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Abstract— Sufficient dissipative boundary conditions are
given for the exponential stability of equilibria in physical
networks of 2 × 2 nonlinear hyperbolic balance laws under
boundary feedback control. The analysis relies on the use of
an explicit strict Lyapunov function.

I. INTRODUCTION

Balance laws are hyperbolic partial differential equations
that are commonly used to express the fundamental dynam-
ics of open conservative systems (e.g.[12]). Many physical
networks having an engineering interest are described by sys-
tems of 2x2 hyperbolic balance laws. Among others, we may
mention for instance Saint-Venant equations for hydraulic
networks (e.g.[9],[5]), isothermal Euler equations for gas
pipeline networks (e.g.[1]), or Aw-Rascle equations for road
traffic networks (e.g.[7], [6]). In this paper, our concern is to
analyse the stability (in the sense of Lyapunov) of the steady-
states of such networks under boundary feedback control.
The analysis relies on the use of an explicit strict Lyapunov
function.

II. 2×2 HYPERBOLIC BALANCE LAWS

Definition

We consider 2×2 hyperbolic balance laws in one space
dimension over a finite interval taking the following general
form:

∂tp+ ∂xq = 0 (1a)
∂tq + α(p, q)∂xp+ β(p, q)∂xq = γ(p, q) (1b)

In these equations, the independent variables are the time t
and a space coordinate x over a finite interval (0, L). The
dependent variables p(t, x) and q(t, x) are the states of the
system. The first equation is a mass conservation law with
p the density and q the flux. The second equation may be
interpreted as a momentum balance law.
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catholique de Louvain, 4, Avenue G. lemaitre, 1348 Louvain-la-Neuve,
Belgium. Georges.Bastin@uclouvain.be

J-M. Coron is with the Laboratoire Jacques-Louis Lions, Department of
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Defining the vector y , (p, q)T , system (1) is written

∂ty + F (y)∂xy = G(y)

with

F (y) ,

(
0 1

α(p, q) β(p, q)

)
G(y) ,

(
0

γ(p, q)

)
.

The system is supposed to be strictly hyperbolic, i.e. the
matrix F (y) has two real distinct eigenvalues called charac-
teristic velocities λ1(y) 6= λ2(y).

A steady-state (or equilibrium state) for system (1) is a
constant state ȳ which satisfies the condition G(ȳ) = 0.

Riemann coordinates

It is a well known property (e.g. [8], [11]) that, for any
system of the form (1), there exists a change of coordinates
u = Φ(y) such that the system can be rewritten in charac-
teristic form

∂t

(
u1

u2

)
+
(
c1(u) 0

0 c2(u)

)
∂x

(
u1

u2

)
= H(u)

with u , (u1, u2)T , ci(u) , λi(Φ−1(u)) and H(u) ,
(∂Φ/∂y(Φ−1(u))G(Φ−1(u)).

Examples

• Open channels - Saint Venant equations, y = (h, q)T ,

α = gh− (q2/h2), β = 2q/h, γ = gSh− C(q2/h2),

with : h = water depth, q = water flow rate, g= gravity
constant, S = canal slope, C = friction coefficient.
Characteristic velocities : λ1,2 = (q/h)±

√
gh.

Steady-state : gSh̄3 = Cq̄2.
Riemann coordinates : (q/h)± 2

√
gh.

• Road traffic - Aw-Rascle equations, y = (ρ, q)T ,

α = qp′(ρ)−(q2/p2), β = 2q/ρ−ρp′(ρ), γ = σ(ρV (ρ)−q)

with ρ = traffic density, q = traffic flow rate, p(ρ) = traffic
pressure function such that p′(ρ) > 0, V (ρ) = preferential
velocity function, σ = constant.
Characteristic velocities : λ1 = q/ρ, λ2 = q/ρ− ρp′(ρ).
Steady-state : ρ̄V (ρ̄) = q̄.
Riemann coordinates : q/ρ and q/ρ+ p(ρ).
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Fig. 1. Physical network

III. NETWORKS

Definition

We consider physical networks (e.g. irrigation or road
networks) as illustrated in Fig.1. The structure of the network
is reminiscent to the structure of so-called compartmental
systems. The nodes of the network (called compartments)
represent the physical links (i.e the canals or the roads)
having dynamics expressed by hyperbolic balance laws

∂tpj + ∂xqj = 0 (2a)
∂tqj + α(pj , qj)∂xpj + β(pj , qj)∂xqj = g(pj , qj) (2b)

t > 0, x ∈ (0, L), j = 1, . . . , n,

or in matrix form

∂tyj + F (yj)∂xyj = G(yj), j = 1, . . . , n (3)

The directed arcs i → j of the network represent instanta-
neous mass transfers between the compartments (i.e. transfer
of water between the pools in irrigation networks or transfer
of vehicles at the road junctions in traffic networks). The
transfer rate or flow from the output of a compartment i to the
input of a compartment j is denoted ϕij(t). Additional input
and output arcs represent interactions with the surroundings:
either inflows bj(t) injected from the outside into some
compartments or outflows ej(t) from some compartments
to the outside. The set of 2n PDEs (2) is therefore subject
to 2n boundary flow balance conditions of the form:

qj(t, 0) =
∑
i6=j

ϕij(t) + bj(t), j = 1, . . . , n,

qj(t, L) =
∑
k 6=j

ϕjk(t) + ej(t), j = 1, . . . , n.

A standard assumption, corresponding to many pratical en-
gineering applications, is that the flows ej(t) and ϕij(t)
are adequately modelled by static functions of the states
yi(t, L) = (pi(t, L), qi(t, L))T at the output of the upstream
compartment and the states yj(t, 0) = (pj(t, 0), qj(t, 0))T

at the input of the downstream compartment. Moreover, we
assume also that the network inflows bj(t) and (some) of
the partial transfer flows ϕij(t) can be modulated by using
appropriate actuators (like e.g. valves and pumps in irrigation
channels or traffic lights in road networks). Therefore the

boundary conditions are written as

qj(t, 0) =
∑
i 6=j

ϕij(yi(t, L),yj(t, 0), wij(t)) + bj(woj(t)),

qj(t, L) =
∑
k 6=j

ϕjk(yj(t, L),yk(t, 0), wjk(t)) + ej(yj(t, L)),

j = 1, . . . , n. (4)

with the notations wij and woj for the controls.
In equations (4), only the terms corresponding to actual

links of the network are explicitly written. Otherwise stated,
all the bj , ej and ϕij for non existing links do not appear in
the equations.

Finally, the control system (2)-(4) may be written in a
compact form

∂ty + F(y)∂xy = G(y), (5a)
Nb(y(t, 0),y(t, L),w(t)) = 0, (5b)

with obvious definitions of the notations for y, F, G, No,
w.

Boundary control

Steady-state : For constant control actions w(t) = w̄
a steady-state solution is a constant solution
y(t, x) = ȳ ∀t ∈ [0,+∞), ∀x ∈ [0, L] which satisfies
the condition G(ȳ) = 0 and the boundary conditions
Nb(ȳ, ȳ, w̄) = 0. Depending on the form of these boundary
conditions, the steady-state solution may be stable or
unstable.

We are concerned in analysing the stability of the steady-state
ȳ when the system (5) is under boundary feedback control
actions

w(t) = w(y(t, 0),y(t, L)). (6)

With the control law (6), the closed-loop system is written

∂ty + F(y)∂xy = G(y), (7a)
Nc(y(t, 0),y(t, L)) = 0, (7b)

Riemann coordinates

In order to analyse the closed loop stability by a Lyapunov
method, it is convenient to consider the system (2) expressed
in Riemann coordinates:

∂tui +
(
ci(ui) 0

0 cn+i(ui)

)
∂xui = H(ui) (8)

i = 1, . . . , n

with ui = (ui, un+i)T = Φ(yi).
The change of coordinates ui = Φ(yi) is clearly defined

up to a constant. It can therefore always be selected in such
a way that Φ(ȳi) = 0 and the control problem can be stated
as the problem of determining the control actions in such a
way that the characteristic solutions ui(t) converge towards
the origin.
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IV. LYAPUNOV STABILITY OF THE LINEARISED SYSTEM

We consider the linear approximation of the system (8)
around the origin

∂tu + Λ∂xu = Bu (9)

with u , (u1, . . . , u2n), Λ = diag{c1, . . . , c2n} and an
obvious definition of the matrix B.

Moreover, using these notations, the linearisation of the
boundary condition (7b) is written in the Riemann coordi-
nates

N0u(t, 0) + N1u(t, L)) = 0. (10)

Our concern is to analyse the exponential stability of the
solutions u(t, x) of the system (9)-(10) according to the
following definition.

Definition 1. The linear hyperbolic system (9)-(10) is expo-
nentially stable (in L2-norm) if there exist ν > 0 and C > 0
such that, for every initial condition

u(0, x) = u0(x) ∈ L2((0, L); R2n) (11)

the solution to the Cauchy problem (9)-(10)-(11) satisfies

‖u(t, ·)‖L2((0,L);R2n) 6 Ce−νt‖u0‖L2((0,1);R2n).

The following candidate Lyapunov function is defined:

V =
∫ L

0

uTP(x)udx (12)

where the weighting matrix P(x) is defined as follows:
P(x) , diag{pie−σiµx, i = 1, . . . , 2n}, with µ > 0, pi > 0
positive real numbers and σi = sign(ci).

The time derivative of V along the solutions of (9) is

V̇ =
∫ L

0

(
∂tuTP(x)u + uTP(x)∂tu

)
dx

= −
∫ L

0

(∂xuTΛP(x)u + uTP(x)Λ∂xu

− uTBTP(x)u− uTP(x)Bu)dx

= −
∫ L

0

∂x(uTR(x)u)dx

+
∫ L

0

uT
(
BTP(x) + P(x)B

)
u dx

with the positive diagonal matrix

R(x) , diag{pi|ci|e−σiµx, i = 1, . . . , 2n}.

Integrating by parts, we obtain:

V̇ = −
∫ L

0

∂x
[
uTR(x)u

]
dx

−
∫ L

0

uT
(
µR(x)−BTP(x)−P(x)B

)
u dx

= −
[
uTR(x)u

]L
0

−
∫ L

0

uT
(
µR(x)−BTP(x)−P(x)B

)
u dx

= −
[
uT (t, L)R(L)u(t, L)− uT (t, 0)R(0)u(t, 0)

]
−
∫ L

0

uT
(
µM(x)−BTP(x)−P(x)B

)
u dx.

The system (9)-(10) is exponentially stable if this function V̇
is negative definite. We have thus shown the following result.

Theorem 1. The system (9)-(10) is exponentially stable if
there exist µ > 0 and pi > 0 i = 1, . . . , 2n such that
C1. The boundary quadratic form uT (t, 0)R(0)u(t, 0) −

uT (t, L)R(L)u(t, L) is positive definite under the con-
straint of the linear boundary condition N0u(t, 0) +
N1u(t, L) = 0;

C2. The matrix µM(x) − BTP(x) − P(x)B is positive
definite ∀x ∈ (0, L).

Boundary conditions that satisfy condition C1 are called
Dissipative Boundary Conditions. Condition C1 is satisfied
if and only if the leading principal minors of order > 4n of
the matrix  0 N0 N1

−NT
0 R(0) 0

−NT
1 0 −R(L)


are strictly positive (see [14]).

V. DISSIPATIVE BOUNDARY CONDITIONS

In this section, we will present a variant of Theorem 1
with an explicit characterisation of a sufficient dissipative
boundary condition which guarantees the system exponential
stability in the case where ‖B‖ is sufficiently small or, in
more intuitive terms, when the considered balance laws are
viewed as perturbations of conservation laws. Again, we
consider the linear approximation of the system (8) around
the origin

∂tui +
(
ci 0
0 cn+i

)
∂xui = Mui (13)

i = 1, . . . , n

with M , H ′(0) and we assume that the characteristic
velocities have opposite signs cn+i < 0 < ci. Then the
system (13) is written(

∂tu+ + Λ+∂xu+

∂tu− −Λ−∂xu−

)
= Mu (14)

with u+ , (u1, . . . , un), u− , (un+1, . . . , u2n), u,
(u+T ,u−T ), Λ+ = diag{c1, . . . , cn}, Λ− = diag
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{|cn+1|, . . . , |c2n|} and an obvious definition of the
matrix M.

Moreover, using these notations, the boundary condition
(7b) is written in the Riemann coordinates

Nr(u+(t, 0),u+(t, L),u−(t, 0),u−(t, L)) = 0 (15)

Then assuming that the map Nr is differentiable in a
neighborhood of the origin and ∂u+(0),u−(L)Nr(0, 0, 0, 0) is
nonsingular, by the implicit function theorem, the lineariza-
tion of the boundary condition (15) about the origin is written(

u+(t, 0)
u−(t, L))

)
=
(
K00 K01

K10 K11

)
︸ ︷︷ ︸

(
u+(t, L)
u−(t, 0)

)
. (16)

K

Let Dm denote the set of diagonal m×m real matrices with
strictly positive diagonal entries. We introduce the following
norm for the matrix K:

ρ(K) , inf
{
‖∆K∆−1‖,∆ ∈ D2n

}
.

We then have the following stability Theorem.

Theorem 2. If ρ(K) < 1, there exist ε > 0 such that, if
‖M‖ < ε, then the linear hyperbolic system (14)-(16) is
exponentially stable.

Proof. The following candidate Lyapunov function is con-
sidered:

V =
∫ L

0

[
(u+TP0u+)e−µx + (u−TP1u−)eµx

]
dx. (17)

with P0 ∈ Dn, P1 ∈ Dn and µ > 0. The time derivative of
V is

V̇ =
∫ L

0

−∂x
(
u+TP0Λ+u+

)
e−µx dx

+
∫ L

0

∂x
(
u−TP1Λ−u−

)
eµx dx

+
∫ L

uT
(
MTP (x) + P (x)M

)
u dx.

Using integration by parts we get

V̇ = V̇1 + V̇2 (18)

with

V̇1 , −
[
u+TP0Λ+u+e−µx

]L
0

+
[
u−TP1Λ−u−eµx

]L
0

V̇2 ,
∫ L

0

uT
(
−µP (x)Λ + MTP (x) + P (x)M

)
u dx

with

P (x) , diag
{
P0e
−µx, P1e

µx
}

and Λ , diag
{
Λ+,Λ−

}
.

The two terms of (18) are analysed successively. For this
analysis, we introduce the following notations:

u−0 (t) , u−(t, 0) u+
1 (t) , u+(t, L).

Analysis of the first term.
Using the boundary condition (16), we have

V̇1 = −
[
u+TP0Λ+u+e−µx

]L
0

+
[
u−TP1Λ−u−eµx

]L
0

= −
(
u+T

1 P0Λ+u+
1 e−µL + u−T0 P1Λ−u−0

)
+
(
u+T

1 KT
00 + u−T0 KT

01

)
P0Λ+

(
K00u+

1 +K01u−0
)

+
(
u+T

1 KT
10 + u−T0 KT

11

)
P1Λ−

(
K10u+

1 +K11u−0
)
eµL.

Since ρ(K) < 1 by assumption, there exist D0 ∈ Dn, D1 ∈
Dn and ∆ , diag{D0, D1} such that

‖∆K∆−1‖ < 1. (19)

The matrices P0 and P1 are selected such that P0Λ+ = D2
0

and P1Λ− = D2
1 . We define z0 , D0u−0 , z1 , D1u+

1 and
zT , (zT0 , z

T
1 ). Then, using inequality (19), we have(

u+T
1 KT

00 + u−T0 KT
01

)
P0Λ+

(
K00u+

1 +K01u−0
)

+
(
u+T

1 KT
10 + u−T0 KT

11

)
P1Λ−

(
K10u+

1 +K11u−0
)

= ‖∆K∆−1z‖2 < ‖z‖2

= u+T
1 P0Λ+u+

1 + u−T0 P1Λ−u−0 .

It follows that µ can be taken sufficiently small such that
V̇1 is a negative definite quadratic form.

Analysis of the second term.
For any µ > 0, there exist clearly two positive constants

ε > 0 and α > 0 such that

‖M‖ < ε ⇒ V̇2 6 −αV ⇒ V̇ = V̇1 + V̇2 6 −αV.

Consequently the solutions of the system (14)-(16) exponen-
tially converge to the origin in L2-norm.

VI. LYAPUNOV STABILITY OF THE NONLINEAR SYSTEM

Our concern in this section is to briefly explain how the
linear Lyapunov stability analysis of Section IV can be
extended to the case of the nonlinear closed-loop control
system (7). Assuming as above that the map Nr is differ-
entiable and ∂u+(0),u−(L)Nr(0, 0, 0, 0) is nonsingular, the
closed loop system in Riemann coordinates in a neighbor-
hood of the origin is written(

∂tu+ + Λ+(u)∂xu+

∂tu− −Λ−(u)∂xu−

)
= H(u) (20a)

(
u+(t, 0)
u−(t, L))

)
= K

(
u−(t, 0)
u+(t, L))

)
(20b)

with appropriate nonlinear maps H : R2n → R2n and K :
R2n → R2n.

With Theorem 2 we have proved the convergence to zero
of the solutions of the linear system (14)-(16) in L2(0, L)-
norm. Unfortunately the same Lyapunov function cannot be
directly used to analyse the local syability in the nonlinear
case. As we have emphasized in detail in [4], in order to
extend the Lyapunov stability analysis to the nonlinear case,
it is needed to prove a convergence in H2(0, L)-norm.
We therefore adopt the following definition of the (local)
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exponential stability of the steady-state solution u(t, x) ≡ 0

Definition 2. The equilibrium solution u ≡ 0 of the nonlinear
hyperbolic system (20) is exponentially stable (for the H2-
norm) if there exist δ > 0, ν > 0 and C > 0 such that, for
every initial condition

u(0, x) = u0(x) ∈ H2((0, 1),Rn) (21)

satisfying
‖u0‖H2((0,1),Rn) 6 δ,

the classical solution u to the Cauchy problem (20)–(21)
satisfies

‖u(t, ·)‖H2((0,1),Rn) 6 Ce−νt‖u0‖H2((0,1),Rn), (22)
∀t ∈ [0,+∞).

The stability property may then be generalised as follows
to the nonlinear case.

Theorem 3. If ρ(K′(0)) < 1, there exist ε > 0 such that, if
‖H′(0)‖ < ε, then the equilibrium u ≡ 0 of the nonlinear
hyperbolic system (20) is exponentially stable.

The proof of this theorem is much more complicated than
its linear counterpart and can be established by using the
approach followed in [3]. It makes use of an augmented
Lyapunov function (see (17) for comparison) of the form

V =
∫ L

0

[
(u+TP0u+)e−µ1x + (u−TP1u−)eµ1x

]
dx

+
∫ L

0

[
(v+TQ0v+)e−µ2x + (v−TQ0v−)eµ2x

]
dx

+
∫ L

0

[
(w+TR0w+)e−µ3x + (w−TR0w−)eµ3x

]
dx

with the weighting matrices

P0 = D2
0(Λ+)−1 P1 = D2

1(Λ−)−1

Q0 = D2
0(Λ+) Q1 = D2

1(Λ−)

R0 = D2
0(Λ+)3 R1 = D2

1(Λ−)3

and the additional state variables v , ∂xu and w , ∂xxu.

VII. CONCLUDING REMARKS

We have addressed the isue of stating sufficient boundary
conditions for the exponential stability of the steady-states
of physical networks described by interconnected systems of
2 × 2 nonlinear hyperbolic balance laws. In Theorem 1 we
have first given a general implicit formulation of sufficient
dissipative boundary conditions. Our analysis relies on the
use of an explicit Lyapunov function. The weight e±µx is
essential to get a strict Lyapunov function. It is similar to
the one introduced in [2] to stabilize the Euler equation of
incompressible fluids. More recently, it has also been used
in [15] for linear symmetric hyperbolic systems.

Then in Theorems 2 and 3, we have shown that the explicit
dissipativity condition ρ(K) < 1 (or ρ(K′(0)) < 1) gives a

convergence in L2(0, L)-norm for sytems of balance laws
considered as perturbations of conservation laws. This new
sufficient stability condition is weaker than the previous
condition which was given in [13]. A variant of this property
with convergence in C1(0, L)-norm can also be found in the
reference [10] where the analysis relies on the method of
characteristics.

In this paper, for the sake of simplicity, we have considered
the case where the steady-state is constant with respect to
both t and x. The analysis can however be extended to
the case where there is a non-uniform steady-state profile
ȳ(x) , (q̄, p̄(x)) with a constant flux q̄ but a possibly space
varying density p̄(x) which satisfies the steady-state scalar
differential equation α(p̄(x), q̄)∂xp̄(x) = γ(p̄(x), q̄).
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