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Abstract

Interconnection and Damping Assignment Passivity–Based

Control (IDA–PBC) is a technique that regulates the behav-

ior of nonlinear systems assigning a desired (Port Hamil-

tonian) structure to the closed–loop. This basic idea, intro-

duced eight years ago, has turned out to be very successful

and has provided solutions to a wide variety of physical

problems. Although IDA–PBC is originally formulated as

a static state–feedback technique it can easily be reformu-

lated to use dynamic controllers. A natural question that

arises is whether it is possible to extend the realm of appli-

cability of the method by considering dynamic controllers.

More precisely, is the set of plants that is stabilizable with

static state–feedback IDA–PBC smaller than the one stabi-

lizable with dynamic IDA–PBC? The main contribution of

this paper is to prove that the answer to this question is,

unfortunately, negative.

Notation All vectors defined in the paper are column vec-

tors. For a scalar function H : R
n ×R

p → R, (x,ζ ) 7→

H we define the operators ∇xH(x,ζ ) := ∂H(x,ζ )
∂x

and

∇ζ H(x,ζ ) := ∂H(x,ζ )
∂ζ

, their repeated application is denoted

in the standard way, i.e., ∇xζ H(x,ζ ) := ∂ 2H(x,ζ )
∂x∂ζ

, while

we use ∇2H(x,ζ ) for the Hessian (with respect to (x,ζ )).
When clear from the context the subindex of the opera-

tor ∇ is omitted. For the distinguished element p⋆ ∈ R
q

and a function w : R
q → R

s, we denote the constant vector

w(p⋆) =: w⋆.

1. Background material and problem formu-

lation

IDA–PBC was introduced in [5, 4] as a procedure to sta-

bilize a desired equilibrium for physical systems described

by Port–Hamiltonian (PH) models, see also [1, 2, 3, 6] for

closely related approaches. The procedure can be easily
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extended to systems of the form

ẋ = f (x)+ g(x)u (1)

where x ∈ R
n is the state vector, u ∈ R

m, m < n, is the con-

trol action and f : R
n → R

n
, g : R

n → R
n×m are smooth

functions with rank {g(x)} = m. The basic idea of IDA–

PBC is to transform, via static state–feedback, the system

(1) into a PH system with some desired energy function.

The main result of IDA–PBC is summarized in the follow-

ing proposition whose proof may be found in [7].

Proposition 1 Consider the system (1). Define g⊥ : R
n →

R
(n−m)×n to be a full–rank left annihilator of g(x), i.e.,

g⊥(x)g(x) = 0, and rank {g⊥(x)} = n−m. Let x⋆ ∈ R
n

be an assignable equilibrium, i.e.,

x⋆ ∈ {x ∈ R
n | g⊥(x) f (x) = 0}.

Assume there exists a matrix F : R
n →R

n×n and a function

H : R
n → R such that the following holds

(A1) The matching equation

g⊥(x) f (x) = g⊥(x)F(x)∇H(x) (2)

is satisfied.

Then the system (1) in closed–loop with the static state–

feedback

u = [g⊤(x)g(x)]−1g⊤(x){F(x)∇H(x)− f (x)}, (3)

takes the PH form

ẋ = F(x)∇H(x). (4)

Furthermore, if:1

(A2) F(x)+ F⊤(x) ≤ 0.

(A3) (∇H)⋆ = 0 and (∇2H)⋆ > 0.

Then x⋆ is a (locally) stable equilibrium with Lyapunov

function H(x).

1Conditions (A2) and (A3) ensure that Ḣ ≤ 0 and x⋆ is a strict mini-

mizer of H(x), respectively.
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The question that we want to study in this paper is

whether we can extend the class of systems for which IDA–

PBC is applicable considering a dynamic controller instead

of a simple static state–feedback as done above. More pre-

cisely, we consider an extended system
[

ẋ

ζ̇

]

=

[

f (x)+ g(x)û(x,ζ )
ŵ(x,ζ )

]

where ζ ∈ R
p, and û : R

n+p → R
n and ŵ : R

n+p → R
p are

functions to be defined in such a way that
[

f (x)+ g(x)û(x,ζ )
ŵ(x,ζ )

]

= F̃(x,ζ )

[

∇xH̃(x,ζ )
∇ζ H̃(x,ζ )

]

for some matrix F̃ : R
n+p → R

(n+p)×(n+p), such that

F̃(x,ζ ) + F̃⊤(x,ζ ) ≤ 0, and a function H̃ : R
n+p → R,

which has a minimum at a point (x⋆,ζ⋆), for some ζ⋆ ∈ R
p.

2. IDA–PBC with dynamic extension

To answer the question posed in the previous section

we must extend Proposition 1 to consider dynamic (state–

feedback) controllers, which leads to the following.

Proposition 2 Consider the system (1) with g⊥(x) and x⋆

as defined in Proposition 1. Assume there exists a positive

integer p, matrices F̃1 : R
n+p → R

n×n, F̃2 : R
n+p → R

n×p

and a function H̃ : R
n+p → R such that the following holds

(B1) The extended matching equation

g⊥(x) f (x) = g⊥(x)[F̃1(x,ζ )∇xH̃(x,ζ )+

+ F̃2(x,ζ )∇ζ H̃(x,ζ )] (5)

is satisfied.

Consider the p–dimensional dynamic state–feedback con-

troller

ζ̇ = F̃3(x,ζ )∇xH̃(x,ζ )+ F̃4(x,ζ )∇ζ H̃(x,ζ )

u = [g⊤(x)g(x)]−1g⊤(x){F̃1(x,ζ )∇xH̃(x,ζ )+

+ F̃2(x,ζ )∇ζ H̃(x,ζ )− f (x)}, (6)

with arbitrary matrices F̃3 : R
n+p →R

p×n and F̃4 : R
n+p →

R
p×p

Then the system (1) in closed–loop with the controller

(6) takes the PH form
[

ẋ

ζ̇

]

= F̃(x,ζ )

[

∇xH̃(x,ζ )
∇ζ H̃(x,ζ )

]

(7)

where

F̃(x,ζ ) :=

[

F̃1(x,ζ ) F̃2(x,ζ )
F̃3(x,ζ ) F̃4(x,ζ )

]

.

Furthermore, if:2

2Conditions (B2) and (B3) ensure that ˙̃H ≤ 0 and (x⋆,ζ⋆) is a strict

minimizer of H(x,ζ ), respectively.

(B2) 3

F̃(x,ζ )+ F̃⊤(x,ζ ) ≤ 0. (8)

(B3) (∇H̃)⋆ = 0 and (∇2H̃)⋆ > 0, for some ζ⋆ ∈ R
p.

Then (x⋆,ζ⋆) is a (locally) stable equilibrium with Lya-

punov function H̃(x,ζ ).

Proof. Multiplying (1) on the left by the full rank matrix
[

g⊤(x)
g⊥(x)

]

yields

[

g⊤(x)
g⊥(x)

]

ẋ =

[

g⊤(x)[ f (x)+ g(x)u]
g⊥(x) f (x)

]

.

Replacing the control u defined in (6) and the extended

matching equation (5) yields the first n rows of (7). The

last p rows follow immediately from the first equation in

(6) and the definition of F̃(x,ζ ).

Now, in view of (8), we have that ˙̃H ≤ 0, and the stability

claim is established invoking (B2) and Lyapunov’s second

method.

3. Main result

Comparing Propositions 1 and 2 it is clear that to know

whether dynamic extension enlarges the class of plants

which are stabilizable via IDA–PBC we have to compare

the sets of solutions of the partial differential equations (2)

and (5)—subject to the constraints, (A2), (A3) and (B2),

(B3), respectively. We show in the proposition below that

(2) admits a solution if and only if there exists a solution

for (5). This, unfortunately, proves that the answer to the

question is negative.

Proposition 3 Consider the system (1) with g⊥(x) and x⋆

as defined in Proposition 1. Then the following statements

are equivalent:

(S1) There exists a matrix F : R
n → R

n×n and a function

H : R
n → R such that conditions (A1)–(A3) of Propo-

sition 1 hold.

(S2) There exists a positive integer p, matrices F̃1 : R
n+p →

R
n×n, F̃2 : R

n+p →R
n×p and a function H̃ : R

n+p →R

such that conditions (B1)–(B3) of Proposition 2 hold.

Consequently, the system (1) is stabilizable via static

state–feedback IDA–PBC if and only if it is stabilizable via

dynamic (state–feedback) IDA–PBC.

3Notice that if F̃1(x,ζ )+ F̃⊤
1 (x,ζ ) ≤ 0, B2 is trivially satisfied, for any

F2(x,ζ ), setting F3(x,ζ ) = −F⊤
2 (x,ζ ) and choosing any F4(x,ζ ) verify-

ing F4(x,ζ )+F⊤
4 (x,ζ ) ≤ 0.
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Proof. ((S1) ⇒ (S2))4 Assume conditions (A1)–(A3) of

Proposition 1 hold. Select any positive integer p and fix

F̃(x,ζ ) =

[

F(x) 0n×p

0p×n F̃4(x,ζ )

]

with F4 : R
n+p → R

p×p verifying F4(x,ζ )+ F⊤
4 (x,ζ ) ≤ 0.

The proposed matrix F̃(x,ζ ) clearly verifies (B2) of Propo-

sition 2. It is easy to see that, with this choice of F̃(x,ζ ),
the extended matching equation (5) admits a solution of the

form

H̃(x,ζ ) = H(x)+ H̄(ζ ),

for any H̄ : R
p → R. Hence, verifying (B1). Furthermore,

selecting H̄(ζ ) such that (∇H̄)⋆ = 0 and (∇2H̄)⋆ > 0, for

some ζ⋆ ∈ R
p then (B3) of Proposition 2 clearly holds.

((S2) ⇒ (S1)) Assume conditions (B1)–(B3) of Propo-

sition 2 hold for some positive integer p. Now, since (2)

and (5) have the same left hand side one obtains

g⊥(x)[F(x)∇H(x)− F̃1(x,ζ )∇xH̃(x,ζ )−

− F̃2(x,ζ )∇ζ H̃(x,ζ )] = 0. (9)

We now construct functions F(x) and H(x) that satisfy

(9)—hence (A1)—and conditions (A2), (A3) of Proposi-

tion 1. First, notice that, in view of (B3), one has

[∇ζ H̃(x,ζ )]⋆ = 0, det{[∇ζζ H̃(x,ζ )]⋆} > 0.

Therefore, application of the Implicit Function Theorem

[8] to the function ∇ζ H̃(x,ζ ) proves the existence of a

function γ : R
n → R

p such that

[∇ζ H̃(x,ζ )]|ζ=γ(x) = 0 (10)

in some open neighborhood of (x⋆,ζ⋆).
5 Notice, also, that

ζ⋆ = γ⋆. Replacing (10) in (9) yields

g⊥(x)[F(x)∇H(x)− F̃1(x,γ(x))W (x)] = 0, (11)

where, to simplify the notation, the function W : R
n → R

n

W (x) := ∇xH̃(x,γ(x)), (12)

has been defined. Now, select F(x) = F̃1(x,γ(x)) that, in

view of (B2), necessarily satisfies (A2). Replacing F(x) in

(11) yields

g⊥(x)F(x)[∇H(x)−W(x)] = 0.

A function H(x) that satisfies the equation above is given

as

H(x) := H̃(x,γ(x)).

4This implication is trivial and is given only for completeness.
5For the sake of brevity the reference to this neighborhood is omitted

in the sequel, keeping in mind that the analysis is restricted to this neigh-

borhood.

Indeed, it follows from (10) that ∇H(x) = W (x). To com-

plete the proof it only remains to show that the function

H(x) verifies condition (A3). For, note that

(∇H)⋆ = W⋆ = 0, (∇2H)⋆ = (∇W )⋆ > 0

where (B3), (12) and the fact that

∇W (x) = ∇xx[H̃(x,γ(x))],

have been used.

4. Concluding remarks

IDA–PBC is a popular (static state–feedback) technique

for stabilization of nonlinear systems via energy–shaping.

We have presented in this paper a new version of this tech-

nique that incorporates an (arbitrary) dynamic extension.

We have shown that, for the purposes of (local Lyapunov)

stabilization, no advantage is gained with this extension.

More precisely, Proposition 3 shows that stabilizability via

static state–feedback IDA–PBC is equivalent to stabiliz-

ability via dynamic IDA–PBC. This has been established

proving that the existence of a local solution of the key

matching equation (subject to the constraints that ensure

stability) in the static case is equivalent to the solution (of

the corresponding equation) in the dynamic case.

The proof of the equivalence is constructive, but re-

lies on application of the Implicit Function Theorem, from

which the local nature of our result is inherited. One con-

sequence of this is that the domain of stability of the equi-

librium for static feedback may be smaller that the one ob-

tained using dynamic feedback. This is the case, for exam-

ple, if dynamic feedback yields a global result while equa-

tion (10) admits only a local solution.

It is well–known that the main stumbling block for the

application on IDA–PBC is the need to solve the set of

partial differential equations defined by the matching equa-

tions.6 The negative result regarding dynamic extension

reported in this note is a modest contribution towards the

understanding of this complicated problem, and certainly

falls short from exhausting the various issues involved in

it. Two questions that remain open, and are currently under

investigation, are the following.

• It is clear from the proof of Proposition 3 that the input

matrix g(x) does not play any role, and g⊥(x) could

have been removed from the matching equations. A

similar remark applies to the sign–definiteness condi-

tions of the matrices F(x) and F̃(x,ζ ). How can we

incorporate these additional elements in the analysis?

6This is, of course, endemic to all constructive design procedures for

stabilization of general nonlinear systems.
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• The version of IDA–PBC considered here does not

presume any particular structure for the desired energy

function. On the other hand, it has been shown that

for some classes of systems, for instance, mechanical,

it is convenient to “parameterize” the solutions—see

e.g. [2, 6, 7]. Studying the effect of a dynamic exten-

sion in that case leads to a problem different from the

one studied here.
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