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Abstract— This paper introduces a real rational module
framework in the context of Prediction Error Identification
using Box-Jenkins model structures. This module framework,
which can easily be extended to other model structures, allows
us to solve and/or extend a number of problems related to the
computation of error norms that arise in system identification.
Our main contribution to system identification is an extension
of the asymptotic variance formulas for Box-Jenkins models
derived by Ninness and Hjalmarsson to asymptotic auto-
covariance with respect to frequency. This is achieved by view-
ing the sensitivity space of the prediction error as a so-called
rational module. The auto-covariance of the transfer function
estimates at different frequencies can then be quantified in
terms of the poles and zeros of the underlying system and the
input spectrum.

I. INTRODUCTION

Prediction Error Identification (PEI) consists of identifying
rational transfer function models by deriving estimators for
the coefficients of the numerator and denominator polyno-
mials, stored in a parameter vector θ ∈ Rm. Assuming
a quadratic cost function for the prediction errors is both
essential and interesting, because then the asymptotic co-
variance of the estimator θ̂ of the parameter vector can be
quantified and exhibits a strong relation to the sensitivity of
the prediction error w.r.t. the parameters.

Using time-domain techniques Ljung showed in [1] that
var(θ̂N ) ≈ N−1K−1. More precisely as the observation
length N increases, the error θ̂N−θ0 not only converges to 0
(almost surely, a.s.) but also sufficiently fast for

√
N(θ̂N−θ0)

to converge to γ ∈ N (0,K−1) (in law), where γ is a zero
mean Gaussian limit with covariance K−1 s.t.

1
Nσ2

N∑
t=1

∂ŷ(t)
∂θi

· ∂ŷ(t)
∂θj

a.s.→ Kij as N →∞. (1)

Here θ0 ∈ Rm denotes the fixed (or true) parameter vector,
θ̂N the estimated parameter vector based on N observations
((y1, u1), (y2, u2), . . . , (yN , uN )) ∈ (R2)N of the process
y = G(θ0)u + H(θ0)e, corrupted by white noise e with
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variance σ2, and ∂ŷ(t)
∂θ ∈ Rm denotes the negative prediction

error gradient at time t.
In the Box-Jenkins model structure the transfer functions

G(θ) and H(θ) are separately parameterized. Thus, the limit
vector can be split as γ = [γG, γH ]T, and the prediction
gradient splits similarly into independent parts corresponding
to G and H , respectively. Therefore the estimation of G
and H , as well as the properties of these estimates, can be
treated separately and in order to introduce the main ideas
of our contribution we focus on G only in this introduction.
In the frequency domain the part of the prediction gradient
that corresponds to G is given by ρ0(Dθ0G), where ρ0

denotes the spectral factor of the signal to noise ratio,
ρ0ρ

∗
0 = Φu/Φv0 , while Dθ0(·) is the Fréchet derivative at θ0.

Using Parseval’s theorem, Mårtensson and Hjalmarsson
[2], [3] expressed the asymptotic covariance matrix K−1

as a Gramian, or generalized inner product, in the space
of rational transfer function matrices, leading to a nice
geometric interpretation based on orthogonality and inner
products in L2. In this paper, we contribute an extension
of this geometric interpretation by discussing its relation
to uncorrelated random variables, i.e., orthogonality in the
stochastic sense, and providing new insights into the inter-
play of both notions of orthogonality. Understanding this
interplay allows us to choose an orthonormal basis (ONB)
for the sensitivity space such that the coordinates of the
resulting random transfer function ρ0(Dθ0G)(γG) w.r.t. to
that basis have unit variance and are uncorrelated (cf. proof
of Theorem 9). This is of fundamental interest since the
latter term approximates

√
N(G(θ̂N )−G(θ0)) weighted with

ρ0. Combining these observations we are able to extend the
results on asymptotic variance of transfer function estimates,
derived by Ninness and Hjalmarsson in [4], to asymptotic
auto-covariance w.r.t. frequency.

The key idea is a very simple concept which says that
a random transfer function Γ =

∑
γimi formed by linear

combinations of (deterministic) rational basis functions (mi)
which are orthonormal, with zero mean and unit covari-
ance random coefficients (γi), has an auto-covariance w.r.t.
frequency, i.e., E[Γ(ω1)Γ∗(ω2)], that equals the integral
kernel, say k(ω1, ω2), reproducing the span of the mi’s
(cf. Lemma 3). In order to express this integral kernel in
terms of the poles and zeros of the underlying dynamical
system we use techniques based on rational modules (cf. (23)
in Theorem 6). Rational modules are related to polynomial
modules; they are abstractly defined as quotient modules
and have been studied extensively by Kalman and later by
Fuhrmann in system theory; see e.g. [5][Chapter 10].

The paper is organized as follows: In Section II we define
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Schur-stability, real rational subspaces of L2, polynomial
and rational modules as well as integral kernels reproducing
these subspaces. In Section III we discuss rational modules
as subspaces of the real rational Hardy space. The main
results of this paper are provided in Section IV where we
derive the asymptotic auto-covariance w.r.t. frequency for
the Box-Jenkins model structure. Section V summarizes the
key results with special emphasis on the potential of rational
modules for system identification.

II. PRELIMINARIES

A. Discrete Time Schur-Stability

We denote the ring consisting of all polynomials in the
indeterminate x with coefficients in a field K by K[x].
For example

∑n
i=0 kiz

i (ki ∈ C) defines an element in
C[z] while

∑n
i=0 kiz

−i (ki ∈ R) defines an element in
R[z−1]. Regarding discrete-time stability (or Schur-stability),
a polynomial p =

∑
pix

i ∈ C[x] is said to be [x]-stable if

p = pn(x− a1)(x− a2) · · · (x− an) (|ai| < 1), (2)

i.e., if all zeros of p are inside the open unit disk D ⊆ C.
Similarly one says that p ∈ C[x] is [x]-anti-stable if there
are no zeros of p inside the open unit disk, i.e., ai ∈ Dc for
all i = 1, . . . , n. Stability and anti-stability for polynomials
with real coefficients are defined by viewing R[x] as a subset
of C[x].1 In the corresponding field of quotients

K(x) = {p/q | p, q ∈ K[x], q 6= 0}, 2 (3)

a rational function f ∈ C(z), or f ∈ R(z) ⊆ C(z), is said to
be stable (anti-stable) if q ∈ C[z] is [z]-stable ([z]-anti-stable)
in the coprime-factorization f = p/q with p ∈ C[z].

B. Rational subspaces of L2

We introduce four rational subspaces of the (complex)
Hilbert space L2 = L2(T, C) of square integrable functions
on the unit circle. The first is RL2 ⊆ L2 consisting of real
rational functions with no pole on the unit circle, endowed
with the standard 2-norm

‖f‖22 =
∫
|f(ω)|2 dω

2π
, (4)

where we integrate over the unit circle T ' [0, 2π) w.r.t.
the standard Lebesgue measure. Recall that by choosing the
ONB {zk}k∈Z in L2 one may identify L2 with l2 = l2(Z, C)
consisting of all sequences (ai) ∈ CZ with

∑
|ai|2 < ∞

using the Fourier transform

F : l2 → L2, (ai) 7→
∑

aiz
−i. (5)

The subspace of RL2 corresponding to strictly causal se-
quences (having support in Z≥1) will be denoted by RH2

and its orthogonal complement, corresponding to anti-causal

1For example the polynomial (z−1− i/2)(z−1 +i/2) is [z−1]-stable in
R[z−1], (z − i/2) is [z]-stable in C[z], (z + 3) ∈ R[z] is [z]-anti-stable,
and (z − 1/2)(z − 2) ∈ R[z] is neither [z]-stable nor [z]-anti-stable.

2Note that the set of rational functions in C(z), R(z) coincides with
the set of rational functions in C(z−1), R(z−1), respectively, and thus we
choose not to distinguish between them.

sequences (having support in Z≤0), by RH2
−. The subspace

of RL2 consisting of, not necessarily strictly proper, real
rational functions with [z]-stable denominator endowed with
the sup-norm

‖f‖∞ = sup
ω∈T

|f(ω)|, (6)

will be denoted by RH∞. Of all spaces introduced so far
there exists complex rational versions which are obtained
by replacing R[z] in the description of Table I by C[z] and
R[z−1] by C[z−1]. We choose to distinguish them from the
real rational versions by a precedingc(·) in the notation, e.g.,
the complexification of RH2 is given by cRH2.

p/q q r/s s
RL2 - Z - z©
RH2 SP S O a©
RH2

− - A P s©
RH∞ - S - a©

TABLE I. Both p, q ∈ R[z] and r, s ∈ R[z−1] are assumed to be coprime
with q, s 6= 0. The following properties are used: SP:: strictly proper , P::
proper, Z:: no [z]-zero on T, S:: [z]-stable, A:: property Z and [z]-anti-stable,
z©:: no [z−1]-zero on T, O:: z−1 = 0 is a zero of r, s©:: [z−1]-stable,
a©:: property z© and [z−1]-anti-stable.

C. Polynomial and Rational Modules (Xq,Xq)
Given a non-zero polynomial q ∈ K[x] we define its

polynomial module, denoted by Xq, via

Xq = {p | p ∈ K[x], deg(p) < deg(q)} ⊆ K[x], (7)

and its rational module, denote by Xq, via

Xq = {p/q | p ∈ Xq} ⊆ K(x). (8)

Thus Xq consists of all strictly proper rational functions
with q as a common denominator. Clearly both spaces are
isomorphic, i.e., Xq ' Xq, finitely generated, and have
dimension deg(q) as linear spaces over K. This notation
however has a slight ambiguity in our context. Given a
q ∈ R[x]\{0} (where x = z or x = z−1) one may associate
a real (K = R) or a complex (K = C) polynomial module to
it. As before we will distinguish both cases with the c-prefix
notation, i.e., cXq ⊆ C[x] and Xq ⊆ R[x]. We do the same
for rational modules, i.e., cXq ⊆ C(z) denotes a complex
rational module whereas Xq ⊆ R(z) denotes a real rational
module.

D. Integral Kernels Reproducing Subspaces

Abstractly speaking, given a set U and a complex, com-
plete, inner-product space (F , 〈·, ·〉) of functions f ∈ F
having U as their domain and taking values in C then for
each point v ∈ U one may consider the evaluation at v,
denoted by evv , as the map

evv : F → C, f 7→ f(v). (9)

By the Riesz-representation Theorem, see e.g. [6], evv is
continuous if and only if it can be expressed as evv(f) =
〈f, kv〉 for some (uniquely determined) kv ∈ F . If evv is
continuous for all v ∈ U this gives rise to a function

k : U × U → C, (u, v) 7→ kv(u). (10)
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If we think of taking the inner-product as integration w.r.t.
some measure µ on U , i.e., 〈f, g〉 =

∫
fḡ dµ, then k admits

an interpretation as an integral kernel acting on elements in
F via Tk : F → F defined by

(Tkf)(v) =
∫

f(u)k∗(u, v) dµ(u). (11)

In our abstract setting this becomes (Tkf)(v) = 〈f, k(·, v)〉.
Due to our definition of k we have two key properties:

1) k(·, v) ∈ F for all v ∈ U .
2) Tkf = f for all f ∈ F .

If 1) and 2) are satisfied one says that k has the reproducing
property w.r.t. F . It is easy to check that k is uniquely
determined by these properties and one may thus call it
the reproducing kernel of F .3 Without proof we recall the
following standard result [7].

Theorem 1: Let k denote the kernel reproducing F . Then

k(u, v) =
∑
i∈I

bi(u)b∗i (v), (12)

for any ONB {bi}i∈I of F .
Remark 2: The reader may wonder why we limit our

discussion of reproducing kernels to complex inner product
spaces even though we have introduced various R-subspaces
F of L2 like F = RL2, or F = RH2, or F = Xq for some
q ∈ R[z] which is [z]-stable. The reason is that in any case
the evaluation at ω ∈ T is not a real valued function, i.e.,
we have evω : F → C, and in particular evω is not a linear
functional in the sense of the R-linear structure on F .4

We conclude this section on integral kernels reproducing
inner product spaces, e.g., subspaces of L2, by discussing
their relation to random transfer functions.

Lemma 3: Let M ⊆ RH2 denote a finitely generated
subspace and k the reproducing kernel of its complexification
cM ⊆cRH2. Let {mi}n

i=1 denote an orthonormal basis for
M and consider the following random variable Γ on M :

Γ = γ1m1 + γ2m2 + · · ·+ γnmn, (13)

where γ ∈ Rn is zero mean and has a unit covariance that
is E[γiγj ] = δij . Then there holds

E[Γ(ω1)Γ∗(ω2)] = k(ω1, ω2), (14)

for all ω1, ω2 ∈ T.
Proof: Let kωi = k(·, ωi) (i = 1, 2). Due the reproduc-

ing property of k we may deduce that

E[Γ(ω1)Γ∗(ω2)] = E
[〈∑

γimi, kω1

〉〈∑
γjmj , kω2

〉∗]
= E

[∑∑
γi 〈mi, kω1〉 γ∗j 〈mj , kω2〉

∗
]

=
∑∑

mi(ω1)m∗
j (ω2)E[γiγj ]

which, together with E[γiγj ] = δij , and the result in
Theorem 1, concludes the proof.

3We find it convenient to denote the complex conjugate of z ∈ C by z̄
and the complex conjugate of a complex valued function f ∈ F by f∗,
i.e., f∗(z) := f(z).

4In other words no integral kernel can have the reproducing property w.r.t.
a real inner-product on F and one has to consider its complexification cF ,
i.e., cRL2, cRH2 or cXq , respectively.

III. RATIONAL MODULES EMBEDDED IN RH2

Given a non-zero [z]-stable polynomial q ∈ C[z] we may
regard cXq as a subspace of cRH2. Motivated by our aim
to characterize the geometry of the rational module in an
algebraic way, i.e., in terms of the zeros of q, we define
the ?-operation. This operation allows us to interpret adjoint
operators, formed by complex conjugation arising from the
inner-product in cRL2, in terms of the poles and zeros of
the corresponding rational function. For non-zero polynomial
q = qn

∏
(z − ai) ∈ C[z] it is given by

q? = q̄n(1− zā1) · (1− zā2) · · · (1− zān). (15)

Note if q is monic q? is general not monic. It satisfies
deg(q?) ≤ deg(q) but not necessarily with equality, e.g.,
if q = zn then q? = 1.5 The connection to the inner-product
(geometry) is due to the fact that for all z ∈ T we have

f∗(z) = f(1/z̄) =
∑

p̄iz
−i∑

q̄jz−j
= zdeg(q)−deg(p) · p?

q?
, (16)

for any f = p/q with p, q ∈ C[z].6 This is a standard
construction sometimes referred to as para-adjoint of f .

A. The Orthogonal Complement of Xq and cXq

In the following we discuss the real-rational case but
assure the reader that Theorem 4 and Corollary 5 and the
proofs remain true under complexification, i.e., replacing
R[z] by C[z], RH2 by cRH2 and Xq by cXq. Theorem 4 is
related to a famous theorem of Beurling [8] characterizing
invariant subspaces of H2. In a follow up paper we will
provide an elementary (algebraic) proof for the rational case
which does require functional analysis.

Theorem 4: Let q ∈ R[z] be non-zero and [z]-stable.
There holds

RH2 =
q?

q
RH2 ⊕ Xq, (17)

and both summands are orthogonal.7 Moreover m∗m = 1
with m = q?/q.

Corollary 5: Let qi ∈ R[z] be non-zero and [z]-stable (i =
1, 2). Then we have the following decomposition

Xq1q2 = Xq1 ⊕m1 Xq2 , (18)

with m1 = q?
1/q1. Moreover both summands are orthogonal

w.r.t. the inner product on Xq1q2 induced by RH2.
Proof: It is clear that Xq1 + m1Xq2 ⊆ Xq1q2 since

deg(q?
1) ≤ deg(q1). Due to Theorem 4 it follows that Xq1

is orthogonal to m1Xq2 and in particular Xq1 ∩ m1Xq2 =
{0}. It remains to check that Xq1 + Xq2 ⊇ Xq1q2 . Note that
m1Xq2 ' Xq2 since m1 is unitary and in particular

dim(Xq1 + m1Xq2) = deg(q1) + deg(q2), (19)

which proves the claim due to dim(Xq1q2) = deg(q1q2).
This concludes the proof.

5Please do not confuse p? = p̄n
Q

(1− āiz) with p∗ = p̄n
Q

(z̄− āi).
6Note that (16) holds because the two maps z 7→ z̄ and z 7→ z−1

coincide on the unit circle T.
7We use the symbol ⊕ to denote a general, not necessarily orthogonal,

direct sum of two subspaces.
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B. Canonical ONB and the Reproducing Kernel of cXq

One should emphasize the importance of Corollary 5.
Since m1 is unitary, i.e., m∗

1m1 = 1, it preserves angles and
in particular Xq1q2 ' Xq1⊕̇Xq2 holds canonically.8 Thus in
order to construct an ONB for Xq it suffices to be able to do
this for rational modules of irreducible polynomials. In the
case of K[x] = R[z] these are the polynomials of degree less
than or equal two. For K[x] = C[z] these are the monomials.
In particular if q ∈ C[z] is given by q =

∏
(z−ai) for some

finite family (ai|i ∈ I) ⊆ D, there holds

cXq '
⊕̇
i∈I

cX(z−ai). (20)

This greatly simplifies the construction of ONBs and integral
kernels reproducing cXq.

Theorem 6: Let q ∈ C[z] be [z]-stable given by q =∏n
i=1(z − ai). The following statements are true:
1) There holds ∥∥∥∥ 1

z − ai

∥∥∥∥2

2

=
1

1− |ai|2
. (21)

2) An orthonormal basis {bi} of cXq is given by

bi =
q?
i

qi

√
1− |ai|2
z − ai

i = 1, . . . , n, (22)

with q1 = 1 and qi =
∏i−1

j=1(z − aj) for all i > 1.
3) There holds

k(z, z) =
n∑

i=1

1− |ai|2

|z − ai|2
, (23)

where k : T2 → C is the reproducing kernel of cXq.
Proof: Let gi = 1/(z − ai) for all i = 1, . . . , n. Then

1) follows from computation of 〈gi, gi〉, e.g., by using the
Residue Theorem. 2) It is clear that gi/‖gi‖2 is an ONB for
cX(z−ai). Using the canonical identification (20) the result
follows from 1). Finally 3) follows from Theorem 1 and the
fact that q?

i /qi is unitary. This concludes the proof.
Example 1: Let q = z2 + 1/9 = (z − i/3)(z + i/3). Let

a1 = i/3 and a2 = −i/3. We can compute an ONB, say
(b1, b2), of cXq using statement 2) in Theorem 6. Note that
q2 =

∏2−1
j=1(z − aj) = (z − a1) = z − i/3 and thus, due to

the definition of the ?-operation in (15), there holds q?
2 =

1 + z i/3. The ONB is thus given by

(b1, b2) =

(
2
√

2
3z − i

,
3 + iz
−i + 3z

· 2
√

2
3z + i

)
(24)

Note that our ONB depends on the way we choose to order
the poles.9 We obtain the diagonal, say k(z, z), of the kernel
reproducing cXq using statement 3) in Theorem 6

k(z, z) =
2
√

2
|3z − i|2

+
2
√

2
|3z + i|2

. (25)

8By Xq1 ⊕̇Xq2 ⊕̇ we mean Xq1 × Xq2 endowed with the usual linear
space and inner product structure. The canonical identification of Xq1 ⊕̇Xq2

to Xq1 ⊕m1Xq2 is given by (f1, f2) 7→ f1 + m1f2.
9If we had chosen a1 = −i/3 and a2 = i/3 we would have obtained a

different basis.

One should note that (24) and (25) can be re-used in the
computation of the ONB and integral kernel reproducing any
rational module Xq̃ that contains Xq. Such a larger module
might be, for example, given by q̃ = q · (z − 1/2).

IV. ASYMPTOTIC AUTO-COVARIANCE OF TRANSFER
FUNCTION ESTIMATES IN PEI

A. Model Class and Parametrization

The dynamical systems that we consider can be rep-
resented by a set of transfer functions D = G × H ⊆
RH∞ ×RH∞ of the Box-Jenkins model structure given by
a parametrization

Π : Θ → D with Π = [G, H] = [B/A, C/D], (26)

mapping θ to [Gθ,Hθ] = [Bθ/Aθ, Cθ/Dθ] according to

Π :


θA

θB

θC

θD

 7→


θB,1z
−1 + · · ·+ θB,bz

−b

1 + θA,1z−1 + · · ·+ θA,az−a

1 + θC,1z
−1 + · · ·+ θC,cz

−c

1 + θD,1z−1 + · · ·+ θD,dz−d


T

, (27)

where Θ ⊆ Ra×Rb×Rc×Rd = Rm.10 Moreover Θ can be
chosen such that 1) Π is bijective (no pole-zero cancellations)
2) Cθ is [z−1]-anti-stable for all θ ∈ Θ, i.e., Hθ is minimum-
phase and 3) Θ is bounded. Note that D ⊆ RH∞ × RH∞,
together with Table I, implies that we have Aθ, Dθ ∈ R[z−1]
are [z−1]-anti-stable for all θ ∈ Θ.

B. Probabilistic Setup

Let N = Z≥1 denote our (one-sided) time axis and A
denote the standard product σ-field on RN. We assume that
an observation y ∈ RN can be explained by

y = Gu + v with u = Suw and v = σHe. (28)

where the driving noise e is distributed according to some
probability measure Pe on A making it an i.i.d. process of
unit variance and bounded 8-th order moments. Moreover
one assumes the following: (1) zero-initial conditions; (2)
u is a known and fixed sequence that has been obtained
as a filtered (by Su) version of one particular realization
w of a zero-mean white noise process with unit variance;
(3) Su ∈ RH∞, and (4) σ ∈ R>0. Thus the input u is
assumed to be deterministic, having been obtained as one
particular realization of a process with spectrum Φu = SuS∗u;
we denote by U ⊆ RN the set of inputs defined this way.
Analogously the spectrum of v is given by Φv = σ2HH∗.
One observes (y, u) ∈ (R2)N. The probability measure Pe

endows the observation space ((R2)N,A⊗A), for each µ =
(θ, u) ∈ Θ× U , with a probability measure Pµ, expectation
Eν [·], variance varν [·], determined by Pµ(F ) for all F ∈ A11

Pµ((y, u) ∈ F × RN) = Pe(Gθu + Hθe ∈ F ). (29)

10That is to say that, e.g., the coefficients of the polynomial B ∈ R[z−1]
of degree b are stored in the column vector θB = [θB,1, · · · , θB,b]

T which
is possible since θB,0 = 0 by definition. Also note that, by construction,
|H(z)| → 1 as |z| → ∞, i.e., H is monic.

11A⊗A denotes the standard product σ-field. We assume identifiability in
the sense that the map given by Θ → {measures on (R2)N}, θ 7→ P(θ,u)
is injective for all u ∈ U .
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C. Prediction Error Estimates

The prediction error estimator based on the first
((y1, u1), . . . , (yN , uN )) ∈ (R2)N observations will be de-
noted by θ̂N : (R2)N → Θ with

θ̂N : (y, u) 7→ arg min
θ∈Θ

1
N

N∑
t=1

|ŷθ(t)− y(t)|2, (30)

where the map ŷ : (R2)N ×Θ → RN denotes the one-step-
ahead predictor given by12

ŷ : ((y, u), θ) 7→ H−1
θ Gθu + (1−H−1

θ )y. (31)

It is natural to consider the sensitivity of ŷ((y, u), θ) w.r.t.
small perturbations around a fixed θ0 ∈ Θ as an a priori
measure of how good the estimate θ̂N will resemble θ0 if
one observes (y, u) with y = G0u + σH0e explaining the
output.13 The higher the sensitivity the better the estimate.
For technical convenience we will characterize the sensitivity
in terms of transfer functions. The proof is standard and
therefore skipped.

Theorem 7: Let µ0 = (θ0, u) with θ0 ∈ Θ, u ∈ U .
Moreover let Π0 = Π(θ0) and ρ0 = Su/(σH0). Note that
the signal to noise ratio Φu/Φv0 is given by ρ0ρ

∗
0. Then

ŷθ = ŷ((G0u + σH0e, u), θ), with ŷ denoting the function
defined in (31), can be explained by

ŷθ = σ(Rθw + Sθe) for all θ ∈ Θ, (32)

with R,S : Θ → RH∞ well defined by R = σ−1Su(G0 −
H−1(G0−G)) and S = H0−H−1H0 since Hθ has a stable
inverse due to assumption 2) stated after (27). There holds14

Dθ0R = ρ0 ·Dθ0G (33a)

Dθ0S = H−1
0 ·Dθ0H. (33b)

D. Unit Covariance in the Sensitivity Space

The following Theorem 8 has been proven by Caines and
Ljung in [1]; see also [9][Chapter 9].

Theorem 8: Under weak regularity assumptions the esti-
mator θ̂N converges in law according to

√
N(θ̂N − θ0)

L→ γ = [γG, γH ] ∈ N (0,K−1), (34)

as N →∞, with the limit γ being zero mean, Gaussian and
block-diagonal covariance K−1. Further15

eT
i (Eµ0 [γGγT

G])−1ej = 〈(Dθ0R)(ei), (Dθ0R)(ej)〉 , (35a)

eT
k (Eµ0 [γHγT

H ])−1el = 〈(Dθ0S)(ek), (Dθ0S)(el)〉 , (35b)

12Note that (30) is well defined because the ŷ in (31) is a causal function
of the observed sequence (y, u).

13We use the notation G0 for Gθ0 = G(θ0) and H0 for Hθ0 = H(θ0)
to prevent sub sub indices.

14Here Dθ0 (·) denotes the Fréchet-derivative at θ0 w.r.t. the Banach space
H∞.

15The result is usually stated in the time domain covµ0 (γG) = β−1

with

βij = lim
N→∞

1

Nσ2

NX
t=1

∂ŷ(t)

∂θi
·

∂ŷ(t)

∂θj
=: Ē[ri(t)rj(t)] Pµ0 -a.s.,

with ri(t) = (Dθ0R)(ei)w(t) and rj(t) = (Dθ0R)(ej)w(t) by Parse-
val’s Theorem. The results for γH are stated analogously.

for all i, j ∈ {1, . . . , a+ b} and k, l ∈ a+ b+{1, . . . , c+d},
where 〈·, ·〉 denotes the inner product on RH2, and {ei} the
standard basis of Rm.

We seek to characterize varµ0 [
√

NG(θ̂N )] for large N in
a way that allows us to exploit the preceding Theorem 8. We
do this with a first order Taylor expansion of G around θ0

and the following approximation in law
√

N(G(θ̂N )−G0) = (Dθ0G)(
√

N(θ̂N − θ0)) +
+O(‖

√
N(θ̂N − θ0)‖2/

√
N) L→ (Dθ0G)(γG),

(36)

as N →∞, and similarly
√

N(H(θ̂N )−H0)
L→ (Dθ0H)(γH). (37)

We are now ready to state the main result in Theo-
rem 9 which exploits Theorem 8 by utilizing (36), (37) and
Lemma 3.16

Theorem 9: Let Gγ = (Dθ0G)(γG) and Hγ =
(Dθ0H)(γH). For all ωi ∈ T (i = 1, 2) there holds

Eµ0 [Gγ(ω1) ·G∗γ(ω2)] =
k0,R(ω1, ω2)
ρ0(ω1)ρ∗0(ω2)

, (38a)

Eµ0 [Hγ(ω1) ·H∗
γ (ω2)] =

k0,S(ω1, ω2)

H−1
0 (ω1)H

−1,∗
0 (ω2)

, (38b)

and thus for all ω ∈ T, as N →∞, there holds

N · varµ0 [G(θ̂N )(ω)] → Φv0(ω)
Φu(ω)

· k0,R(ω, ω), (39a)

N · varµ0 [H(θ̂N )(ω)] → |H0(ω)|2 · k0,S(ω, ω), (39b)

where k0,R and k0,S denote the reproducing kernels of the
complexifications respectively of Im(Dθ0R) ⊆ RH2 and
Im(Dθ0S) ⊆ RH2.

Proof: Let β−1 ∈ R(a+b)×(a+b) denote the positive
definite matrix defined by

[β−1]ij = Eµ0 [γG,i · γG,j ]. (40)

Then γ̃G = β1/2γG has unit covariance. Denoting the
standard basis of Ra+b by {ei} we define ri ∈ RH2 via ri =
(Dθ0R)(ei) for all 1 ≤ i ≤ a+b and let r = [r1, . . . , ra+b]T.
Then {ri} is a basis and {r̃i} with r̃ = β−1/2r is an ONB of
Im(Dθ0R). Thus Gγ = ρ−1

0 (Dθ0R)(γG) = ρ−1
0 ·γT

Gr, due to
(33). The results quantifying the asymptotic auto-covarinace
of G(θ̂N ) now follow from Lemma 3 and

γT
Gr = γG(β+1/2β−1/2)r =

∑
γ̃G,ir̃i, (41)

since we already proved that γ̃G,i are uncorrelated, unit
variance and (r̃i) is an ONB. The result for the auto-
covariance of H(θ̂N ) is checked analogously.

16The results about asymptotic variance expressed in (39) have been de-
rived by Ninness and Hjalmarsson in [4] and further studied by Mårtensson
in [3]. Our contribution is the result on asymptotic-covariance w.r.t. fre-
quency in (38) which explains the off-diagonal elements, i.e., k(ω1, ω2)
for ω1 6= ω2, of the corresponding integral kernels.
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E. Rational Modules for the Sensitivity Space
In formula (39a) of the preceding section the kernel

k0,R(ω, ω) was just implicitly defined. It would be preferable
to derive explicit formulas like

varµ0 [G(θ̂N )] ≈ Φv0(ω)
NΦu(ω)

(
k + 2

a∑
i=1

1− |ξi|2

|eiω − ξi|2

)
(42)

with k = b−a ≥ 0, A0 =
∏a

i=1(1−z−1ξi), quantifying k0,R

in terms of the poles of true system G0, see e.g. [4]. A look at
Theorem 6 reveals this is possible when the sensitivity space
forms a rational module, i.e., Im(Dθ0R) = Xq for some [z]-
stable q ∈ R[z]. A necessary and sufficient condition for this
in the case a ≤ b is given in Theorem 11. On the other
hand it turns out that Im(Dθ0S) always forms a rational
module (cf. Theorem 12) and thus analytic expressions for
(39b) similar to (42) in terms of the poles and zeros of H0

always exist.
Remark 10: For an arbitrary polynomial p ∈ K[x] of

degree n we use the notation ∇p for x−n · p ∈ K(x).17 Let
p =

∏n
i=1(z − ai) ∈ R[z] with 0 < |ai| < 1 and k denote

a non-negative integer and q = zkp. Then {ziq−1}n+k−1
i=0 is

a basis of Xq ⊆ RH2 with ziq−1 = z−(n+k−i)L−1, where
L = ∇p ∈ R[z−1] equals z−np by definition. In particular (i)
For every pair (k, L) with L ∈ R[z−1] being [z−1]-antistable
and k non-negative integer the vectors z−1/L, . . . , z−m/L
with m = n + k form a basis for the rational module
Xzk∇L ⊆ RH2. (ii) Conversely a necessary condition for
{z−i/L}m

i=1 with L−1 ∈ RH∞ to span a rational module
Xq ⊆ RH2 is that L ∈ R[z−1] such that it is [z−1]-
anti-stable and m ≥ n where n = deg(L). In this case
q = zmL = zk∇L with k = m− n.

Theorem 11: Assume k = b − a ≥ 0 in (27) and ρ0 =
Su/(σH0) ∈ RH∞ holds.18 Then Im(Dθ0R) is a rational
module Xq if and only if A2

0/ρ0 ∈ R[z−1] has degree n
with n ≤ a + b, in which case we have q = zk∇(A2

0/ρ0).
As a special case for a white input sequence, i.e., Su = σ2

u,
and a trivial noise model H0 = 1 we have q = zk(∇A0)2.19

Proof: Consider the curve Γ : (−1, 1) → G

Γ : τ 7→ p(τ)/d(τ), s.t. p(τ), d(τ) ∈ R[z] (43)

where, w.l.o.g., we may assume that p(τ), d(τ) are coprime
for all τ , see e.g. [10], and Γ(0) = p0/d0 = G(θ0). Note that
p = ∇B and d = zk∇A define the curves A,B : (−1, 1) →
R[z−1]. Denote ∂

∂τ Γ evaluated at τ = 0 by Γ̇(0) then

Γ̇(0) =
ṗ(0)
d0

− p0ḋ(0)
d2
0

=
ṗ(0)zk∇A0 − p0z

k(∇̇A)(0)
z2k∇A2

0

∈ Xzk∇A2
0 .

(44)

17For example if p ∈ R[z−1] we have ∇p = (z−1)−np = znp whereas
if p ∈ R[z] we have ∇p = z−np. Note ∇∇p = p (p ∈ K[x] s.t. x - p).

18The case b < a, i.e., k = a− b being positive, is more involved since
then Im(Dθ0G) becomes a rational module if and only if zk|A2

0 which is
false in general.

19The term A2
0/ρ0 was denoted by A† in [4] where one imposed it to be

a polynomial in z−1 of degree less than or equal a+b just as in Theorem 11
here. Thus our results clarify the main motivation behind such a technical
assumption.

This proves Im(Dθ0G) ⊆ Xzk∇A2
0 . Since both are linear

spaces of dimension a+ b this also implies equality. By part
(i) in Remark 10 we have that {ρ0z−i

A2
0
}a+b

i=1 is a basis of
Im(Dθ0R) and, together with ρ0/A

2
0 ∈ RH∞ and part (ii)

of Remark 10, the latter is a rational module in RH2 if and
only if A2

0/ρ0 ∈ R[z−1] has degree less than or equal a + b.

Theorem 12: The linear space Im(Dθ0S) forms the ratio-
nal module Xq ⊆ RH2 with q = ∇C0∇D0.

Proof: Let I denote the Cartesian product of
{1, . . . , c} and {1, . . . , d}. A basis for Dθ0H is given by{

∂H(θ0)
∂θC,k

, ∂H(θ0)
∂θD,l

}
with (k, l) ∈ I . This basis is given by

z−k/D0 and −C0z
−l/D2

0 , respectively. The elements in the
basis for Im(Dθ0S) are thus given by z−k/C0 and z−l/D0

with (k, l) ∈ I respectively. By (i) in Remark 10 these span
the rational modules X∇C0 and X∇D0 , respectively. Since
∇C0,∇D0 are coprime it follows that

X∇C0 + X∇D0 = X∇C0·∇D0 (45)

which concludes the proof.

V. CONCLUSIONS AND FUTURE WORK

We have derived the asymptotic auto-covariance w.r.t.
to frequency of the estimated transfer function based on
the prediction error framework for the Box-Jenkins model
structure. We saw that the asymptotic auto-covariance equals
the integral kernel of the sensitivity space. The latter can be
fully characterized in terms of the poles and zeros of the
underlying dynamical system if the sensitivity space forms
a rational module. In follow up papers we will demonstrate
the power of the real rational module framework which we
believe leads to a coordinate free and natural treatment of
the asymptotic Fisher information metric and integral kernels
reproducing it on the tangent space of the model manifold.
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