN−t)

2|yN−t
0 } + Λ(s,t)
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where

f
(0)

gT x̂N−t+1|N−t+1|y
N−t
0

∼ N(gT x̂N−t|N−t,

gT ΣN−t+1|N−t(ΣN−t+1|N−t + Σv)
−1ΣN−t+1|N−tg)

and for 1 < s < t ≤ N , Λ(s,t) is defined by the recursion

Λ(s,t) = Λ(s−1,t−1) + gT ΣN−t|N−tg + gT Σwg

+

∫

|gT x̂N−t+1|N−t+1|≤τ
+
(s,t−1)

∆(s−1,t−1)

× f
(1)

gT x̂N−t+1|N−t+1|y
N−t
0

d(gT x̂N−t+1|N−t+1)

where f
(1)

gT x̂N−t+1|N−t+1|y
N−t
0

is mean zero Gaussian with the

same variance as f
(0)

gT x̂N−t+1|N−t+1|y
N−t
0

. For 1 ≤ t ≤ N

we have Λ(1,t) = tgT ΣN−t|N−tg + t(t+1)
2 gT Σwg. Define

∆(s,t) := J
(0)
(s,t) − J

(1)
(s,t). Then for 1 ≤ s < t ≤ N ,

∆(s,t) = (gT x̂N−t|N−t)
2 + gT ΣN−t|N−tg + gT Σwg

+

∫

|gT x̂N−t+1|N−t+1|≤τ+
(s,t−1)

∆(s,t−1)

× f
(0)

gT x̂N−t+1|N−t+1|y
N−t
0

d(gT x̂N−t+1|N−t+1)

+ Λ(s,t−1) − Λ(s,t)

Note that Λ(s,t) is a sequence of real numbers while ∆(s,t)

is a sequence of functions. We must also have boundary

conditions for 1 ≤ t ≤ N :

Λ(t,t) = Λ(t−1,t−1) + gT ΣN−t|N−tg + gT Σwg

∆(t,t)(g
T x̂N−t|N−t) = (gT x̂N−t|N−t)

2

with Λ(0,0) = 0. We also have τ+
(t,t) = 0, 1 ≤ t ≤ N and

for 1 ≤ s < t ≤ N , the thresholds, τ+
(s,t), are given by the

positive solution of the nonlinear equation ∆(s,t)(τ
+
(s,t)) = 0.

In order to show that such a solution exists, we have the

following result, which mirrors the main result of [14].

Proposition 1: Let N ≥ 2 be given. For 1 ≤ s < t ≤ N ,

the sequence of functions ∆(s,t)(u) are even,differentiable

with a unique critical point at u = 0, i.e.,
∂∆(s,t)(u)

∂u

∣

∣

∣

∣

u=0

=

0. Furthermore, we have
∂∆(s,t)(u)

∂u
> 0 if u > 0, and

∂∆(s,t)(u)

∂u
< 0 if u < 0 so that the global minimum is

achieved at u = 0. Also, the minimum of ∆(s,t)(u) at critical

point u = 0 is nonpositive, i.e., ∆(s,t)(0) ≤ 0.

In the offline computation of thresholds, we start with s =
1 and increase t from 1 to N and determine τ+

(1,t). Next, we

increment s by 1 to s = 2 and increase t from 2 to N to

determine τ+
(2,t). We continue this process until s = N , at

which point we stop since τ+
(N,N) = 0. The procedure allows

us to determine thresholds for all (s, t) such that 1 ≤ s <

t ≤ N .

IV. SCALAR SYSTEMS WITH LOSSY CONTROL

Now let us consider problems in which n = 1 (scalar

system), α ∈ (0, 1), Q = 1, Σw = σ2
w and Σv = σ2

v . First

consider the following recursion with K(0,0) = 1:

K(s,t) = 1 + αA2K(s−1,t−1); K(0,t) = 1 + A2K(0,t−1)

Now that there is a nonzero probability of dropped control,

even when control action is taken, the cost-to-go must

take into account that control could be lost. Let s and t

denote respectively the number of control actions left and

the number of decision instances left. We start with stage

(0, 1) with u(0,1) = 0 and

J(0,1) = K(0,1)E{x2
N−1|y

N−1
0 } + σ2

w

When s = 1, (1,1) can only lead to stage (0,0) with the

control u(1,1) = −AE{xN−1|y
N−1
0 } and cost-to-go

J(1,1) = K(1,1)E{x2
N−1|y

N−1
0 } + σ2

w

+ ᾱA2E{(xN−1 − E{xN−1|y
N−1
0 })2|yN−1

0 }

where α and ᾱ = 1 − α have entered the equation due to

the probability of dropped control. We again know that for

every k ∈ [0, N − 1], xk − E{xk|Ik} is independent of the

control policy being used. Therefore we may write:

J(1,1) = K(1,1)E{x2
N−1|y

N−1
0 } + ᾱA2σ2

N−1|N−1 + σ2
w

with σ2
k|k defined by σ2

k|k := E{(xk −E{xk|y
k
0})

2|yk
0} and

evolution given by

σ2
k+1|k = A2σ2

k|k + σ2
w

σ2
k|k = σ2

k|k−1 −
(σ2

k|k−1)
2

σ2
k|k−1 + σ2

v

.

Now let t = 2. When s = 0, (0, 2) can only lead to (0, 1)
so we have u(0,2) = 0 and

J(0,2) = K(0,2)E{x2
N−2|y

N−2
0 } + K(0,1)σ

2
w + σ2

w

With s = 1, (1, 2) may either lead to (1, 1) or (0, 1),
depending on whether control is applied or not. When control

is applied we find the optimal policy by minimizing the

quadratic cost-to-go function to arrive at:

u
(0)
(1,2) = 0; u

(1)
(1,2) = −AE{xN−2|y

N−2
0 }

and corresponding cost-to-go

J
(0)
(1,2) = (1 + A2K(1,1))E{x2

N−2|y
N−2
0 } + ᾱA2σ2

N−1|N−1

+ (2 + αA2)σ2
w

J
(1)
(1,2) = K(1,2)E{x2

N−2|y
N−2
0 } + ᾱA2K(0,1)σ

2
N−2|N−2

+ (1 + K(0,1))σ
2
w

Compare the possible outcomes using ∆(1,2):

∆(1,2) = ᾱA2(x̂2
N−2|N−2 + σ2

N−1|N−1 − σ2
N−1|N−2)

As a function of E{xN−2|y
N−2
0 }, ∆(1,2)(E{xN−2|y

N−2
0 })

has a unique minimum:

∆(1,2)(0) = ᾱA2(σ2
N−1|N−1 − σ2

N−1|N−2) ≤ 0

Since this is a quadratic function, ∆(1,2)(x̂N−2|N−2) = 0 is

even and has two real roots, τ+
(1,2) = −τ−

(1,2) ≥ 0.
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If s = 2, (2, 2) can only lead to (1,1) with the control law

u
(1)
(2,2) = −AE{xN−2|y

N−2
0 } and corresponding cost-to-go

J(2,2) = K(2,2)E{x2
N−2|y

N−2
0 } + ᾱA2K(1,1)σ

2
N−2|N−2

+ ᾱA2σ2
N−1|N−1 + (1 + K(1,1))σ

2
w

Next let t = 3, which implies that 0 ≤ s ≤ 3. If s = 0,

we reason that u(0,3) = 0 and

J(0,3) = K(0,3)E{(xN−3)
2|yN−3

0 } +

2
∑

k=0

K(0,k)σ
2
w

If s = 1, (1, 3) may either lead to (1, 2) or (0, 2). In case

we use control at (1, 3), we have the optimal policy u
(1)
(1,3) =

−AE{xN−3|y
N−3
0 } since it must minimize a quadratic cost

function. The associated cost-to-go is

J
(1)
(1,3) = K(1,3)E{x2

N−3|y
N−3
0 } + ᾱA2σ2

N−3|N−3

+

2
∑

k=0

K(0,k)σ
2
w

If no control is used at (1, 3) (u
(0)
(1,3) = 0), we need to average

J(1,2) over the statistics of E{xN−2|y
N−2
0 } given yN−3

0 to

get the cost-to-go:

J
(0)
(1,3) = E{(xN−3)

2|yN−3
0 }

+

∫

|x̂N−2|N−2|≤τ
+
(1,2)

J
(0)
(1,2)f

(0)

x̂N−2|N−2|y
N−3
0

+

∫

|x̂N−2|N−2|>τ
+
(1,2)

J
(1)
(1,2)f

(0)

x̂N−2|N−2|y
N−3
0

where f
(0)

x̂N−2|N−2|y
N−3
0

is the conditional density function of

x̂N−2|N−2 given the available information. It has the same

parameters as in [14]:

f
(0)

x̂N−2|N−2|y
N−3
0

∼ N(Ax̂N−3|N−3,
(σ2

N−2|N−3)
2

σ2
N−2|N−3 + σ2

v

)

Substituting and rearranging gives

J
(0)
(1,3) = (1 + A2K(1,2))E{x2

N−3|y
N−3
0 } + K(1,2)σ

2
w

+ ᾱA2K(0,1)σ
2
N−2|N−2 + K(0,1)σ

2
w + σ2

w

+

∫

|x̂N−2|N−2|≤τ
+
(1,2)

∆(1,2)f
(0)

x̂N−2|N−2|y
N−3
0

Define ∆(1,3) and compare against zero. Substitution yields

∆(1,3) = ᾱA2x̂2
N−3|N−3 + ᾱA2K(0,1)σ

2
N−2|N−2

− ᾱA2K(0,1)σ
2
N−2|N−3

+

∫

|x̂N−2|N−2|≤τ
+
(1,2)

∆(1,2)f
(0)

x̂N−2|N−2|y
N−3
0

Yet again, the form of ∆(1,2) dictates that ∆(1,3) is even,

achieves minimum at x̂N−3|N−3 = 0 and is increasing to

the right of the minimum.

Next let s = 2 and note that (2, 3) only leads to (2, 2) or

(1, 2). If control is not used and u
(0)
(2,3) = 0, we incur

J
(0)
(2,3) = (1 + A2K(2,2))E{x2

N−3|y
N−3
0 }

+ ᾱA2K(1,1)σ
2
N−2|N−2 + ᾱA2σ2

N−1|N−1

+ (K(2,2) + K(1,1) + 1)σ2
w.

On the other hand, if we do apply control at (2, 3) we must

choose u
(1)
(2,3) to minimize

J
(1)
(2,3) = E{x2

N−3|y
N−3
0 } + α

{
∫ ∞

−∞

J
(1)
(1,2)f

(0)

x̂N−2|N−2|y
N−3
0

+

∫

|x̂N−2|N−2|≤τ
+
(1,2)

∆(1,2)f
(0)

x̂N−2|N−2|y
N−3
0

}

+ᾱ min
u
(1)

(2,3)

{

∫

|x̂N−2|N−2|≤τ
+
(1,2)

∆(1,2)f
(1)

x̂N−2|N−2|y
N−3
0

+

∫ ∞

−∞

J
(1)
(1,2)f

(1)

x̂N−2|N−2|y
N−3
0

}

where f
(1)

x̂N−2|N−2|y
N−3
0

is the conditional density function

of x̂N−2|N−2 given the available information and given

that the control input is nonzero and is not dropped. The

distribution f
(1)

x̂N−2|N−2|y
N−3
0

is Gaussian, but depends on the

input. Performing the necessary calculations reveals that

f (1)
x̂N−2|N−2|y

N−3
0

∼

N(Ax̂N−3|N−3 + u
(1)
(2,3),

(σ2
N−2|N−3)

2

σ2
N−2|N−3 + σ2

v

)

Substituting the optimal policy u
(1)
(2,3) = −AE{xN−3|y

N−3
0 }

and simplifying gives

J
(1)
(2,3) = K(2,3)E{x2

N−3|y
N−3
0 } + ᾱA2K(1,2)σ

2
N−3|N−3

+ ᾱA2K(0,1)σ
2
N−2|N−2 + (K(1,2) + K(0,1) + 1)σ2

w

+ ᾱ

∫

|x̂N−2|N−2|≤τ
+
(1,2)

∆(1,2)f
(1)

x̂N−2|N−2|y
N−3
0

+ α

∫

|x̂N−2|N−2|≤τ
+
(1,2)

∆(1,2)f
(0)

x̂N−2|N−2|y
N−3
0

We next derive ∆(2,3). Substitution yields

∆(2,3) = (1 + A2K(2,2) − K(2,3))(x̂
2
N−3|N−3 + σ2

N−3|N−3)

−ᾱA2K(1,2)σ
2
N−3|N−3 + ᾱA2(K(1,1) − K(0,1))σ

2
N−2|N−2

+ᾱA2σ2
N−1|N−1 + (K(2,2) + K(1,1) − K(1,2) − K(0,1))σ

2
w

−α

∫

|x̂N−2|N−2|≤τ
+
(1,2)

∆(1,2)f
(0)

x̂N−2|N−2|y
N−3
0

−ᾱ

∫

|x̂N−2|N−2|≤τ
+
(1,2)

∆(1,2)f
(1)

x̂N−2|N−2|y
N−3
0

If the regularity condition of Proposition 2 given below is

satisfied, ∆(2,3) is even, obtains minimum at x̂N−3|N−3 = 0
and is increasing for x̂N−3|N−3 > 0. Finally, we let s = 3
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and conclude, after optimizing, that optimal policy u
(1)
(3,3) =

−AE{xN−3|y
N−3
0 } incurs cost-to-go

J(3,3) = K(3,3)E{x2
N−3|y

N−3
0 } + ᾱA2K(2,2)σ

2
N−3|N−3

+ ᾱA2K(1,1)σ
2
N−2|N−2 + ᾱA2σ2

N−1|N−1

+ (1 + K(1,1) + K(2,2))σ
2
w

We continue this procedure for t = 4, 5, ..., N and by

induction we see that the optimal control policy is a threshold

policy on a projection of the best estimate of the plant

state, which can be recursively generated by a Kalman filter.

Furthermore, the threshold at time k is a function of four

variables: N (the decision horizon), tk (number of deci-

sion instances left, sk (number of control actions left) and

σ2
k|k−1 (the error covariance). The error covariance σ2

0|−1 =

E{(x0 − E{x0})
2} is known and all other values can be

iteratively calculated. For a given N the thresholds can be

computed entirely offline using the procedure described in

this section. On the other hand, the best estimates for state

must be calculated online with a Kalman filter and initial

condition x̂0|−1 = E{x0}.

Thus, starting with x̂0|−1 = E{x0}, s0 = M , t0 = N the

optimal control policy can be implemented by the following

algorithm: For each k in 0 ≤ k ≤ N − 1,

1) Look up the threshold τ+
(sk,tk) corresponding to the

current stage from the table. The regularity condition

of Proposition 2 below must be satisfied at each stage

(s, t) with 1 < s < t ≤ N

2) Observe yk and update the state estimate to x̂k|k using

the Kalman filter recursion.

3) Apply the control policy

u(sk,tk) =

{

0 if |x̂k|k| < τ+
(sk,tk)

−Ax̂k|k if |x̂k|k| ≥ τ+
(sk,tk)

4) Update sk+1 according to whether a control is used

and tk+1 = tk − 1

We finally give the iterations to calculate the thresholds

τ+
(sk,tk) for a given horizon N ≥ 1 and arbitrary pair of

integers (s, t) such that 1 ≤ s ≤ t ≤ N . The cost-to-go

functions can be written as

J
(0)
(s,t) = (1 + A2K(s,t−1))E{x2

N−t|y
N−t
0 } + K(s,t−1)σ

2
w

+ Λ(s,t−1) +

∫

|x̂N−t+1|N−t+1|≤τ
+
(s,t−1)

∆(s,t−1)

× f
(0)

x̂N−t+1|N−t+1|y
N−t
0

dx̂N−t+1|N−t+1

+

∫ ∞

−∞

F(s,t−1)(x̂N−t+1|N−t+1)

× f
(0)

x̂N−t+1|N−t+1|y
N−t
0

dx̂N−t+1|N−t+1

J
(1)
(s,t) = K(s,t)E{x2

N−t|y
N−t
0 } + Λ(s,t) + F(s,t)(x̂N−t|N−t)

where

f
(0)

x̂N−t+1|N−t+1|y
N−t
0

∼ N(Ax̂N−t|N−t,
(σ2

N−t+1|N−t
)2

σ2
N−t+1|N−t

+ σ2
v

)

and f
(1)

x̂N−t+1|N−t+1|y
N−t
0

is mean zero Gaussian with the same

variance as f
(0)

x̂N−t+1|N−t+1|y
N−t
0

. For 1 < s < t ≤ N ,

Λ(s,t) = Λ(s−1,t−1) + ᾱA2K(s−1,t−1)σ
2
N−t|N−t+

+ K(s−1,t−1)σ
2
w + α

∫

|x̂N−t+1|N−t+1|≤τ
+
(s,t−1)

∆(s,t−1)

× f
(1)

x̂N−t+1|N−t+1|y
N−t
0

dx̂N−t+1|N−t+1

+ ᾱ

∫ ∞

−∞

F(s,t−1)(x̂N−t+1|N−t+1)

× f
(1)

x̂N−t+1|N−t+1|y
N−t
0

dx̂N−t+1|N−t+1

F(s,t) = α

∫

|x̂N−t+1|N−t+1|≤τ
+
(s−1,t−1)

∆(s−1,t−1)

× f
(0)

x̂N−t+1|N−t+1|y
N−t
0

dx̂N−t+1|N−t+1

+ α

∫ ∞

−∞

F(s−1,t−1)(x̂N−t+1|N−t+1)

× f
(0)

x̂N−t+1|N−t+1|y
N−t
0

dx̂N−t+1|N−t+1

For s = 1 and 1 ≤ t ≤ N , we have F(1,t) = 0, Λ(1,t) =

ᾱA2K(0,t−1)σ
2
N−t|N−t +

∑t−1
n=0 K(0,n)σ

2
w.

Define ∆(s,t) := J
(0)
(s,t) − J

(1)
(s,t). Then for 1 ≤ s < t ≤ N ,

∆(s,t)(x̂N−t|N−t) = (1 + A2K(s,t−1) − K(s,t))

× (x̂N−t|N−t + σ2
N−t|N−t) + K(s,t−1)σ

2
w

+ Λ(s,t−1) − Λ(s,t) +

∫

|x̂N−t+1|N−t+1|≤τ
+
(s,t−1)

∆(s,t−1)

× f
(0)

x̂N−t+1|N−t+1|y
N−t
0

dx̂N−t+1|N−t+1

+

∫ ∞

−∞

F(s,t−1)(x̂N−t+1|N−t+1)

× f
(0)

x̂N−t+1|N−t+1|y
N−t
0

dx̂N−t+1|N−t+1 − F(s,t)

Note that Λ(s,t) is a sequence of real numbers while ∆(s,t)

is a sequence of functions. We must also have boundary

conditions for 1 ≤ t ≤ N

Λ(t,t) = Λ(t−1,t−1) + ᾱA2K(t−1,t−1)σ
2
N−t|N−t

+ K(t−1,t−1)σ
2
w , Λ(0,0) = 0

∆(t,t) = ᾱA2K(t−1,t−1)x̂
2
N−t|N−t; F(t,t) = 0

We also have τ+
(t,t) = 0, 1 ≤ t ≤ N and for 1 ≤ s < t ≤

N , the thresholds, τ+
(s,t), are given by the positive solution of

the nonlinear equation ∆(s,t)(τ
+
(s,t)) = 0. In order to show

that such a solution exists, we need the following result,

whose proof is not given due to page limitations.

Proposition 2: Let N ≥ 2 be given, and a regularity

condition be satisfied for each (s, t) with 1 < s ≤ t ≤ N :

2A2(K(s,t−1) − αK(s−1,t−1))

+
αA2

σ2
(∆(s−1,t−1)(0) + F(s−t,t−1)(0)) > 0
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where σ2 =
(σ2

N−t+1|N−t)
2

σ2
N−t+1|N−t

+σ2
v

. Then for 1 ≤ s < t ≤ N ,

the sequence of functions ∆(s,t)(u) are even, differentiable

with a unique critical point at u = 0, i.e.,
∂∆(s,t)(u)

∂u

∣

∣

∣

∣

u=0

=

0. Furthermore, we have
∂∆(s,t)(u)

∂u
> 0 if u > 0, and

∂∆(s,t)(u)

∂u
< 0 if u < 0 so that the global minimum is

achieved at u = 0. Also, the minimum of ∆(s,t)(u) at critical

point u = 0 is nonpositive, i.e., ∆(s,t)(0) ≤ 0
In the offline computation of thresholds, we start with s =

1 and increase t from 1 to N and determine τ+
(1,t). Next, we

increment s by 1 to s = 2 and increase t from 2 to N to

determine τ+
(2,t). We continue this procedure until s = N , at

which point we stop since τ+
(N,N) = 0. The process allows us

to determine thresholds for all (s, t) such that 1 ≤ s < t ≤
N . Before each threshold calculation, we must check that the

regularity condition is satisfied for (s, t) in the range 1 < s ≤

t ≤ N . Additionally, the calculation of each J
(1)
(s,t) requires

that the regularity condition is satisfied for ∆(s−1,t−1). It is

easily seen that the condition is satisfied for (i) s = t and

(ii) α = 0 (as well as some neighborhood of α = 0, by

continuity). For s = 1, no condition needs to be satisfied.

V. A NUMERICAL EXAMPLE

Suppose we have a scalar system with A = 1, N = 10,

σ2
w = σ2

v = 1 and x0 with mean zero and variance 1.

It can be verified that the regularity condition holds for

these parameters and any choice of α, and as stated in

Proposition 2 the plots are even, achieve minimum at zero

and increasing to the right of the origin. We plot ∆(2,3) as

a function of x̂7|7 for α = 0, 0.1, 0.2 in Fig 1. Note that as

the probability of control action loss increases, it is optimal

to be more conservative with control actions. This can be

seen by comparing the roots of ∆(2,3), which function as

thresholds for deciding whether to transmit or not.
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Fig. 1. Graph of ∆(2,3) for different values of α

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have obtained the optimal control policies

for two classes of control problems in which there are limits

on the number of control actions. In the first class the system

is multidimensional but there are as many control inputs

as the dimension of the state and the system output that

is penalized is scalar. In the second class, we have also

allowed lossiness in the transmission of control signals, but

have considered scalar plants. For both problems the optimal

controls are threshold policies.

Although this paper has considered special cases of the

general framework of Section I, it should be noted that the

techniques used can be applied to any variant of the proposed

problem type. In the most general case, with no restriction

on the structure of cost matrix Q or dimension of state, it

turns out that the thresholds must be made on x̂k|k, which

results in decision regions being subsets of Rn. Even in the

case of Q = ggT , but with A not a multiple of I , the solution

will not be in terms of the projection of x̂k|k onto g.

One may also consider a more general problem statement

in which not only control packets are dropped, but observa-

tions as well. In this case, we may no longer keep track of

σ2
k|k−1 offline. As new observations arrive, we must update

the error covariance accordingly and so thresholds must also

be recomputed every time an observation is made.

There are several avenues for future work that is related to

what is presented here. For example, one may wish to gain

insight into the regularity condition and show under what

conditions it would be true. Also, the information pattern

studied can be switched to UDP [9], a more difficult scenario.

Finally, one could look into distributed control problems

in which agents may communicate with each other only a

limited number of times.
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systems over communication networks,” Automatica, 42(9): 1429-
1440, September 2006.

[10] J. Nilsson and B. Bernhardsson. “LQG control over a Markov
communication network,” Proc. American Control Conf., pp. 4586-
4591, June 1997.

[11] S. Tatikonda and S. Mitter. “Control under communication con-
straints,” IEEE Trans. Autom. Contr., 49(7):1056-1068, 2004.

[12] B. A. Sadjadi. “Stability of networked control systems in the presence
of packet losses,” Proc. 43rd IEEE Conf. Decision and Control, Maui,
Hawaii, (2003).

[13] K. J. Astrom. “Event based control,” In A. Astolfi and L. Marconi
(Eds.), Analysis and Design of Nonlinear Control Systems, Springer,
Berlin, 2008.
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