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Abstract— In a recent paper we introduced a framework for
analysis and design of (possibly nonlinear) power factor (PF)
compensators for electrical systems operating in non–sinusoidal
(but periodic) regimes with nonlinear loads. In particular, under
the standard assumption that the generator is a voltage source
with no impedance, we characterized all nonlinear loads whose
PF is improved with a given nonlinear compensator. In this brief
note we use this framework to study the problem of passive PF
compensation of a classical half–bridge controlled rectifier (ter-
minated by a resistor) with non–sinusoidal generator voltage.
We give necessary and sufficient conditions for improvement of
PF with linear inductors or capacitors, which determine ranges
for the compensator parameters that depend on the rectifier
fire angle and the amplitude of the voltage source. Given the
“phase advance” operation of the rectifier it is expected that
capacitive compensation improves PF, it is however less obvious
that this can also be achieved (under some suitable conditions)
with inductors.

I. INTRODUCTION

The optimization of the energy transfer from an AC

generator to a load is a classical problem in electrical

engineering whose interest has been recently revitalized due

to the widespread use of nonlinear loads and switching

devices that add distortion to the signals. In a typical scenario

it is assumed that the source consists of a voltage generator

feeding a load and the problem is to design a compensator,

to be placed between the source and the load, to maximize

the power transmission efficiency. If the load is scalar linear

time–invariant (LTI) and the generator is ideal—that is, with

negligible impedance and fixed sinusoidal voltage—it is well

known that the optimal compensator minimizes the phase

shift between the sources voltage and current waveforms—

increasing the so–called sources power factor (PF) [1]. The

task of designing compensators that aim at improving PF

for nonlinear time–varying loads operating in non–sinusoidal

regimes is far from clear.

PF compensators can be implemented using passive ele-

ments [2], e.g., capacitor and inductor banks, or active filters

[3], [4], [5], [6]. In the latter case, it is assumed that the active

filter is a controlated current source, then a desired waveform

for the current is defined and compared with the actual signal

to generate an error that a compensator (usually an LTI one)

tries to drive to zero. The design of passive compensators

is typically done via, either a parametric minimization of
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a figure of merit established through the Fourier expansion

of the voltage and current waveforms, or using a “nonlin-

ear non–sinusoidal version” of the well–known concept of

reactive power of LTI circuits in sinusoidal regime, e.g.,

Budeanu’s reactive power [7]. Even though the deficiency

of Budeanu’s definition has been widely documented in the

circuits literature, see for example, [11], [12], because of its

extreme simplicity it still enjoys a widespread popularity.

In [8] we presented a new framework for analysis and

design of (possibly nonlinear) PF compensators for electrical

systems operating in non–sinusoidal (but periodic) regimes

with nonlinear time–varying loads. To develop the framework

we use the standard assumption that the impedance of

the voltage generator is negligible and assume the system

operates in a steady–state periodic regime. Under these

assumptions, the main result of [8] is the characterization

of all nonlinear loads whose PF is improved with a given

nonlinear compensator.1 In this brief note we illustrate the

application of this result to the practical problem of passive

compensation of a classical half–bridge controlled rectifier

(terminated by a resistor) with a non–sinusoidal source

voltage. We give necessary and sufficient conditions for

improvement of PF with linear inductors or capacitors, which

determine ranges for the compensator parameters that depend

on the rectifier fire angle and the amplitude of the voltage

source, and simulations results are presented to show the

performance of the proposed compensators.

II. A FRAMEWORK FOR ANALYSIS AND DESIGN OF PF

COMPENSATORS

In this section we briefly review the main results of [8]. We

refer the reader to this paper for further details. We consider

the classical scenario of energy transfer from an n–phase

ac generator to a load as depicted in Fig. 1. The voltage

and current of the source are denoted by the column vectors

vs, is ∈ R
n and the load is described by a (possibly nonlinear

and time varying) n–port system described by its admittance

operator Yℓ : vs → is.

We make the following assumptions:

Assumption A.1 All the signals in the system are periodic

with fundamental period T and belong to the space

L2[0, T ) := {x : [0, T ) → R
n | ‖x‖2

:=
1

T

∫ T

0

|x(τ)|2 dτ < ∞}

1Or its dual: characterization of all nonlinear compensators that improve
the PF for a given nonlinear load.
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Fig. 1. Circuit schematic of an n–phase ac generator with negligible
impedance connected to a (possibly nonlinear and time varying) load.
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Fig. 2. Circuit schematic of shunt PF compensation configuration.

where ‖·‖ is called the rms value of x and |·| is the Euclidean

norm.

Assumption A.2 The source is ideal, in the sense that vs

remains unchanged for all loads Yℓ.

Following standard convention [1] we define the PF of the

source as

PF :=
P

S
, (1)

where

P := 〈vs, is〉 =
1

T

∫ T

0

v⊤s (t)is(t) dt

S := ‖vs‖ ‖is‖

are the average and the apparent power, respectively. From

Cauchy-Schwartz inequality [13] it is clear that −1 ≤ PF ≤
1.

Compensation schemes are introduced to maximize PF.

A typical compensation configuration is shown in Fig. 2,

where Yc : vs → ic is the compensator admittance operator.

To avoid power dissipation, the compensator is restricted to

be lossless, that is, it should satisfy

〈vs, ic〉 = 〈vs, Ycvs〉 = 0. (2)

In the absence of a compensator is = iℓ and we conse-

quently define the uncompensated PF as

PFu :=
〈vs, iℓ〉

‖vs‖ ‖iℓ‖
. (3)

Obviously, the compensator Yc improves PF if and only if

PF > PFu.

The main result of [8] is contained in the proposition

below.

Proposition 1: Fix the signal vs and consider the

system of Fig. 2. The set of all lossless compensators Yc that

improve the power factor for a given Yℓ is given by

2〈Yℓvs, Ycvs〉 + ‖Ycvs‖
2 < 0. (4)

Dually, a given lossless compensator Yc improves PF for all

Yℓ that satisfy (4).

Proof: From Kirchhoff’s current law, is = ic + iℓ,

the relation ic = Ycvs, and the losslessness condition (2)

we have that 〈vs, is〉 = 〈vs, iℓ〉. Consequently, for a lossless

compensator,

PF =
〈vs, iℓ〉

‖vs‖‖is‖
.

From the expression above and (3) we have the following

chain of equivalences

PF > PFu ⇔ ‖iℓ‖ > ‖is‖

⇔ ‖iℓ‖
2 > ‖is‖

2

⇔ ‖iℓ‖
2 > ‖ic‖

2 + 2〈ic, iℓ〉 + ‖iℓ‖
2

⇔ 0 > ‖ic‖
2 + 2〈ic, iℓ〉

⇔ 0 > ‖Ycvs‖
2 + 2〈Ycvs, Yℓvs〉, (5)

where, to get the fourth equivalence, we have used is =
ic + iℓ.

Remark 1: In [8] an alternative formulation of the propo-

sition is given:

The compensator Yc improves PF if and only if the compen-

sated system with port variables (vs, is) is cyclo–dissipative

with respect to the supply rate w(vs, is) = (Yℓvs +
is)

⊤(Yℓvs − is). This result is immediately obtained from

the equivalences

‖iℓ‖
2 > ‖is‖

2 ⇔ 〈iℓ + is, iℓ − is〉 > 0

⇔

∫ T

0

w(vs(t), is(t))dt > 0,

where the latter inequality is precisely the definition of

cyclo–dissipativity [9]. This formulation reveals the key role

played by the physical property of cyclo–dissipativity. It also

shows that, in the spirit of the classical passivation procedure

for stabilization, the PF compensation problem can be recast

as one of cyclo–dissipasivation (with respect to the supply

rate given above).

Remark 2: From (1) and Cauchy-Schwartz we know that

PF = 1 if and only if vs and is are collinear—that is,

when the load is purely resistive. For scalar LTI RLC circuit

loads this fact reveals that the underlying mechanism for PF

improvement is one of energy equalization. Indeed, it is well
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Fig. 3. A semiconverter rectifier load.

known that the frequency response of the impedance of an

LTI RLC circuit (with nR resistors, nC capacitors and nL

inductors) may be written as

Ẑs(jω) = 1
|Îs(jω)|2

{2Pav(ω)

+4jω [HLav
(ω) − HCav

(ω)]}

where Ẑs(s) = V̂s(s)

Îs(s)
is the impedance of the circuit with

port variables (vs, is),

Pav(ω) =
1

2

nR
∑

q=1

Rq|Îq(jω)|2

HCav
(ω) =

1

4

nC
∑

q=1

Cq|V̂Cq
(jω)|2

HLav
(ω) =

1

4

nL
∑

q=1

Lq|ÎLq
(jω)|2,

are the power dissipated in the resistors, and the average

electric and magnetic energy stored in the load, respectively.

See, e.g., eq. (5.6) of [10]. Roughly speaking, we can then

say that the “distance” of the circuit with respect to a

“purely resistive” behavior is proportional to the difference

between the stored energies. The PF compensator may then

be viewed as an energy equalizer, which “adds” the required

electric or magnetic energy to bridge the energy differences.

Further discussion on this interpretation, and its limitation

for switching circuits, may be found in [8].

III. PASSIVE PF COMPENSATION OF A SEMICONVERTER

CONTROLLED RECTIFIER

In this section we consider the classical single–phase

semiconverter controlled rectifier load (terminated by a

resistor) shown in Fig. 3. Applying Proposition 1 we give

necessary and sufficient conditions for improvement of PF

of this load with linear inductors or capacitors.

We make the following reasonable assumptions on vs:
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Fig. 4. Waveforms for the semiconverter rectifier.

(A1) Is periodic of period T ∈ R+, that is, vs(t) = vs(t+T );
(A2) changes sign every half period, i.e., vs(kT ) =

vs(
kT
2 ) = 0 for all k ∈ Z+;

(A3) is non–negative in the first half–period and non–positive

in the second one, that is,

vs(t)







≥ 0, t ∈ [0, T
2 ]

≤ 0, t ∈ [T
2 , T ].

We also assume the firing angle α is constant and α < T
2 .

Under these conditions, the load can be modeled as a linear–

time varying resistor with admittance operator

iℓ(t) = (Yℓvs)(t) =

{

0, t ∈ Ik
1
R

vs(t), otherwise
(6)

where the time intervals Ik ⊂ R+ are defined as

Ik =

[

kT

2
,
kT

2
+ α

)

, k ∈ Z+.

See Figs. 4 and 5.

Proposition 2: Fix T ∈ R+ and 0 < α < T
2 and

consider the half–bridge rectifier of Fig. 3 with capacitive

and inductive compensators and vs verifying assumptions

A1, A2 and A3.
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Fig. 5. Time intervals Ik for the half–bridge rectifier.

(i) (Capacitive compensation) Let Yc = Cp, where C > 0
is the value of the capacitance and p := d

dt
. Then, for

all vs, ∃Cmax > 0 such that

PF > PFu, for all C < Cmax.

(ii) (Inductive compensation) Let Yℓ = 1
Lp

, where L > 0
is the value of the inductance. Assume vs is such that

φ2(α) + φ2

(

T

2
+ α

)

> φ2

(

T

2

)

+ φ2(T ), (7)

where φ is the inductors flux, that is,

φ(t) = φ(0) +

∫ t

0

vs(ζ) dζ.

Under these conditions, ∃Lmin > 0 such that2

PF > PFu, for all L > Lmin.

Furthermore, if (7) does not hold PF cannot be

improved with an inductor.

Proof: In both cases we will verify the third equivalence

in (5), that is,

PF > PFu ⇔ 0 > ‖ic‖
2 + 2〈ic, iℓ〉. (8)

(i) For capacitive compensation we have ic = Cv̇s. Hence,

PF > PFu if and only if

0 > ‖Cv̇s‖
2 + 2〈Cv̇s, iℓ〉. (9)

Now, since vs is periodic it admits a Fourier series expansion

vs(t) =

∞
∑

n=−∞

V̂s(n) exp(jnω0t), ω0 :=
2π

T
,

where V̂s(n) are the complex Fourier coefficients. Using the

properties of periodic signals [15], for the first right hand

term in (9) we have

C‖v̇s‖
2 = Cω2

0

∞
∑

n=−∞

n2|V̂s(n)|2. (10)

2The expressions of Cmax and Lmin are given in (11) and (12),
respectively.

On the other hand, we can evaluate the second right hand

term in (9) as

〈Cv̇s, iℓ〉 =
C

T

∫ T

0

v̇s(t)iℓ(t) dt

=
C

RT

[

∫ T
2

α

vs(t)v̇s(t) dt

+

∫ ⊤

T
2

+α

vs(t)v̇s(t) dt

]

=
C

2RT

[

v2
s

(

T

2

)

− v2
s(α)

+v2
s(T ) − v2

s

(

T

2
+ α

)

]

= −
C

2RT

[

v2
s(α) + v2

s

(

T

2
+ α

)]

where we have used (6) to get the second equation and the

fact that vs(T ) = vs

(

T
2

)

= 0 for the last one. Replacing that

last identity above, and (10) in (9), we see that PF > PFu

if and only if

v2
s(α) + v2

s

(

T

2
+ α

)

> RTCω2
0

∞
∑

n=−∞

n2|V̂s(n)|2.

The proof is completed noting that the inequality holds for

all C < Cmax with

Cmax :=
T

4π2R

v2
s(α) + v2

s

(

T
2 + α

)

∑∞
n=−∞ n2|V̂s(n)|2

. (11)

(ii) In the case of inductor compensation φ̇ = vs and 1
L

φ =
ic, where we recall that φ is the inductors flux. Hence,

〈ic, iℓ〉 =
1

L
〈φ, iℓ〉

=
1

RLT

[

∫ T
2

α

φ(t)φ̇(t)dt +

∫ ⊤

T
2

+α

φ(t)φ̇(t)dt

]

=
1

2RLT

[

φ2

(

T

2

)

− φ2(α)

+φ2(T ) − φ2

(

T

2
+ α

)

]

,

where we have used (6) to get the second equation. Now, in

order to fulfill (8) it is obvious that 〈ic, iℓ〉 must be negative,

which is true if and only if (7) is satisfied, this proves the

last statement of the claim.

On the other hand,

‖ic‖
2 =

1

L2
‖φ‖2.

Therefore, (8) holds for all L > Lmin with

Lmin :=
RT ‖φ‖2

φ2
(

T
2

)

− φ2(α) + φ2
(

T
2 + α

)

− φ2(T )
(12)

completing the proof.
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Inductor PF Improving PF?

4.25mH 0.141 No

8.5mH 0.271 No

17mH 0.352 Yes

34mH 0.343 Yes

68mH 0.324 Yes

TABLE I

POWER FACTOR USING DIFFERENT VALUES OF L

Remark 3: Proposition 2 shows that, for any (admissible)

waveform vs, PF will be improved with (sufficiently small)

capacitive compensation—where we underscore the qualifier

“for any”. This property is not very surprising given the

obvious “delay advance” action of the rectifier, illustrated

in Fig. 4. On the other hand, it is rather unexpected that

PF can also be improved with (sufficiently large) inductive

compensation, for source voltages vs such that the magnetic

energy stored in the inductor verifies (7). (We recall that

the energy stored in a linear inductor is equal to 1
2L

φ2.)

Observe that, due to the sign constraints imposed on vs,

φ(α) ≤ φ(T
2 ), while φ(T ) ≤ φ(T

2 + α). This means that

(7) will hold only if the largest part of the magnetic energy

is stored during the second half of the period.

Remark 4: Since the framework allows us to consider

nonlinear compensators is interesting to investigate if the

PF can be further improved using nonlinear capacitors or

inductors. For instance, for a nonlinear capacitor described

by q̇ = ic and vs = dH(q)
dq

, where q is the capacitor charge

and H(q) the stored electrical energy, we have

〈ic, iℓ〉 =
1

RT

[

H

(

q

(

T

2

))

+ H (q(T ))

−H(q(α)) − H

(

q

(

α +
T

2

))

]

and the question is how to select the energy function to

minimize this quantity. Another question of interest is the

physical realization of such devices that could, in principle,

be approximated with active filters. Current research is under

way along these directions.

IV. SIMULATION RESULTS

In this section we present some preliminary simulation

results to evaluate the performance of the proposed compen-

sators (inductor and capacitor). The converter parameters are

chosen as R = 10Ω, T = 0.02s and α = 0.0075s and the

voltage source is Vs = 280V cos(50πt). This corresponds to

PFu = 0.3014. Furthermore, Lmin = 17mH and Cmax =
128µF .

Tables I and II shows the values of the compensated PF for

different choices of L and C, above and below their critical

values. As expected the results are consistent with the terms

computed via (11) and (12), respectively.

Capacitor value PF Improving PF?

32µF 0.345 Yes

64µF 0.350 Yes

128µF 0.257 No

256µF 0.130 No

512µF 0.061 No

TABLE II

POWER FACTOR USING DIFFERENT VALUES C

V. CONCLUDING REMARKS AND FUTURE WORK

Using the framework developed in [8] we have analyzed

in this paper a practical example of a PF compensation

problem that includes nonlinear and switching phenomena,

namely, the semiconverter controlled rectifier. The analysis

is carried out for general periodic, but not necessarily

sinusoidal, source voltages. Although we restrict ourselves

to the simplest case of single–phase rectifier and linear

capacitive or inductive compensation, the analysis can be

easily extended to more general cases. We give physically

interpretable necessary and sufficient conditions for PF

improvement that may be used for the design of a passive

compensator—showing, in this way, the usefulness of the

proposed framework.

Several open questions are being currently investigated:

• Characterization of nonlinear switching loads whose PF

can be compensated with LTI inductors or capacitors—

for a suitable class of vs. As discussed in [8], and

also indicated here, this analysis corresponds to the

determination of loads that are cyclo–dissipative with

respect to supply rates v⊤s
∫

iℓ and v̇⊤s iℓ respectively.

• Definition of an “optimal” LC circuit for a given non-

linear load.

• Investigate the advantages of using nonlinear passive

compensation instead of linear, that is, to consider non-

linear capacitors and inductors as discussed in Remark

4. Also, the realization with active filters of a given

admittance Yc, for instance a nonlinear inductor with

a specified energy function, should be studied in the

future.

• At this point we have only given a test on whether

PF is improved or not. However, for practical purposes

a definition of a figure of merit to quantify the PF

improvement is needed. Also, we have concentrated

our attention on PF, with no explicit reference to the

harmonic pollution reduction. Even though it is obvious

that increasing PF will reduce the harmonic distortion,

it would be desirable to reveal some explicit relations

between the two objectives.

• It would be interesting to investigate the PF compensa-

tion abilities of active filters, which currently dominate

high–performance applications. Towards this end, we

can consider the diagram of Fig. 6 where the PF

compensator is a parallel active filter approximated by

an ideal voltage source e in series with an inductor with
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Fig. 6. Circuit schematic of a shunt active filter operating as a PF
compensator.

inductance Lf .

The voltage e represents the control law that, in practice,

will determine the position of the switches in the active

filter. Typically, the control objective in active filters is

to render is collinear with vs. Hence, an error signal

is − gvs is defined, where g is a desired equivalent

admittance for the compensated circuit, which is an

additional design parameter that maybe time varying

but we take here to be a positive constant. To try to

drive the error to zero an LTI filter is used, leading

to e = F (p)(is − gvs), where F (p) ∈ R(p)—which

are commonly taken to be PI or resonant filters. Unfor-

tunately, although it is possible in this case to define

the corresponding admittance operator Yc, this will not

be (in general) a lossless operator and the existing

framework does not apply.

• A big open question concerns our key assumption of

ideal source. It is not clear at this point how to even

formulate the problem when the impedance of the

generator cannot be neglected. Notice that in this case,

even if vs remains unchanged, due to the voltage drop in

the sources surge impedance the actual voltage applied

to the load changes is a function of ic.
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