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Abstract — Sufficient conditions for the state space 

trajectory of a system of ordinary differential equations 
(ODEs) to be arbitrarily close to an equilibrium path and for 
the evolution of the system to be quasistationary are proved 
using basic topology and mathematical analysis concepts. The 
conditions are less conservative than previously derived ones 
based on Lyapunov functions.  

I. INTRODUCTION 
N [1] a method which uses equilibrium paths was 
proposed for the control of nonlinear autonomous ODEs,  
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Here f(x,u) is a function of class Ck on (k>0), x, u, t 
are the state, control vectors, time, whereas X, U, and T are 
open sets in the n, m, and one dimensional real spaces, 
respectively. Note that for uniqueness of the initial value 
problem associated with (1),  f should be just Lipschitz in x. 

UX ×

The key idea is to control (1) such that its state space 
trajectory is close to an equilibrium path obtained by solving 
 

),(0 uxf= . (2) 
 
In [1] several advantages of such an approach for practical 
applications are discussed in detail. 

Assume that (2) can be solved for x as a continuous 
function of u:  
 

.:g ,0)),((),( ee XUuugfugx →==             (3) 
 
One situation when this is guaranteed is when the implicit 
function theorem applies: if  is a solution of (2) and ),( ii ux
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x
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=  is not singular, then there exist an open 

set Ue and an unique function g of class Ck on Ue, such that 

theorem is not r (2) to have a solution like in 
(3). 

In the above Ue is the largest domain (open and 
co

(3) holds and r the implicit function 
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nnected set in U) in which (2) can be solved for x as in 
(3). The g-image of Ue, Xe, is called the equilibrium set and 
it is also connected, but not necessarily open. Let ),( ff ux , 

ef Uu ∈ , be another solution of (3), and )(sue  be a  

ameterized by ],0[
curve

in eU  par τ∈s  which connects iu  and 

fu ith ie uu, w =)0( , fe uu =)(τ . Then )(sue s g-

ped ont riu () ugs = , with 

ie xx

 i

))(semap o an equilib m path, xe (
=)0( , fe xx =)(τ . 

lem  iThe prob  of interest s to control the evolution of the 
system between the two equilibrium states, ),( ii ux  and 

),( ff ux , such that its state space trajectory - which will 

ferred to as the deployment path - is close to the 
equilibrium path, as illustrated in Fig. 1. For this purpose the 
following strategy was proposed in [1]. The controls are 
fixed at ui and when the transition begins, at t=0, they start 
to vary along eu , )()( tutu e

also be re

= , Tt ⊂∈ ],0[ τ . When t  
reaches τ  the co ro  a red value: 
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he deployment path , is the solution of T , )(txd

 

iddd xxtuxfx == )0()),(,(& . (5) 
 

 the final equilibrium, , is asymptotically stable for 

the 

If fx

“frozen”, autonomous system, ),( fuxf
dt
dxx ==& , 

and )(τdx belongs to the region of a n 

the system’s trajectory will settle down, asymptot lly in 
time, to the desired final value, fx . The asymptotical 

stability of the final equilibrium, x is essential for the 

I 

ttraction of  the

application of this methodology. 
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g. 1: Deployment and Equilibrium Paths 

his methodology was easily extended to include 
piecewise c etizing the 
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onstant controls [2], by discr
uilibrium path and using the resulting controls to drive 

(1).  
In [1] several research questions were formulated with 

respect to this control strategy. Two of them are addressed 
here. Firstly, sufficient conditions for the state space 
trajectory to be close to the equilibrium path are proved. 
Secondly, sufficient conditions for the deployment to be 
quasistationary are proved. The proofs are constructive, 
result in piecewise constant controls, and use only basic 
concepts from topology and mathematical analysis. Hence, 
the conditions presented herein are less conservative than 
previous ones derived in [8] using Lyapunov functions.  

II. RELATED WORK 
Of the popular nonlinear systems control techniques 

resembles most the idea presen
ding mode control (see [3, 4, 5]) where the system’s state 

space trajectory is confined to a selected manifold. Control 
design reduces to finding the control law such that the 
system’s trajectory approaches and then stays on the 
manifold. Sliding mode control has a major advantage in 
that it has good robustness properties. The main 
disadvantage is the chattering induced by the repeated 
switching in the control law. In order to alleviate chattering 
“sliding mode with boundary layer” techniques have been 
proposed, in which the system is allowed to evolve within a 
given distance from the desired manifold (see [6]). The 
thickness of the boundary layer required to eliminate 
chattering depends on the magnitude of the switching gain 
used. A controller with high switching gain produces high 
amplitude of chattering and needs a thicker boundary layer. 
On the other hand, the switching gain value depends on the 
system’s uncertainties bounds: for a system with large 
uncertainties a thicker boundary layer is needed to eliminate 
chattering and the control system is changing to one without 
sliding mode. 

The proposed strategy is different from sliding mode in 
several essential features. Firstly, the manifold which is used 
in the proposed strategy is an equilibrium manifold (path), 
which, under mild conditions, is persistent under modeling 
perturbations. For example if the Jacobian of the “frozen 
system” is not singular along the equilibrium path, this path 

has no stationary bifurcations [7]. The persistence under 
perturbations property results in several advantages, a key 
one being good robustness properties of the control method.  

Secondly, the system’s state space trajectory is not 
required to stay on a manifold. It must only be sufficiently 
close to the equilibrium path. If this path is persistent under 

rturbations then, under modeling errors of a certain size, 
the system’s trajectory will remain close to the perturbed 
equilibrium path. This scenario resembles the “sliding mode 
with boundary layer” technique, however there are further 
fundamental differences which will be shortly revealed.  

Thirdly, the controls are allowed to take value only in the 
equilibrium path’s control set. As shown in the following, 
this facilitates satisfaction of the condition that the syste

te space trajectory is close to this equilibrium path.  

III. CLOSE DEPLOYMENT AND EQUILIBRIUM PATHS  

A key question is under what conditions (tx )d

arbitrarily close to the equilibrium path, )(txe , ],0[ τ∈t .  
Let the error function be defined as 
 

(()()()()( tugtxtxtxtE − ))eded =−= . (6) 

Khalil [8] addressed a very similar proble
of slowly varying systems. Theorem 9.3 an
[8 easily lead to the following result: if f(x,u) is sufficiently 
s

 
m under the topic 
d Lemma 9.8 in 

] 
mooth (at least of class C1), its derivatives satisfy certain  

conditions (see [8]), (2) has a branch, xe(u), of class C1 of 
isolated solutions,  exponentially stable uniformly in u for 
the “frozen system”, and the system is driven by an 
arbitrary control of class C1 such that ε≤)(tu& , then the 

error, E(t), is bounded by a term proportional to ε . Note: 
the “frozen system” is obtained by fixing

This shows that E(t) can be made ar all if the 
controls variation is sufficiently slow along the equilibrium 
path (in (4), 

 u in (1). 
bitrarily sm

ε≤)(tu& ). This was the idea pursue ed in [1]. 

Khalil’s results indicate that arbitrarily close equilibrium and 
deployment paths can be achieved with other controls also, 
which are not generated using the equilibrium path, because 
u(t) can be arbitrary. Because the proofs rely heavily on 
Lyapunov techniques, which are known to be conservative, 
the result is rather restrictive, as seen in the above.  

In this paper a more general result (Theorem 1 presented 
next) is proved which differs from Khalil’s results in three 
aspects. Firstly, the proof uses only basic concepts from 
to

x x

pology and mathematical analysis and does not rely on 
Lyapunov functions. Hence the conditions are less 
conservative. Secondly, it is not required that the 
equilibrium points of the equilibrium path are exponentially 
stable uniformly in u; asymptotical stability is shown to be 
sufficient. This is important because the exponential stability 
requirement is rather stringent and it is not always met in 
practical applications. Consider the following system: 
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whose equilibria, x (u)=u, are (globally) asymptotically 
stable but not exp

y investigating the solution of the initial value problem, 

e
onentially stable, as it can be ascertained 

b
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Thirdly, the controls are not re

Khalil’s result; piecewise constant controls are sufficient.  
 

T

quired to be of class C1 as in 

heorem 1: If the equilibrium path is asymptotically stable 
uniformly in u for (1), then, for 0>∀ε  there exists a 

stance between the 
piecewise constant control )(tu  obtained using the 
equilibrium path such that the i
corresponding segments of the deployment and equilibrium 
paths is less than 

d

ε . Thus the oyment and equilibrium 
paths are arbitrarily close, 

depl
ε<)(tE , ],0[ τ∈t .  

 
Note: the equilibrium p )(uath, , is asymptotically 

able uniformly in u for (1) if for 

xe

∀st 0>ε  there exists 
0>δ  such that for any equilib solution ( yuy, ) on 

the equilibrium path, if 

rium 

δ<x  then − ya
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),( txx  is the solution of xfx
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y xua ax== ,(& .  )0(),
 
Proof: Consider an arbitrary 0>ε . Let the equil m 

ath segm e circle of radius
ibriu

ent which is interio  p r to th 4/ε  
centered at 0xxi =  be calle . Let ),( 11 ux  be an 

arbitrary equilibrium solution on 1C  and 01ex  an arbitrary 

point on the t of the equil rium pa een 0x  

and 1x , called 01
ex .  Clearly 

d 1C

ibsegmen th betw

2/max 1
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∈xx
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Consider that the following control is applied: 
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Because  is stable, there ex1x ists 1 2/0 εδ <<  such that 

for  with ax∀ 1 , 1 δ<− axx 2/)( 1
1a ε<− xtxd  

where )txa  is the solution of axx(1
d xuxf == ),,( 1 )0(& . 

If 10 δ<x  then the choice 1x − 0xxa =  leads to 

2/)(01 ε<txd , where x ” 

seg oyment path.  A justi that 1x  can 

1− x )(01 td  is called the “01

ment of the depl fication 

be selected such that 101 <− xx ust be given. Indeed, 

if none of the points on 1C  can be selected suc that 
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dist een t o segments of the deploy  and 
quilib  and , respectiv aller 

uch that th
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e 01xe

than ε  Recall th ptotical stability of 1x  means that 

for 01 >
at asym

∀ε  T1 can be selected (sufficiently large) such 

that 111
01 )( ε<− xTd . The situation is depi ed in Figure 

2. 
 
 

x ct

 
Figure 2: Deployment (black) and equilibrium (red) paths segments 
are withinε  distance from each other. 
 

o  the di  of 
. Like in the case of there exists a segment of 

The process continues: let ),( 22 ux  be an equilibrium 
solution n the equilibrium path in

1x , 
rection

), ff ux(
the equilibrium path, 2C , such that 22 Cx ∈∀  

2/max 12 ε<− exx , whe 12ex  is an arbitrary point 

on the segment of the equilib m path between x , 

212
12 ∈xx ee
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riu 1 2x and 

d<ε1 
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riangle inequality yie  (see Figure 2): 

112

1
01

1121
01

2 )(

ε+−

−≤−

xx

xxTxx d
     

)(−+ Txx d
 (12) 

 
and it is obvious that  
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e made  smaller 

th 2δ  by making T1 sufficiently large (because  is 

 Like in the c
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asymptotically stable). ase of 1x  and 1δ , it 

2follo at  can be selected such that ws th x

1212 εδ −<−x .  Next, the triangle inequality yield  
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which proves that for

<

0>∀ε , ),( 22 ux  

)(12 txd and 

can 

such that the distance between  is smaller 
an

be selected 
12
ex

th  .ε  Figure 3 illu cess. 
nues u the f

steps. ly a

at the 

strates the construction pro
The process conti ntil inal equilibrium, 

),( ff ux , is reached, after N Final  piecewise 

const t control is built which guarantees than
deployment and equilibrium paths are within ε  distance, 
i.e. ε< , ],0[)(tE τ∈t . 

 
The constructive-proof presented in the above indicates 

two fac i tly, each time-interval [T ] must important ts. F rs  T

be fficiently long such that 
k k+1

su 111
)1( )( +++

+ <− kkk
kk

d xTx ε  

(i.e. the terminal point of the previous segment of the 
deployment path must be sufficiently close to x ). 

Secondly, each space-interval (i.e. 

1+k

1+kk xx ) must be 

sufficiently small which, by continuity arguments, res in 

−

the conclusion that
ults 

 1+− kk

These facts indicate that the closer the two paths are 

required to be (i.e. smaller

uu  must be sufficiently small. 

ε  is desired) the longer the 
deployment time and refined the controls should 
be.  

Even though this theorem gives a sufficient condition, the 
result is obviously more general than the result of Khalil [8].  

 the m

 
 
Fig. 3: The process of constructing 

ore 

ε -close deployment and 
equilibrium paths. 
 

In the following anot mportant question, that of 

 

IV. A CONDITION FOR QUASISTATIONARY DEPLOYMENT   
 

her i
q
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uasistationary deployment, will be addressed. The 
eployment is considered quasistationary if for a fixed

0>η , ].,0[,)( τη ∈∀< ttxd&  The question of interest 

is under what conditions there exists a control u(t) such that 
],0[,)( τη ∈∀< ttxd&  (see [1] for motivations rooted 

 The following theorem 
provides sufficient conditions for this to happen. 

rium path is asymptotically stable 
uniformly in u for (1) and for any fixed  u, ),( uxf  is 
Taylor series expandable in x, then for 0>∀

deeply in practical applicatio s).

 
Theorem 2: If the equilib

n

η  there exists 
a piecewise constant control, )(tu , obtained using the 

equilibrium path such that ].,τ  0[,)( η ∈∀< ttxd&

 
Proof: The condition η)(txd&  is equivalent to <

η<))(),(( tutxf . Thd e m 1 shows that for ore 0>∀ε  

a piecewise constant control 
the deployment and equilib gments are within 
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be applied to (1) such that 
 path se ε  

ther. Consider for example t 
deployment path segment, )(01 txd . The Taylor series 

expansion of )),(( 1
01 utxf d  around x1 yields 
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entire equilibrium path, hence the m  singular value 
of the Jacobian is selected o
Since 

singular  value of * . In the above ( )eu,  varies along the 

ver the e re equilibrium path. 
um

ε  can be made arbitrarily  properly choosi sm
f e d
all by
) th

ng 
u1 (see Theorem 1 and its proo esired result is 
obtained: for any positive η , u1 can be selected such that 

η<)),(( 1
01 utxf d . The proof continues in a similar 

fashion for the remainder of the deployment path. Finally,  a 
piecewise constant control u(t) is constructed which 
guarantees that η<))(),( tutd . 

 
The major implication of this result is that piecewise 

controls are sufficient to achieve quasistationary 
deployment. Th m

(xf

is shows that, for exa ple in the case of 
structure’s deployment, the process can be conducted with 
ar

a 

bitrarily small generalized velocities (hence vibrations) 
using only piecewise constant controls. This is a tremendous 
advantage since discrete controls are easily generated using 
digital technology. 

With respect to the shortcomings of the two results 
presented herein, it is worth mentioning that they are still 
conservative, giving only sufficient conditions for arbitrarily 
close deployment and equilibrium paths, and quasistationary 
deployment, respectively. Hence one might expect that 
acceptable results for practical applications (i.e. sufficiently 
close deployment and equilibrium paths and sufficiently 
small )(txd& ) are obtained under less restrictive conditions.  

V. CONCLUSIONS 
A m thod for the control of nonlinear systems in which 

the ke s to stay close to a preselected equilibrium path 

 

e
y idea i

is investigated. Basic tools from topology and mathematical 
analysis are uilibrium path is an 
as

 paths. 
In Proceedings of the Conference on Decision and Control, New 
Orleans, USA. 

[2] Sultan, C., 2008. Path planning using  paths. A 
robotics example. Poste NCO, Funchal, Portugal. 

used to prove that if the eq
ymptotically stable branch for the “frozen” system, 

piecewise constant control laws can be built which 
guarantee that the state space trajectory of the system (the 
deployment path) is arbitrarily close to an equilibrium path. 
A second result proved herein is that, if in addition, the 
vector function is Taylor series expandable in the state 
variables, the deployment can be conducted in a 
quasistationary manner with arbitrarily small generalized 
velocities. The piecewise constant controls are very 
advantageous in practical applications, because they are easy 
to generate.  

The proofs give sufficient conditions, hence the results 
are (still) conservative. Future research should look into 
further relaxing the conditions presented in this paper. 
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