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Abstract— We develop non-smooth motion controllers that
enable redundant manipulators to perform surface tasks, that
involve force/torque interactions. The robot joint rates are
constrained within given limits. The end-effector is stabilized
to a point, on the surface, and then tracks a trajectory on the
surface, while respecting the input constraints and avoiding
obstacles, and the same time applying a specific force on it.
We show that the resulting closed loop system is uniformly
asymptotically stable, and we verify our analytical development
with simulations on a redundant robotic manipulator model.

I. INTRODUCTION

Robotic applications where the manipulator is supposed

to perform a task along a particular surface, such as robotic

surface painting, surface cleaning, and surface inspection,

pose challenging control design problems. Our motivation

comes from the field of neuro-robotics, and specifically from

an application where a robot executes a task through inter-

facing with the neural system (Fig. 1), thus by processing

electromyographic activity. In most cases, neural signals are

noisy and inappropriate for controlling a robot directly. The

presense of obstacles in the environment, and consideration

of non-planar surfaces complicates the problem further. We

need a strategy to combine compliant behavior of the robot

with respect to its environment, and obstacle avoidance.

Previous work has focused on the problem of automotive

painting of surfaces that are convex and have no holes, [1],

[2], [3]. In [1], the authors decompose the coverage trajectory

generation problem into three subproblems: selection of the

start curve, selection of the speed profiles along each pass,

and selection of the spacing between the passes. At the other

hand literature is rich in the field of robot force control.

The main approaches in this area are impedance control,

[4], hybrid position/force control, [5], and parallel control,

[6], [7]. All these schemes are not applicable in the case of

cluttered environment or in presence of holes on the surface,

i.e. regions of the surface that the robot tip must avoid.

Also, there are several applications introducing only local

methods for redundant arm collision avoidance based on

cartesian subtasks priorization, but without any requirement

for surface’s tasks. The authors in [8] develop the real-time

collision avoidance for position-controlled dexterous 7 DOF
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arms. The problem is formulated and solved as a position-

based force control problem by using virtual forces that rep-

resent the intrusion of the arm into the obstacle safety zone.

In [9] a collision avoidance and a self-collision avoidance

scheme for redundant manipulators is discussed. The method

is based on modeling the arm and its environment by simple

geometric primitives (cylinders and spheres). The authors

in [10] present a neural network approach for collision-free

motion control of redundant manipulators. The problem for-

mulation represents the collision free requirement as dynamic

inequality constraint and incorporates joint physical limits

into an optimization problem. The solution of the obstacle-

avoidance kinematics problem, is computed by a dual neural

network.

In our previous work [11], we presented a methodology

to drive the end-effector of a non-redundant manipulator to

a surface while avoiding obstacles. Once the end-effector is

in close proximity of the surface, a second controller takes

over to stabilize the end-effector at a predefined distance

to the surface. Motion planning and tracking tasks are then

considered, without however taking into account kinematic

input constraints. Also, in [12] the force control is added

in those surface tasks. For the problem of kinematic input

constraints, a non-smooth kinematic controller is proposed

in [13].

In this paper, we consider the control design problem for a

kinematically redundant manipulator, the joint rate inputs of

which must remain within pre-specified bounds, respecting

joint’s limitations. We do so by building navigation functions,

and analyzing the closed loop system that has saturated

inputs by means of non-smooth stability analysis. The system

switches between different controllers when it finds itself

within certain regions of the workspace (called belt zones,

[14]). The contribution of this paper is the development

of globally uniformly asymptotically stable compliant con-

trollers for redundant articulated robot manipulators, subject

to input constraints, to achieve reference trajectory tracking

or point stabilization with obstacle avoidance and force

control on 2-D manifolds embedded in 3-D workspace.

II. PROBLEM STATEMENT

Considering the motion planning problem of a redundant

robotic manipulator, with kinematic input constraints, in a

workspace with obstacles. The objective is to make the robot

move towards the surface, and track a predefined trajectory

on it, while the end-effector is compliant with the surface.

We assume that we have a stationary and known environment

and that we have direct control on the manipulator joint
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rates. Thus, the robot dynamics are: B (q) q̈ + C (q, q̇) +
Gr (q) + JT (q)F = τ, where B(q) is the inertia matrix,

C(q, q̇) is the Coriolis term, Gr(q) is the Gravity term,

J(q) is the geometric Jacobian matrix, F ∈ R
6 denotes

the wrench (vector of forces and torques) exerted by the

end-effector of the robot manipulator on the environment

(we can measure this vector by using a force/torque sensor

at the robot’s end-effector), q = [q1 . . . qm]T ∈ R
m is

the vector of arm joint variables and τ ∈ R
m the joint

torque inputs, [15]. Using inverse dynamics control (since

it is based on computation of manipulator inverse dynamics)

τ = B(q)·y+C(q, q̇)+Gr(q)+JT (q)F, the system becomes

q̈ = y (1)

where y represents a new input vector. The system (1) is

linear and decoupled with respect to the new input y. In other

words, the component yj influences, with a double integrator

relationship, only the joint variable qj , independently of the

motion of the other joints, where j = 1, . . . , m.

Detailed modeling and accurate parameter identification

is necessary for a successful implementation of a computed

torque approach. In our case, this process involves the use

of a non-linear friction model for the robot joints, coupled

with experimental parameter identification [16], [17]. The

stiffness effect of the joints is also identified through exper-

imental procedure in loaded conditions. The parameters of

the dynamic model are grouped to an identifiable form, and

identified through experiments.

Let the admissible and feasible configuration space

(workspace) for the manipulator be denoted W ⊂ R
m. The

obstacle free subset of the workspace is denoted Wfree ⊆
W . Define a vector valued C2 function g(s1, s2) : R

2 →
R(g), which represents a closed surface. The range R(g) ⊂
Wfree of the function expresses mathematically the bound-

ary of the surface across which the robot task is to take

place.

We can define the tangent vectors on the surface

gs1
(s1, s2) = ∂g(s1,s2)

∂s1
, and gs2

(s1, s2) = ∂g(s1,s2)
∂s2

, with

respect to parameters s1 and s2. Due to the C2 continuity of

g(s1, s2), we have that (gs1
× gs2

) 6= 0, ∀s1, s2 ∈ R, [18]

(the vectors gs1
, gs2

are linearly independent everywhere).

A normalized vector, perpendicular to the surface is then

expressed as N = (gs1
× gs2

) /‖gs1
× gs2

‖.

The problem is stated as follows: Given a redundant revo-

lute joint robot manipulator, with kinematic input constraints

(joint velocity constraints), operating in a known static and

bounded environment, find a feedback dynamic control law

that allows the end-effector of the manipulator to execute

surface tasks as 1) navigation to any feasible surface point,

and 2) tracking a predefined trajectory across the surface,

and at the same time to be compliant with the surface.

III. CONTROLLER DESIGN

A. Workspace Decomposition

First of all we would like to drive the robot’s end-effector

towards the surface, and then to control it in order to execute

the desired surface task. To this end we can say that the task

is completed in two stages. In the first mode A, the end-

effector is driven close to the surface. In the second mode

B, the robot is steered to a specified point on the surface,

or is controlled to track a reference trajectory, and the same

time is applying a specific force on the surface.

Fig. 1. The problem motivation
(main tasks of neuro-robotics).

Fig. 2. Representation of Belt
Zones, in a part of a surface.

Thus, we need to decompose the workspace. This

workspace decomposition requires the definition of a region

in which the transition from the one mode to the other

occurs. To do so, we use the concept of belt zones [11],

Fig. 2. The “belt zone” is the region close to the surface’s

boundary, consisting of an “internal belt” and an “external

belt”. We assume that the widths of the internal and external

belt regions are fixed.

Assume that the surface of interest g(s1, s2) is modeled

as a spring with Ke its (homogenous) stiffness matrix. When

the robot’s end-effector interact with this surface, in order to

apply a constant force on it, it is assumed that the robot pen-

etrate the surface by the meaning of ǫ⊥ displacement from

the surface’s boundary (Fig. 2). Let Fd ∈ R is the desired

force that we would like the robot apply perpendicular to the

surface, that denote a displacement from the boundary of the

surface ǫ⊥d = K−1
e Fd.

Let us define the vector valued bijective functions that

describe the belt zones g′(s1, s2) = g(s1, s2) − ǫ⊥d N ,

g1(s1, s2) = g(s1, s2) − (δ + ǫ⊥d )N , and g2(s1, s2) =
g(s1, s2) + (δ − ǫ⊥d )N , with 0 < 2 · δ < ρm, where

ρm as described in [14]. Surface processing tasks require

stabilization of the end-effector on the surface g′(s1, s2),
defined above.

The internal and external belts are defined as (Fig. 2), I =
{q : k(q) = (1−λ)g′+λg1, λ ∈ [0, 1]}, and E = {q : k(q) =
(1− λ)g′ + λg2, λ ∈ (0, 1]}. Since functions g, g′, g1, g2 are

bijective ( [14]), for every k(q) ∈ E
⋃

I there is a unique

couple (s1, s2), where k(q) is the vector of robot’s position

in operational space (direct kinematics).

B. Navigation Function

The controller’s design is based on the navigation function,

[19]. Modes A and B use a different navigation function,

because of the motion’s nature. The navigation function

active in mode A brings the end-effector inside the belt zone.

Then the system switches to mode B, and another controller

is activated, enabling the end-effector to navigate on the

surface. Navigation on the surface may involve stabilization
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to a particular point (time invariant destination), or tracking a

reference trajectory (time varying destination) on the surface,

and the same time applying a specific force on it by the robot

end-effector.

The volume of the manipulator is represented by a point,

using a series of transformations. The obstacles presented in

the environment are modeled by the navigation function. In

order to construct such function, we need to introduce the

following parameter z = q − qd, with q, qd ∈ R
m, which

is the error between the manipulator’s joint angles, and the

desired joint angles. Redundancy is resolved by calculating

joint rates that implement the desired trajectory in operational

space (see Appendix).

1) Mode A: The navigation function ϕA : Wws →
[0, 1] used in mode A, is defined as follows: ϕA(z) =

γκ+1

A
(z)

[γκ
A

(z)+βA(z)βO(z)βs(z)βb(z)]
1
κ

, where γA(z) = ‖z‖2 is the

distance to goal function, and βA(z) = −‖q − q0‖
2 + r2

0

provides the workspace potential, with q0 ∈ R
m is the joint

angles at the center of the workspace (e.g. the center of the

smallest ball containing W), and r0 ∈ R is the workspace’s

radius. In order to consider the volume occupied by the

manipulator, we have used the function βO(z), as defined

in [11], that represents a measure of proximity of the robot

to the obstacles. The functions βs(z) and βb represent the

virtual obstacles, in order to achieve singularities avoidance,

according to [11], and in order to avoid the joint’s limits,

respectively. Finally, κ > 0 is a parameter.

2) Mode B: We need to define a navigation function

across the 2-D manifold, that will provide the navigation

vector field. Although theoretically a system that flows

according to the tangent space of the 2-D, surface-wrapped

navigation field, remains in that 2-D surface, various sources

of uncertainty, like sensor noise, model uncertainties and

numerical diffusion cause the system to deviate from this

surface. To compensate for this problem, we designed an

additional vector field perpendicular to the 2-D surface

wrapped vector field, which attracts the system on the surface

of interest.

This navigation function is analytically expressed as:

ϕB(z, t) =
γκ+1

B
(z,t)

[γκ
B
(z,t)+βB(z,t)βO(z,t)βs(z,t)βb(z,t)]1/κ , and it can

be time-varying depending on whether the surface task is

point stabilization or trajectory tracking. The functions βO,

βs and βb are exactly the same functions as in case of

ϕA, and κ > 0 is a parameter. The function γB is defined

as γB(z, t) =

∥

∥

∥

∥

[

q
h(q)

]

−

[

qd

hd

]∥

∥

∥

∥

2

, where h(q) is the

distance from the surface g1(s1, s2) on the belt zones.

Additionally, we have h = 0 on the surface defined by

g1 (boundary of internal region), and hext = 2δ on the

surface defined by g2 (boundary of external region). Also,

the desired distance from the surface g(s1, s2) is at hd = δ,

on the surface g′(s1, s2), at ǫ⊥d distance inside of g. Thus, the

second term on this vectors is used to attract the end-effector

to the surface g1.

Also, the function βB is called the “perpendicular”

workspace function which is given from the equation

βB(z) = (hext−hd)2−(h(q)−hd)2

(hext−hd)2
. It holds that βB(z) = 0

when the robot’s end-effector is in the outer boundary of

the belt zone’s external region (where h(q) = 2δ), or in

the inner boundary of the belt zone’s internal region (where

h(q) = 0). Also, βB(z) = 1 in the middle surface (where

h(q) = δ). Thus, it makes the boundaries of the belt zone

repulsive and the middle surface attractive. This construction

of βB guarantees that the robot’s end-effector cannot leave

the belt zone, (Fig. 2).

C. Vector Fields - Controller Synthesis

Assume that the robot’s initial position is away from the

surface, where the system operates in mode A. The desired

position is defined to be in the interior of the belt zone. The

controller in this mode drives the robot towards the surface,

until the robot’s end-effector intersect the external boundary

of the belt zone, the surface g2(s1, s2).
Therefore there exists finite time T for which the system

enters the belt zones. When in the belt zone a mode switch

occurs that activates mode B. Once the robot end-effector

enters the belt zone, it remains there as the boundaries of

the belt zone are repulsive due to the construction of the

workspace. Therefore, it has to execute the stabilization over

the surface task (simple time invariant case, since we set

constant target position), and the trajectory tracking task

(time varying case, since we set time varying target position)

while it has to apply a specific force on the surface.

We define the following vector field which is applica-

ble for any mode: f(z, t) , −k1∇ϕi(z, t) − D, where

D = 1
m

[

|∂ϕi

∂z1
|−1 · · · | ∂ϕi

∂zm
|−1

]T
∂ϕi

∂t , for all opera-

tional modes i ∈ {A,B}, and k1 > 0 is constant parameter

(e.g., when the robot is operating in mode A then the desired

configuration is time invariant and D = 0, which is the

simplest case, i.e., f(z) = −k1∇ϕA(z)).
In order to compensate the manipulator’s kinematics input

constraints, we have to construct an appropriate controller

for both of the above modes. The controller output is shaped

through a non-smooth saturation function fnew , satµ(f),

with satc(x) =







x , |x| ≤ c
−c , x < −c
c , x > c

where c is a constant,

µ = umax − q̇d(t), chosen so that velocity input constraints

are satisfied, umax is the vector of maximum joint velocity

values.

IV. STABILITY ANALYSIS

We design the controller that renders (1), asymptotically

stable for the general case of time varying system. Conver-

gence to belt zone and point stabilization inside the belt zone

can be treated as special cases, where the controller (and

therefore the closed loop system) is time invariant.

Our main goal is to develop motion controllers that

enable redundant manipulators to perform surface tasks. The

dynamic representation of the system is given by (1). For

the dynamic control of this system we use the backstepping
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methodology, and to do so, we need to establish the closed

loop control for the kinematic subsystem [20]

q̇ = u. (2)

The above subsystem (kinematic) needs to be asymp-

totically stable, [20]. Thus, the kinematic controller which

compose an intermediate step to the dynamic controller

synthesis, is analyzed.

A. Kinematic Controller Design

Proposition 1: Consider the system ż = v, where z =
q−qd, and v = u− q̇d, with u the input of (2). The solutions

of this system under the control law v = fnew(z, t), are

globally uniformly ultimately bounded with the bound that

can be made arbitrarily small with the suitable choice of k1.

B. Dynamic Controller Design

We design the controller that renders (1), asymptotically

stable for the general case of time varying system. Conver-

gence to belt zone and point stabilization inside the belt zone

can be treated as simple cases, where the controller (and

therefore the closed loop system) is time invariant.

Proposition 2: Consider the system z̈(t) = U(t), where

z(t) = q − qd(t), and U = y − q̈d(t), with y the control

law of (1). This system becomes semi-globally uniformly

asymptotically stable to zero almost everywhere, under the

control input

U = π1 +

[

π2 + diag

{

∂V
∂z ξ

‖ ξ ‖2

}]

(−ξ) (3)

where ξ = ż − fnew, V : R
m × R → R is a regular locally

Lipschitz Lyapunov function, π1 = arg min
ζ∈ ˙̃fnew

ζT ξ is

the vector in
˙̃fnew giving the smallest inner product with

ξ, while
˙̃
fnew is the stack vector of the generalized time

derivatives of the components of fnew, [21], and π2 is a

positive definite constant matrix.

V. SIMULATION RESULTS

Computer simulations have been carried out to verify

the feasibility and efficacy of the proposed methodology.

The robot manipulator that we use for the implementation

of the simulations, is the model of Mitsubishi PA10-

7C, in the configuration of Fig. 1, with m = 7 d.o.f.

The vector of joint’s velocity and angle limitation

in (rad/sec), and (rad) respectively, are umax =
[

0.6 0.6 1.2 1.2 1.2 1.2π 1.2π
]T

, and qlim =
[

±3.1 ±1.6 ±3.0 ±2.4 ±4.5 ±2.9 ±4.5
]T

.

The scenario of the simulation contains two 3D

(ellipsoid) obstacles centered at O1 : (−0.3,−0.4, 0.1)
and O2 : (0.35,−0.3,−0.5), both having semi-axes lengths

of (0.05, 0.10, 0.20) (referred to x, y, and z coordinates,

respectively). The surface of interest g(s1, s2) is assumed to

be an ellipsoid, centered at (0, 0, 0) with semi-axes lengths

(0.75, 0.25, 0.35) and uniform stiffness Ke = 102N/m.

In order to be able for the robot’s end-effector to apply a

constant force in the perpendicular to the surface direction,

F d = 2N , we have adjusted the displacement from the

surface’s boundary, ǫ⊥d = 0.02m.

Fig. 3. Simulation results during Point Stabilization.

Fig. 4. Simulation results during Trajectory Tracking.

The obstacle regions on the surface are centered at

Og1 : (−0.33,−0.08, 0.18), Og2 : (0.33,−0.08,−0.18)
and Og3 : (−0.33,−0.08,−0.18). The robot manip-

ulator’s initial end-effector configuration is p(0) =
(−0.61,−0.39,−0.13, 0.0, 0.0, 0.0), and the target con-

figuration in the operational space is set at pd =
(0.49,−0.16, 0.13, 1.33, 0.87,−1.33). The components of

those vectors are the x, y, and z coordinates (the first

three numbers), and the euler’s angles of the end-effector’s

orientation (the last three numbers).

In the first part of the simulation the robot is starting

to move in order for the end-effector to reach its desired

configuration (Fig. 3), while each part of the robotic arm

successfully avoids any environmental obstacle. The second

part of the simulation is to make the end-effector to track

a predefined trajectory, while again the collision avoidance

with the obstacles takes place (Fig. 4). Another significant

issue from this simulation is to avoid the violation of velocity

constraints, and angle limitations of each joint of the robot,

and to make the robot end-effector complaint to the surface.

Fig. 5, 7, and 8, present the cartesian and joint position

as well as the joint’s velocity, respectively (the time axis

is refered to both point stabilization and trajectory tracking

tasks). The time axis represents time steps. Each time step

is 2.5 msec. In the representation of the velocities it is clear

that the robot’s joint velocity constraints are not violated

(flat regions). Fig. 6 depicts the error in (m), between

the real cartesian position and the desired position during

tracking (the time axis is refered only on this task). At the

beginning when the end-effector is away from the desired

configuration the error is about 0.19 m, and therefore the

robot is accelerating to track the reference trajectory and

therefore to reduce the error between its position and the

desired position. Thus, this error during the simulation is
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Fig. 5. Cartesian position.
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Fig. 9. End-effector’s distance from
the surface (bottom), and force that
the robot produce in its contact with
the surface (top), during point stabi-
lization.
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Fig. 10. End-effector’s displace-
ment inside the surface, ǫ

⊥ (bottom),
and the produced force by the end-
effector (top), during the trajectory
tracking task.

bounded by 1 cm. Our algorithm allows the end effector to

successfully converge to the goal configuration, and track the

predefined trajectory avoiding obstacles, applying specific

force on the surface, and satisfying the input constraints.

Fig. 9 depicts the distance of the end-effector’s position

from the surface during the point stabilization task (bottom),

and the force that the robot end-effector produce when it is

in contact with the surface (top). The contact is occurred at

the time instant n = 250. Fig. 10 present the displacement

inside the surface, ǫ⊥ (bottom), and the produced force (top),

during the trajectory tracking task (robot motion in contact

with the surface). It is obvious that the produced force is

kindly dependent on the surface’s stiffness. As stiff is the

surface, as difficult is to produce a constant force on it.

VI. CONCLUSION AND FUTURE WORK

We presented a methodology for performing complaint

motion and tracking tasks over a two-dimensional mani-

fold embedded in a three-dimensional workspace applicable

to articulated robotic manipulators, with kinematic input

constraints. After safely navigating the manipulator’s end-

effector to the 2D manifold, task specific vector fields direct

the end-effector towards accomplishing a navigation or a

trajectory tracking task across the 2D manifold, and at

the same time applying force on it. The methodology has

theoretically guaranteed global convergence and collision

avoidance properties.

The dynamic control approach is using the backstepping

methodology, by using the established closed loop control

for the kinematic subsystem (2).

APPENDIX

Theorem 1: [22] Let D ⊂ R
n be a domain that contains

the origin and V : [0,∞) × D → R be a continuously

differentiable function such that W1(x) ≤ V (t, x) ≤ W2(x),
∂V
∂t + ∂V

∂x f(t, x) ≤ −W3(x) , ∀‖x‖ ≥ λ > 0, ∀t ≥ 0,

∀x ∈ D where W1(x) and W2(x) are class K functions and

W3(x) is a continuous positive definite functions. Take r > 0
such that Br ⊂ D and suppose that λ < W−1

2 (W1(r)) .
Then, there exist a class KL function b for every initial

state x(t0), satisfying ‖x(t0)‖ ≤ W−1
2 (W1(r)), there is

T ≥ 0 (dependent on x(t0) and λ) such that ∀x(t0) ∈
{x ∈ Br|W2(x) ≤ ρ}, the solution of ẋ = f(t, x) satisfies

‖x(t)‖ ≤ b (‖x(t0)‖, t − t0) , ∀t0 ≤ t ≤ t0 + T, ‖x(t)‖ ≤
W−1

1 (W2(λ)) , ∀t ≥ t0 + T. Moreover, if D = R
n and W1

belongs to class K∞, then the last two conditions hold for

any initial state x(t0), with no restriction on how large λ is.

A. Proofs of Propositions

Proof: (Proposition 1) We use the navigation function

V (z, t) , ϕi(z, t), with i ∈ {A,B}, as a Lyapunov function

candidate. Function V is a regular function [23], since it is

smooth, and it holds that V1(‖z‖) ≤ V (z, t) ≤ V2(‖z‖),
[13], where V1(‖z‖) and V2(‖z‖) are class K functions.

Assume ν1 the number of f components that are not

saturated, and ν2 the saturated components, thus ν1 +
ν2 = m. Then, V̇ = ∂V

∂t + ∇V T fnew = ∂V
∂t +

ν1
∑

l1=1

(

−k1

∣

∣

∣

∂V
∂zl1

∣

∣

∣

2

− 1
m

∂V
∂t

)

+
ν2
∑

l2=1

[

−sign
(

∂V
∂zl2

)

∂V
∂zl2

µ
]

=

∂V
∂t −

ν1
∑

l1=1

(

k1

∣

∣

∣

∂V
∂zl1

∣

∣

∣

2

+ 1
m

∂V
∂t

)

−
ν2
∑

l2=1

(∣

∣

∣

∂V
∂zl2

∣

∣

∣
µ
)

.

We can be write that ∂V
∂t = −

γκ+1

i

κ·(γκ
i +P)

κ+1
κ

· ∂P
∂t +

(κ+1)·γκ
i

(γκ
d +P )

1
κ
· ∂γi

∂t −
γ2·κ

d

(γκ
i +P )

κ+1
κ

· ∂γi

∂t , where P = (βBβOβsβb).

It can therefore be bounded as follows:
∣

∣

∂V
∂t

∣

∣ < 1
κ · γκ+1

i ·
1

(γκ
i )

κ+1
κ

·
∣

∣

∂P
∂t

∣

∣ +
(κ+1)·γκ

i

(γκ
i )

1
κ

·
∣

∣

∣

∂γi

∂t

∣

∣

∣
+

γ2·κ
i

(γκ
i )

1+κ
κ

·
∣

∣

∣

∂γi

∂t

∣

∣

∣
=

1
κ

∣

∣

∂P
∂t

∣

∣ + (κ + 2) · γκ−1
i ·

∣

∣

∣

∂γi

∂t

∣

∣

∣
.

The properties of the navigation function ensure bound-

edness of its gradient within the workspace, and there-

fore ensure the existence of a positive bound θ =
(

max
W̄/M

∥

∥

∥

∂V
∂zl2

∥

∥

∥

∞

)−1

, where M is a set of measure zero,

including the unstable saddle points of the navigation func-

tion as well as the destination configuration. We can then

write θ| ∂V
∂zl2

| < µl2 , ∀l2, and bound the last term of
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the Lyapunov’s function derivative as −
ν2
∑

l2=1

(∣

∣

∣

∂V
∂zl2

∣

∣

∣
µ
)

<

−
ν2
∑

l2=1

(

∣

∣

∣

∂V
∂zl2

∣

∣

∣

2

θ

)

Thus, it holds that V̇ ≤
(

1 − ν1

m

)

∂V
∂t −

θ‖∇V ‖2 −
ν1
∑

l1=1

(

k2

∣

∣

∣

∂V
∂zl1

∣

∣

∣

2
)

where the control gain k1

can be then decomposed in the form k1 = θ + k2, with

k2 > 0. Then, V̇ ≤ (1 − ν1

m )C − θ‖∇V ‖2, where C =
1
κ sup

W̄

∣

∣

∂P
∂t

∣

∣ + (κ + 2) · max
(

γκ−1
i

)

· sup
W̄

∣

∣

∣

∂γi

∂t

∣

∣

∣
, in which

sup
W̄

∣

∣

∂P
∂t

∣

∣, and sup
W̄

∣

∣

∣

∂γi

∂t

∣

∣

∣
depends on sup

W̄

‖q̇d‖. In the re-

gion where ‖∇V ‖ >

√

(1− ν1
m )·C
θ , the Lyapunov function

decreases and therefore z converges to 0. This limit point

corresponds to the destination configuration qd(t). Thus, z is

uniformly ultimately bounded in the region where the above

condition holds.

In the neighborhood of z = 0, ∇V does not vanish except

for z = 0, since V is defined to be equal to a navigation

function of z. Thus, ‖∇V ‖ is a positive definite scalar func-

tion, and thus there exist V3(‖z‖), V4(‖z‖) class K functions

for which V3(‖z‖) ≤ ‖∇V ‖ ≤ V4(‖z‖). Using the lower

bounding function V3, if ‖z‖ ≥ V3(‖z‖)
−1

√

(1− ν1
m )C

θ ∈ K,
then, for the gradient of V we can write ‖∇V ‖ ≥ V3(‖z‖) ≥
√

(1− ν1
m )C

θ , implying that V̇ is strictly negative in the region

defined above. Application of Theorem 1, ensures that z is

globally uniformly ultimately bounded.

Remark 1: We can turn uniform ultimate boundedness to

uniform asymptotic stability in Proposition 1. When q̇d → 0,

the region defined above reduces to a ball of radius zero,

because as q̇d → 0, we have ∂P
∂t → 0. Another way is to

ensure that no component of f is saturated; then ν2 = 0 ⇒
ν1 = m, and the right hand side of the appropriate condition

vanishes.

Proof: (Proposition 2) The control law construction and

the proof structure are inspired by the backstepping controller

design proposed by [24].

Let z(·, t) be a Filippov solution of ż = f(z, t), [25].

We form the Lyapunov function candidate: Vn(z, t) ,

V (z, t) + 1
2ξ2, where V (z, t) = ϕi(z, t) is regular (with

i ∈ {A,B}). Taking the time derivative of Vn, it holds

that V̇n =
(

∂V
∂t + ∂V

∂z ż
)

+
(

U −
˙̃
fnew

)T

ξ, and substitut-

ing U as defined in (3), V̇n = ∂V
∂t + (π1 −

˙̃
fnew)T ξ −

ξT π2ξ + ∂V
∂z fnew As we saw in the proof of Proposition

1, ∂V
∂t + ∂V

∂z fnew = ∂V
∂t −

ν1
∑

l1=1

(

k2

∣

∣

∣

∂V
∂zl1

∣

∣

∣

2

+ 1
m

∂V
∂t

)

−

ν2
∑

l2=1

(∣

∣

∣

∂V
∂zl2

∣

∣

∣
µ
)

≤
(

1 − ν1

m

)

C − θ‖∇V ‖2.

Thus, the addition of the first and the last term in the

derivative of Vn is negative definite. Taking into account how

π1 has been defined, we conclude that V̇n is negative definite.
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