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Abstract— This paper exploits the notion of S-regularity of
a matrix pencil to propose insights for the robustness analysis
of descriptor models of the form Ei = Az (or Expy1 = Axy,
for the discrete case) subject to norm-bounded LFT (Linear
Fractional Transform)-based uncertainties on both matrices A
and E. The property to be studied is the robust D-admissibility
(robust D-stability togeteher with robust regularity and robust
impulse freeness). All the proposed conditions are expressed
in terms of strictc LMI (Linear Matrix Inequalities). Two
techniques are proposed and numerically compared.

Index Terms— Descriptor systems, S-regularity, Robust D-
stability, Robust D-admissibility, strict LMI.

I. INTRODUCTION

It is now well admitted that systems of the form Ez = Ax
(or Expy1 = Axy for the discrete case), that are called
singular systems, descriptor systems, generalized systems
or implicit systems, and so on, are of great interest for
the modelling of many practical devices (interconnected
systems, electrical networks, robotics). For conciseness,
rather than to quote many references, we urge the interested
reader to examine [21], [7] and some references therein.

As for conventional models for which £ = I (or at least
FE is non singular), the D-stability, i.e. the clustering of the
eigenvalues of (E, A) in some region D of the complex
plane, is of high importance to analyze the transient
behaviour of the system, particularly to assess asymptotic
stability. But it does not suffice in the singular case.
Two other properties have to hold, namely the regularity
(existence of a unique solution to the generalized state-space
equation) and impulse freeness (meaning that the infinite
eigenvalues of the pencil induce no impulsive terms in the
response even when the control signals are not smooth [7]).
When these three properties hold, the model is said to be
D-admissible.

It is important to derive some simple tools that enable
the designer to test whether an exactly known pencil is
D-admissible. For admissibility test, a big focus has been
put on the generalized Lyapunov equations [13], [20], [9].
Though very interesting, some of those approaches require
the systems to be transformed into equivalent forms, which
is not desirable in an uncertain context. In the presence
of uncertainties, the use of strict LMI (Linear Matrix
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Inequalities [5]) might be prefered. In that sense, one of
the first steps was made in [6]. The advantage of LMI is
also that they can easily enable ones to extend the results to
various clustering regions D.

Many contributions deal with robust analysis or control
of descriptor models, particularly through (unfortunately not
necessarily strict) LMI approach: see [22], the seminal work
of Masubuchi ([16], [17] and the references therein), and
many others. But very few really consider uncertainty on E.
Let us quote [15] where A is however precisely known or
[14] for interval matrices. But the best insights can actually
be found in [12], [18].

In this paper, we make an extensive use of the notion
of S-regularity inspired from that of 0D-regularity [2], [3]
and of some versions of the so-called S-procedure (see [5],
[11], [19], [10] and the references therein) to derive strict
LMI (sufficient) conditions for a descriptor model subject
to norm-bounded LFT (Linear Fractional Transform)-based
uncertainties on both matrices A and E (that are general
enough to encompass many uncertainties encountered in
practice). Our purpose is to propose a tool, useful at once,
as simple as possible, that can be a basis for many other
future works.

The paper is organized as follows. The next section is
dedicated to the mathematical problem statement, including
basic definitions, the description of the uncertain matrix
pencil, the formulation of the considered regions and the
actual condition to be checked by LMI. Section 3 proposes
a first reasoning to derive a sufficient strict LMI condition.
We insist on the importance of the strictness of LMI from a
computational point of view. This part of our contribution.
Another reasoning is followed in Section 4 and yields
another condition. In section 5, a discussion is led about
singular systems and their properties (regularity, impulse
freenees) to analyse our conditions through the lens of those
fundamental properties. The two conditions are numerically
compared on an example in Section 6 before to conclude.

Notations: M’ is the transpose conjugate of M. 6(M) is
the maximum singular value of A . I and O are identity and
zero matrices of appropriate dimensions respectively. In ma-
trix inequalities, < 0, > 0, < 0 and > 0 must be understood
in the sense of Lowner (sign definition of matrices). i is the
imaginary unit and ® denotes the Kronecker product.
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II. PRELIMINARIES AND PROBLEM STATEMENT
A. Basic definitions

In this section, we propose various definitions of properties
for matrix pencils. The reasonings in the paper are mainly
followed on matrix pencils whereas the descriptor models
are only considered in Section 5.

Definition 1: Let (E,A) be a matrix pencil where
{A; E} € €"*". We denote by \(E, A) the generalized
spectrum of the pencil (E, A) defined by

ME, A) = {) € € : det(A(N)) = 0}, m

with A(A) = EX — A, and the elements of \(E, A) are
referred to as the eigenvalues of (E, A).

Definition 2: (inspired from [2]) Let (E, A) be a matrix
pencil where {A4; E} € €"*". Also let S be any subset of
the complex plane. The pencil (E, A) is said to be

o S-regular if A\(E,A)NS =0,

o S-singular otherwise.

Definition 3: Let (E,A) be a matrix pencil where
{A; E} € €"*". The pencil (E, A) is said to be
o regular if there exists S # () such that (E, A) is S-
regular,
« singular otherwise.

It has to be noticed that in the remaining part of the paper,
rank(F) = r < n, meaning that some eigenvalues of (E, A)
might not be finite.

B. Formulation of the uncertain pencil

In our reasonings, the matrices £ and A are actually
uncertain and comply with

A=Da+CaAsBa, @
E =Dg + CgpAgBg,
with
AA:AA(IfAAAA)il, Ap €Ay ={Aa:75(A4) < 'ygl},
AE:AE(IfAEAE)_l, AEGAE:{AE&(AE)S ’751},

3)
where 74 > 0 and yg > 0 are scalar numbers. The
structure of the uncertain matrices A and E is the so-called
LFT (Linear Fractional Transform)-based uncertainty and the
matrices A4 and Ag are both norm-bounded i.e. A4 and
A are bounded balls of matrices. It is possible to consider
more sophisticated sets A 4 and A g but we here restrict our
analysis to balls of matrices for the sake of conciseness.
We define the uncertainty A as

A:{AA;AE}EA:AAXAE. 4)

Assumption 1: The uncertainty domain A is assumed to
be implicitly well posed:
(i) det(I —AaA4)#0and det(] — ApAg) # 0 over A;
(i) rank(E) =r<n VAge€ Apg.
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Assumption (i) is the classical well posedness of LFT
forms and the term implicit refers to assumption (i¢) which
is the only new concept introduced here.

Remark 1: The uncertainty on E can be useful in practice,
for instance to take uncertain inertias into account.

C. Formulation of S
In the paper, the set S is defined by

o-fee[1]]7 ] o
[i],%[i]zo, Vhe{l,...,ﬁ}}, )

where R and ®,, h = 1,...,h are 2 x 2 Hermitian
matrices. This kind of description is borrowed from [3]
following insights proposed in [11], [10]. Special sets can
be emphasized:

e Imaginary axis: h=0; R = [ (1) (1) ];
10

e Unit circle: h=0; R = [ 0 -1 };
o Right half plane: A = LR=10; @, = [ ? (1) }[;

e Exterior of the unit disc: h = LR=0; ¢, = é _01 }
It is possible to extend the class of sets & by considering
matrices R and &, in C 24224 with d > 1 but, once
again, for the sake of conciseness, here, d can only equal 1.
Nevertheless, such a descrition encompasses the boundaries
of many so-called EEMI-regions [4], or even some of those
regions themselves.

D. Problem Statement

Consider an uncertain matrix pencil (F, A) that complies
with the uncertainty defined in §II-B and Assumption 1. Also
let a set S be described as in §II-C. This work aims at finding
strict LMI conditions such that (E, A) remains S-regular for
any A € A. After having proposed two techniques to handle
this problem in the next two sections, we discuss about their
usefulness in the study of descriptor systems in Section 5.

III. SOME “AUGMENTED LFT” SOLUTION

In this part, we transform the original problem that consists
in analysing the spectrum (E,A) into another one that
consists in analysing the spectrum of an augmented pencil
subject to an agumented LFT-based uncertainty. This trans-
formation can seem rather classical. However, a motivation
of this work is to show that this description seems to lead to
more conservative results than those proposed in the next
section. Nevertheless, for clarity, we have to present this
calculation that leads to (8). One has to satisfy

det(A(N\, A)) ZO0V{N; A e S x A (6)
=4 det((DE + CEAEBE))\ — Dy — CAAABA) #0

Note that owing to Assumption 1, det(—(I — AgAg)) #0
which leads to

det((DE + CEAEBE)/\ — Da — CAAABA)det(f(I — AEAE)) #0
det [ (De + CEAEBE)/B— Da—CsA4Ba - ?4EAE) } £0

< det

I CgAp(I—-AgAg)~! «
(i e ]
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DpXA—Da— CaAaBa CpAp
BeA _(I- ApAg)
I 0
[ (I—ApAp) 'Bpx I D #0
DpA—Da— CaAaBa CpAp
de‘([ B —(I - ApAg) D #0
S det(A(N, A)) #£0, V{\;AYeSx A )
with .
E
—_———
De 0
A A)f[ i O]Af
D ©i A
Da O Ca —Cg Ap 0
o vl e ]
Az A -t B

Ba O
[0 1}' ®

Let us notice that we recover an LFT-based uncertainty in
which A is block- diagonal (the bad point) and £ is not
uncertain (the good point). It is clear that det(EA— D ; i) #0
(the nominal augmented model has to be S-regular 0therwise
why considering the uncertain case) and therefore (7) is
equivalent to

det(I — (EX— D) "CzA(I — AzA)"'B;) #0
TCZA(I—AzA)N #£0

A)#0

& det(I — Bi(EX—Dy)~
sdet(I — (Az+Bs(Ex—D3;)" 'Cy)

(since det(/ — A ~A) # 0), that one can write

det(I — G(MA) #0, V{\; A} € S X A,
with G(\) = (EX — D;)~'Cj. The previous
difference holds 1fA and ofiy if
[é},é[§}<0,v{>\;A}€SxA, ©)
with ., ., ,
Q:[G}A)](—I)[G}A)}. (10)
Define A as the set of all matrices A such that
[$]4[ 4]0
where
U = blockdiag(—yal; —yel, ) (12)

It is clear that A lies in a set A that is strictly contained in

A. Then, the S-procedure as proposed in [5] can be a é)plied
tﬁ claim that (9) holds if there exists a scalar 7 > 0 such
that

Q+7¥ <0,Vr€ES, (13)

which, by virtue of Finsler’s lemma (that can also be seen
as a special case of S-procedure), is equivalent to

I 1 I
[ atn | #[ ety
The above inequality can also be written

} <0,VX€ES. (14)

I ' I
[ (Ex—Dj) 'Cy ] 6[ (EX—=Dz)"*Cy }<0’ AeSs, 1

where S , s
~ 0 - 0
G):[AA BA}‘I/[AA BA]' (1o
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At this stage, it is possible to apply the generalized Kalman-
Popov-Yakubovich (KYP) lemma proposed in [10] (yet
another application of a generalized version of the S-
procedure), with slight adaptations as in [3] (in order to
encompass the case h > 1), to claim that (15) holds if and
only if there exist an Hermitian matrix P and h Hermitian
positive definite matrices Qp, h =1, ..., h, such that

c: D; 1 n Cc: D; i
[ g EA] (R®P+Z<I>h®Qh)[ g EA]+@<0. an
h=1

The previous reasoning is summarized by the next theorem.

Theorem 1: Let an uncertain matrix pencil (E, A) comply
with the uncertainty described in §II-B and Assumption
1. Also let a set S be described as in §II-C. (E, A) is
robustly S-regular if there exist an Hemitian matrix P and
h Hermitian positive definite matrices Q,, h = 1,...,h,
such that the strict LMI (17) holds.

The conservativeness in the above theorem is due to the 2-
block diagonal structure of A which makes the S- -procedure
be pessimistic from (13) to (9) or in other words, it is due
to the fact that A C A but A #* A.

IV. SOME “NON-AUGMENTED LFT” SOLUTION

The term ‘“non-augmented LFT” solution refers to the
fact that in this section, we preserve the two LFT-based
uncertainties of §II-B (the one on E and the other one on
A) without augmenting the size of the uncertainty matrix.
A contribution is to emphasize the fact that this second
technique seems to be less conservative than the previously
presented one.

It is clear that the uncertain pencil (E, A) can be S-regular
only if (E, Dy) is S-regular (if the property does not hold
for the nominal part of A, it is no use going further). So,
necessarily, det(EA — Dy) # 0 for any {\;Ap} € S x Apg
and then (6) is equivalent to

det(I — (EXA— D) *CaAABA) #0
< det(I — BA(EXA — Da) " 'CalAa) #0

YOAAA(I — AaDra) ™"

& det(I — BA(EX—Da)~ y#0.  (18)

From Assumption 1, it comes det((/—A4A4) ') # 0 which

enables ones to write

det(I — AaAa — BA(EA—Da) 'Cala)det(I — AaAa)" ") #0

< det(] — AaAg — BA(EX—Dy) 'CalAa) #0
< det(I — [Aa + Ba(BEXA— Da) 'CalAa) #0 (19)
that one can write
det(I — G(A\, Ap)A4) # 0,V{\;A} € S x A. (20)

Taking the definition of A 4 into account, the previous
inequality is equivalent to

Aigfs{iAni{a(AA) sdet(I — G\, Ap)A4) =0}} > /v, VAE € Ap

& {swp (pg (GO, AR} ' > \/v:', VAR € Ag @1
AES
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where pq denotes the structured singular value introduced
in [8]. The above inequality is equivalent to

F(G(\, AE)) < vVya © G'(N\, Ar)G(A\, Ag) < va, VAR € Ag, (22)
which can also be written

1 ’ 1
[ (BA=Da)” Ca } @[ (B = Da)™"Ca i|<0,VAE€AE1

1
(23)

i DN N e AV B
As in the previous section, applying the generalized KYP
lemma [10] with adaptations of [3] enables ones to see that
(23) holds if and only if there exist an Hermitian matrix
P(Ag) and h Hermitian positive definite matrices Qp,(Ag)
(note that these matrices depend on Ag) such that

where

@+[ Da G } M(AE>[ Da Ca } <0,VAp € Ap, (25
where p
h

M(Ap)=RQ®P(Ap)+ Y @1 ® Qn(Ap). 26

h=1

Recalling that £ = Dp + CgAgp(I — ApAg)~'Bg, one
can deduce the next LFT:

Dy C
GE:[ E o

Dg +Ce(I — ApAgp) 'ApBg, e2))

e o] -
Therefore, inequality (25) can be written
[GIE ]/[M(OAE) gHG}E}«). (9)

At this stage, we introduce “some” degree of conservative-
ness by noting that (29) holds for some M (Ag) if it holds
for some constant M. In other words, matrices P and Q)
are no longer assumed to depend on Ag. So (29) holds if

} =Dg+CpAp(I — AgAp) 'Bp =

with

0 Dy Ca
Cg | Dg 0

(28)

Agp | Bg 0}

N/(Af) N(Ag)

[ (- 2pAp) " AsBe }’@ [ (= ApAe) ™ AsBp ]<0. 30)

with
ch cn 1 0 0
o=z Ju| g [+[0 8] o

Notice that the columns of N(Ag) span the kernel of of the
substitution associated with

Fg
—N—

[T -ap ] [ F }:[ (I-ApAs) —ApBp | (2

Also notice that A g can be defined as

AE={AE:[AIE}\1/E[AIE]20}, (33)
with
\I/E:[ _"651 ? } (34)

Taking these facts and the compactness of A g into account,
we apply the full block S-procedure in the version proposed
in [19] to claim that (30) holds if and only if there exists
7 > 0 such that

ThB11.6

TEFpUpFr +© <0, (35)

which can also be written as in (36). Indeed, the previous
reasoning is summarized as follows.

Theorem 2: Let an uncertain matrix pencil (E, A) comply
with the uncertainty described in §II-B and Assumption 1.
Also let a set S be described as in §II-C. (E, A) is robustly
S-regular if there exist an Hermitian matrix P, h Hermitian
positive definite matrices Qp,, h = 1,...,h and a scalar 7

such that
I 0 0 ,\1/ I 0
TE\ Ap Bg 0 E| Ap Bg
0 Ba Aa ]’ 0 Ba Aa
[ o o I ] ‘I"‘[ o o0 I }Jf

|: 0 Da Ca :|/M[ 0 Da Cax

Ce Dgp 0 Cy Dgp 0 ]<0 39

where Vg is given by (34) and

h
M=RQP+Y & ®Qn, @7
h=1
I 0
‘I’A—[o _,YAI]. (38)

The conservativeness is clearly due to the fact that
the matrices are considered constant whereas they should
depend on Ap. We only conjecture that (36) is less
conservative than (17). We will illustrate it on an example
in Section 6 but before, we will discuss about the interest
of such results for the robust analysis of descriptor models.

It also has to be mentioned that Theorem 2 can be
reduced, as a special case, when applied to conventional
non descriptor models, to the LMI version of the so-called
Bounded Real Lemma [1], which is used to compute the
Hoo-norm of a realization.

V. ROBUST D-ADMISSIBILITY OF DESCRIPTOR MODELS

We are here interested in the robust analysis of descriptor
models of the form

Ei = Az (39)

(or
Ewk+1 = AIk (40)

for the discrete case) where the matrices £ and A comply
with (2). It is well known (see [7] and the references
therein) that the poles of such a model are the eigenvalues
of the pencil (E,A), including finite and infinite ones.
The system reponse contains a term with modes related to
finite poles (as for conventional models where £ = I) and
another term with modes associated to infinite poles. As
for usual models, the transient behaviour of the first term
is strongly related to the location of the finite poles in the
complex plane. For this reason, D-stability (root-clustering
in some region D C @) is of interest. But two other apsects
have to be considered. The descriptor model should be
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regular (meaning that there is only one solution to the state
equation: some kind of well posedness of the model) and
it should be impulse free (meaning that the “infinite term”
in the response does not convey impulses present in the
control signals). We recall some classical definitions.

Definition 4: The model (39) or (40) is said to be
D-stable if the finite eigenvalues of (E, A) lie inside some
region D.

Definition 5: The model (39) or (40) is said to be
D-admissible if it is D-stable, regular and impulse free.

For conventional models, D-stability is known to be re-
lated to S-regularity [2], [3]. Indeed, when S is the outside
of D then D-stability is the same as S-regularity. A more
frequent case is when S is the boundary of D. Then D-
stability is a special case of S-regularity for which all the
poles are located on only one side of S. The same reasoning
can nearly be followed with descriptor systems. However,
one has to be very careful with infinite poles. When S
or D is unbounded, it is possible that the system be S-
singular because of infinite poles although they should not
be considered for D-stability. A solution is then to define D
or § not only as a subset of € but as a subset of C where
C is disc centred around the origin and of radius w possibly
very large. In this case, S might be only part of the boundary
of D, the remaining part being bounded by the frontier of C.
The finite poles necessarily lie inside C provided that w is
large enough and that Assumption 1.(ii) holds. The reason is
that if the generalized order r = rank(E) remains constant, a
finite pole cannot become infinite (or the other way around)
unless under infinite uncertainty (which shall reasonably not
be considered) so it remains inside C. This is of special
interest when one considers Hurwitz stability for which the
boundary S is the imaginary axis (thus unbounded). Roughly
speaking, S-regularity tests fail just because of infinite poles
that can belong to S (actually, it is a bit more complicated:
see [10]). In this case, it is possible to rather consider a long
segment on the imaginary axis [—iw; iw]. Such a descritpion
is allowed by (5) with the choice

- 0o 1 —1 0
h =1; R:|:1 0:|,<I>1:|:0 w2:|- 1)

This is exactly the idea of the finite frequency KYP lemma
[11] and the connection with descriptor models is well
highlighted in [10]. This case will be presented in the
numerical illustration.

For a bounded D (e.g. a disc: then S is a circle), the
problem is simpler. The finite poles lie inside D and the
infinite poles outside. C is not required. Schur stability is
then handled with S equaling the unit circle.

From the above discussion, it is clear that D-stability
can be tackled. The only additional assumption is that the
nominal pencil (Dg, D4) should be D-stable.

ThB11.6

Regularity is actually not a real problem. The regularity
of a descriptor model is the regularity of the associated
pencil as introduced in Defintion 3. So if S-regularity is
assessed for some non empty S, regularity is proven.

Impulse  freeness is  completely  related to
Assumption 1.(ii). Actually, this property holds when
the number of finite poles equals r [7], [21]. Since the
number of finite poles does not change, it is clear that
the sum of all geometric multiplicities of finite poles
is preserved. This sum must equal r to ensure impulse
freeness. Thus, Assumption 1.(ii) preserves the impulse
freeness (provided (Dg,Dg4) is impulse free of course).
This assumption is then fundamental. But, in practice, it
is not a drastic contraint because the rank deficiency of
FE is often due to structural properties of the model that
are still valid in the presence of uncertainties. The only
exception might be when the descriptor model results from
the idealization of a “singularly perturbed” system.

As a conclusion of the above discussion, when (Dg, D 4)
is D-admissible, Theorems 1 and 2 can be used to analyze
the robust D-admissibility of (E, A).

VI. NUMERICAL ILLUSTRATION

The uncertain model is as follows:

Aa | Ba
Ca | Da

0.2140
0.6435
0.2259
0.5798
0.7604
0.5298
0.6405

0.3200
0.9601
0.2091
0.3798
0.7833
0.6808
0.4611

0.7266
0.4120 }
0.5678
0.7942
0.0592
0.6029
0.0503

0.4154
0.3050
5.8413
5.0562
—6.5957
10.3767
—16.0828

0.8744
0.0150
13.4301
—0.2859
—6.863
11.4091
—18.9503

0.7680
0.9708
30.1742
15.8285
—24.2345
30.2249
—47.4443

Ap | Be | _
et -
0.6649
0.6973
0.5721
0.5467
0.4480
0.4883

0.9901
0.7889
27.2534
12.2772
—15.9162
20.4394
—40.9319

0.4387
0.4983
17.8494
7.0206 (42)
—9.7204
15.8384
—30.7603

0.3295
0.3090
0.7329
0.3944
0.3878
0.7009
0.0214 0.1904 0.7002 0.5491
0.7556  0.0708 0.1335 0.9363

0 0 0 0

0.3830
0.9834
0.7906
0.3867
0.4513
0.9235

0.6992
0.3874
0.0419
0.2193
0.2346
0.2231

0.7847
0.0862

0.1604
0.7363

0.8695
0.9474
0.3433 0.0798 0.1366 0.2513
0.2559 0.4901 0.0385 0.2309
1.0000 0 0 0
0 1.0000 0 0
0 0 1.0000 0
0 0 0 1.0000
0 0 0 0

0.3693
0.5299

(43)

[N el No] fololole]

This model is such that n = 5 and » = 4. We assume that
75" = 0.001. The nominal model (Dg;D,) is stable
in the continuous sense, regular and impulse free. In other
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words, it admissible. Indeed, its nominal finite poles (the
finite eigenvalues (Dg, D)) are

{—7.0657; —5.0683; —4.7079; —1.1385} (44)

with the last nominal pole at infinity. Since the number of
finite poles equals r, the nominal model is impulse free.

We apply Theorems 1 and 2 with the choice (41) and
w = 10000 in order to test robust admissibility. Moreover,
when solving LMI (17) and (36), we minimize 7 4. We obtain
the respective robust stability bounds:

e Theorem 1 = G(A4) < /7, = 0.1255;
e Theorem 2 = G(A4) < /7, = 0.3246.

It is clear from these values that Theorem 2 seems to
provide a far less pessimistic bound than Theorem 1. Indeed,
by plotting several random uncertain models respecting the
bounds on G(A4) and 5(Ag) in both cases, we can ap-
preciate the weak conservatism of Theorem 2 (Figure 1). of
course, it is difficult to estimate this conservatism if there is.
If we could do this, we would know the ideal bound.

e b : mrmsm I i % A

Fig. 1. Pole migration corresponding to obtained bounds (Th. 1 (left) and
Th. 2 (right))

VII. CONCLUSION

In this paper we have proposed two simple strict LMI
condtions for the robust S-regularity of a pencil (E, A)
when both matrices A and E are subject to norm-bounded
LFT-based uncertainties and for a very large choice of
set S. We have shown on an example that the second
condition seemed better and that the systematic use of a
“big LFT” might not always be suitable. We have also
explained how these conditions could be used to analyze the
robust D-admissibility of a continuous or discrete descriptor
model. We insist on the compatibility of our conditions with
the strong results on the conventional models.

As future investigations, we would like to consider more
general uncertainty structures and try to give a better appre-
ciation of the conservativeness induced by Theorem 2. We
would also like to exploit the obtained condition in a design
context, which is not straightforward.
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