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Equilibrium Paths and Quasistationary Deployment
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Abstract — Sufficient conditions for the state space
trajectory of a system of ordinary differential equations
(ODEs) to be arbitrarily close to an equilibrium path and for
the evolution of the system to be quasistationary are proved
using basic topology and mathematical analysis concepts. The
conditions are less conservative than previously derived ones
based on Lyapunov functions.

I. INTRODUCTION

IN [1] a method which uses equilibrium paths was
proposed for the control of nonlinear autonomous ODEs,

. dx
X_E_f(xau)a (1)

xeXcR", ueUcR", teT cR.

Here f(x,u) is a function of class C* on X x U (k>0), x, u, ¢
are the state, control vectors, time, whereas X, U, and T are
open sets in the n, m, and one dimensional real spaces,
respectively. Note that for uniqueness of the initial value
problem associated with (1), f'should be just Lipschitz in x.
The key idea is to control (1) such that its state space
trajectory is close to an equilibrium path obtained by solving

0=7Cxu). 2

In [1] several advantages of such an approach for practical
applications are discussed in detail.

Assume that (2) can be solved for x as a continuous
Sfunction of u:

x=g), f(glw)u)=0, g:U, > X,. 3)

One situation when this is guaranteed is when the implicit
function theorem applies: if (X;,u;) is a solution of (2) and

0 . .
J, = i(xl.,ul.) is not singular, then there exist an open
ox

set U, and an unique function g of class C' on U,, such that
(3) holds and x; = g(u,). However the implicit function
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theorem is not necessary for (2) to have a solution like in
(3).

In the above U, is the largest domain (open and
connected set in U) in which (2) can be solved for x as in
(3). The g-image of U,, X,, is called the equilibrium set and

it is also connected, but not necessarily open. Let (xf ,uf) ,
u, €U,, be another solution of (3), and u,(s) be a curve
in U, parameterized by s €[0,7] which connects u; and
u,, with u,(0)=u,, u,(r)=u,. Then u,(s) is g-
mapped onto an equilibrium path, x,(s) = g(u,(s)), with
x,(0)=x, x,(r)=x,.

The problem of interest is to control the evolution of the
system between the two equilibrium states, (x,,u%,) and

(x U f), such that its state space trajectory - which will

also be referred to as the deployment path - is close to the
equilibrium path, as illustrated in Fig. 1. For this purpose the
following strategy was proposed in [1]. The controls are
fixed at u; and when the transition begins, at =0, they start

to vary along u,, u(t)=u,/t), t€[0,7]cT. When ¢

reaches 7 the controls are frozen at the final desired value:

u;,t <0
u(t)y=<u,(?),0<t<r 4)

uf,t>r

The deployment path, x, (), is the solution of

X, = f(xg,u(®), x,(0)=x,. ()

If the final equilibrium, Xx o is asymptotically stable for
dx

the “frozen”, autonomous system, X = E = f(x,u f),
and x,(7)belongs to the region of attraction of X, then
the system’s trajectory will settle down, asymptotically in
time, to the desired final value, Xp. The asymptotical
stability of the final equilibrium, Xy, is essential for the

application of this methodology.
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Deployment Path Equilibrium Path

Fig. 1: Deployment and Equilibrium Paths

This methodology was easily extended to include
piecewise constant controls [2], by discretizing the
equilibrium path and using the resulting controls to drive
(1).

In [1] several research questions were formulated with
respect to this control strategy. Two of them are addressed
here. Firstly, sufficient conditions for the state space
trajectory to be close to the equilibrium path are proved.
Secondly, sufficient conditions for the deployment to be
quasistationary are proved. The proofs are constructive,
result in piecewise constant controls, and use only basic
concepts from topology and mathematical analysis. Hence,
the conditions presented herein are less conservative than
previous ones derived in [8] using Lyapunov functions.

II. RELATED WORK

Of the popular nonlinear systems control techniques the
one which resembles most the idea presented in the above is
sliding mode control (see [3, 4, 5]) where the system’s state
space trajectory is confined to a selected manifold. Control
design reduces to finding the control law such that the
system’s trajectory approaches and then stays on the
manifold. Sliding mode control has a major advantage in
that it has good robustness properties. The main
disadvantage is the chattering induced by the repeated
switching in the control law. In order to alleviate chattering
“sliding mode with boundary layer” techniques have been
proposed, in which the system is allowed to evolve within a
given distance from the desired manifold (see [6]). The
thickness of the boundary layer required to eliminate
chattering depends on the magnitude of the switching gain
used. A controller with high switching gain produces high
amplitude of chattering and needs a thicker boundary layer.
On the other hand, the switching gain value depends on the
system’s uncertainties bounds: for a system with large
uncertainties a thicker boundary layer is needed to eliminate
chattering and the control system is changing to one without
sliding mode.

The proposed strategy is different from sliding mode in
several essential features. Firstly, the manifold which is used
in the proposed strategy is an equilibrium manifold (path),
which, under mild conditions, is persistent under modeling
perturbations. For example if the Jacobian of the “frozen
system” is not singular along the equilibrium path, this path
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has no stationary bifurcations [7]. The persistence under
perturbations property results in several advantages, a key
one being good robustness properties of the control method.

Secondly, the system’s state space trajectory is not
required to stay on a manifold. It must only be sufficiently
close to the equilibrium path. If this path is persistent under
perturbations then, under modeling errors of a certain size,
the system’s trajectory will remain close to the perturbed
equilibrium path. This scenario resembles the “sliding mode
with boundary layer” technique, however there are further
fundamental differences which will be shortly revealed.

Thirdly, the controls are allowed to take value only in the
equilibrium path’s control set. As shown in the following,
this facilitates satisfaction of the condition that the system’s
state space trajectory is close to this equilibrium path.

III. CLOSE DEPLOYMENT AND EQUILIBRIUM PATHS
A key question is under what conditions x,(f) is

arbitrarily close to the equilibrium path, x,(?), ¢ €[0,7].

Let the error function be defined as
E(t) = x,(0) = x,(1) = x, (1) — g(u,(1)). (6)

Khalil [8] addressed a very similar problem under the topic
of slowly varying systems. Theorem 9.3 and Lemma 9.8 in
[8] easily lead to the following result: if f{x,u) is sufficiently
smooth (at least of class C'), its derivatives satisfy certain
conditions (see [8]), (2) has a branch, x.(u), of class C' of
isolated solutions, exponentially stable uniformly in u for
the “frozen system”, and the system is driven by an

arbitrary control of class C' such that ”u(l‘)” < g, then the

error, E(t), is bounded by a term proportional to & . Note:
the “frozen system” is obtained by fixing u in (1).

This shows that E(z) can be made arbitrarily small if the
controls variation is sufficiently slow along the equilibrium

path (in (4), [, (1)]| < &). This was the idea pursued in [1].

Khalil’s results indicate that arbitrarily close equilibrium and
deployment paths can be achieved with other controls also,
which are not generated using the equilibrium path, because
u(t) can be arbitrary. Because the proofs rely heavily on
Lyapunov techniques, which are known to be conservative,
the result is rather restrictive, as seen in the above.

In this paper a more general result (Theorem 1 presented
next) is proved which differs from Khalil’s results in three
aspects. Firstly, the proof uses only basic concepts from
topology and mathematical analysis and does not rely on
Lyapunov functions. Hence the conditions are less
conservative. Secondly, it is not required that the
equilibrium points of the equilibrium path are exponentially
stable uniformly in u; asymptotical stability is shown to be
sufficient. This is important because the exponential stability
requirement is rather stringent and it is not always met in
practical applications. Consider the following system:
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x=—(x—-u)’ (7)

whose equilibria, x.(u)=u, are (globally) asymptotically
stable but not exponentially stable, as it can be ascertained
by investigating the solution of the initial value problem,

x(t) = Yo ¥ +u. (8)

V2(x, —u)’t+1

Thirdly, the controls are not required to be of class C’ as in
Khalil’s result; piecewise constant controls are sufficient.

Theorem 1: If the equilibrium path is asymptotically stable
uniformly in u for (1), then, for V& >0 there exists a
piecewise constant control u(t) obtained using the

equilibrium path such that the distance between the
corresponding segments of the deployment and equilibrium
paths is less than & . Thus the deployment and equilibrium

paths are arbitrarily close, E(t) < &, t [0, 7].

Note: the equilibrium path, x,(u), is asymptotically
stable uniformly in u for (1) if for V& > 0 there exists
0 >0 such that for any equilibrium solution ( y,u y) on

path, if | then

xa—y||<5

the  equilibrium

||x(xa,t) — y|| <& and limx(x,,t)=y, where
t—00

x(x,,t) is the solution of X = f'(x,u,),x(0) = x,.

Proof: Consider an arbitrary & > 0. Let the equilibrium
path segment which is interior to the circle of radius &/4
centered at X; =x, be called C,. Let (x,,u;) be an

arbitrary equilibrium solution on C1 and X, an arbitrary
point on the segment of the equilibrium path between X,

o1
and X,, called x, . Clearly ma>§l||x1 — X, ” <e&l2.

Xe01 €Xe
Consider that the following control is applied:
u, =u,,t <0
u 01 (t) — i 0 (9)
u,tel0 T1.

Because X, is stable, there exists 0 < 0, < &/2 such that
<6, | -x|<e/2

for Vx, with ”)C1 -X,
where x:;l(t) is the solution of X = f(x,u,),x(0) =x,.
If ”)c1 —)CO||<51 then the choice X, =x, leads to

ngl(t) - X H <&/2, where x)'(f) is called the “01”

TuB16.5

segment of the deployment path. A justification that X, can

be selected such that ”)c1 - x0|| < 51 must be given. Indeed,

if none of the points on C, can be selected such that

||x1 —xO” <0,, then Vx, €C,, 06,(x,,¢)< ||x1 —x0||

leading to vli_l’)l)} 0, = 0. This cannot be true since C, is an
X=X

asymptotically stable branch for (1).
Now apply the triangle inequality to get

‘ < ngl (1) - x1” + ||x1 ~Xeo01

ngl (1) =X, |

<el2+ meu%l”x1 —xem” <&, Vtel0 T

Xe01E€Xe

(10)

Thus V& >0, (x,,u,) can be selected such that the
distance between the two segments of the deployment and
equilibrium paths, xgl (t) and xgl, respectively, is smaller
than &. Recall that asymptotical stability of X, means that
for V&, >0 T, can be selected (sufficiently large) such
that HXSI(TI) - xl” < &,. The situation is depicted in Figure
2.

Figure 2: Deployment (black) and equilibrium (red) paths segments
are within & distance from each other.

The process continues: let (x,,4,) be an equilibrium
solution on the equilibrium path in the direction of
(x,,u ). Like in the case of x|, there exists a segment of

C,, Vx, e C,

| < &/2, where X,, is an arbitrary point

the equilibrium path, such that

T —

Xe12 €Xe

on the segment of the equilibrium path between X, and x,,
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denoted by xiz . Consider the control

u,,t<0
u(t)=qu,,t€[0 T,]
u27te[Tl TZ]

(11

Because (X,,u,) is stable, there exists 0 <0, <&/2
such that if v, = x§' (1) < 8, [ () x| < £/2 1

is important to prove that sz - x0T, )H < 0, is possible.

Indeed, the triangle inequality yields (see Figure 2):

sz - xgl (7 )H < ”xz —X ” + H'xl - xgl (7 )H
(12)
<|x, = x| +e

and it is obvious that sz - x0T, )H can be made smaller

than O, by making 7; sufficiently large (because X, is
asymptotically stable). Like in the case of X, and O, it
selected such that

follows that X, can be

”)C2 — X, ” <0, —&,. Next, the triangle inequality yields

|<g,Vte[Tl T,].

‘ < chliz () - xz” + ”xz X2

ny (1) — X,

<&l2+ xmg;g”xz — X,

which proves that forVe >0, (x,,u,) can be selected

such that the distance between X, (f)and x.° is smaller

than &. Figure 3 illustrates the construction process.
The process continues until the final equilibrium,

(x,,u,), is reached, after N steps. Finally a piecewise

constant control is built which guarantees that the
deployment and equilibrium paths are within & distance,

ie. E(t)<¢&, tel0,7].

The constructive-proof presented in the above indicates
two important facts. Firstly, each time-interval [T} T} ;] must

k+1
( +)(Tk+l)_xk+l

(i.e. the terminal point of the previous segment of the

be sufficiently long such that Hxi; <&

deployment path must be sufficiently close tox,,,).

Secondly, each space-interval (i.e. ”xk =X ”) must be
sufficiently small which, by continuity arguments, results in
the conclusion that ”u P~ Ui ” must be sufficiently small.

These facts indicate that the closer the two paths are
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required to be (i.e. smaller& is desired) the longer the
deployment time and the more refined the controls should
be.

Even though this theorem gives a sufficient condition, the
result is obviously more general than the result of Khalil [8].

&2

Fig. 3: The process of constructing & -close deployment and
equilibrium paths.

IV. A CONDITION FOR QUASISTATIONARY DEPLOYMENT

In the following another important question, that of
quasistationary  deployment, will be addressed. The
deployment is considered quasistationary if for a fixed

n>0, ”)'Cd (l‘)” <n,Vt €[0,7]. The question of interest
is under what conditions there exists a control u(?) such that
”)'Cd (t)” <n,Vt€[0,7] (see [1] for motivations rooted

deeply in practical applications). The following theorem
provides sufficient conditions for this to happen.

Theorem 2: If the equilibrium path is asymptotically stable
uniformly in u for (1) and for any fixed u, f(x,u) is

Taylor series expandable in x, then for V77 > 0 there exists

a piecewise constant control, u(¢), obtained using the

equilibrium path such that |x, (1)]| < n, V1 €[0,7].

Proof: The condition ”xd (t)||<77 is equivalent to

”f(xd (t),u(t))” < 17. Theorem 1 shows that for V& > 0

a piecewise constant control can be applied to (1) such that
the deployment and equilibrium path segments are within &
distance from each other. Consider for example the first

deployment path segment, xgl(t). The Taylor series

expansion of f(x}' (£),u,) around x, yields
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f(xgl(l‘),ul) = f(x,u)+J,6(0)

14
+0(e,(0) Ve €[0,T, o

where (1) = x°'(f) = x,, J, =Zl(xl,ul); Oz, (1))
X

represents  terms  of  higher order in & ().
Since f(x,,u,) =0,

et @) <

[ flle. ] + HOQL‘?] (f))||2] <Ge+ke’. (15)

Here k is a positive constant and & is selected such that

_ of . .
O > maxo 6—(xe,ue) , where o (*) is the maximum
X

(xesthe)

singular value of * . In the above (xe ,ue) varies along the

entire equilibrium path, hence the maximum singular value
of the Jacobian is selected over the entire equilibrium path.
Since & can be made arbitrarily small by properly choosing
u; (see Theorem 1 and its proof) the desired result is
obtained: for any positive 77, u; can be selected such that

Hf(xgl(l‘),ul)u<77. The proof continues in a similar

fashion for the remainder of the deployment path. Finally, a
piecewise constant control wu(#) is constructed which

guarantees that Hf(xd (t),u(l‘))” <n.

The major implication of this result is that piecewise
controls are sufficient to achieve quasistationary
deployment. This shows that, for example in the case of a
structure’s deployment, the process can be conducted with
arbitrarily small generalized velocities (hence vibrations)
using only piecewise constant controls. This is a tremendous
advantage since discrete controls are easily generated using
digital technology.

With respect to the shortcomings of the two results
presented herein, it is worth mentioning that they are still
conservative, giving only sufficient conditions for arbitrarily
close deployment and equilibrium paths, and quasistationary
deployment, respectively. Hence one might expect that
acceptable results for practical applications (i.e. sufficiently
close deployment and equilibrium paths and sufficiently

small”)'c r (t)” ) are obtained under less restrictive conditions.

V. CONCLUSIONS

A method for the control of nonlinear systems in which
the key idea is to stay close to a preselected equilibrium path
is investigated. Basic tools from topology and mathematical
analysis are used to prove that if the equilibrium path is an
asymptotically stable branch for the “frozen” system,

TuB16.5

piecewise constant control laws can be built which
guarantee that the state space trajectory of the system (the
deployment path) is arbitrarily close to an equilibrium path.
A second result proved herein is that, if in addition, the
vector function is Taylor series expandable in the state
variables, the deployment can be conducted in a
quasistationary manner with arbitrarily small generalized
velocities. The piecewise constant controls are very
advantageous in practical applications, because they are easy
to generate.

The proofs give sufficient conditions, hence the results
are (still) conservative. Future research should look into
further relaxing the conditions presented in this paper.
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