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Abstract— The human immunodeficiency virus infection, that
causes acquired immune deficiency syndrome, is a dynamic
process that can be modeled via differential equations. In the
literature of control applications, model-based control methods
to boost the immune system by means of drug scheduling have
been reported. The control purpose is to steer the system to
an equilibrium condition, known as long-term nonprogressor,
which corresponds to an infected patient that does not develop
the symptoms of acquired immune deficiency syndrome. In
this paper we investigate methods to estimate the state of the
immune system based on the available outputs of the HIV
model. A nonlinear observer is designed and an approximate
observer is also given. Computer simulations are presented to
show the feasibility of the estimation methodology.

I. INTRODUCTION

The human immunodeficiency virus (HIV) causes ac-

quired immune deficiency syndrome (AIDS). In the HIV

positive patient the virus stays in the blood of the patient and

has a chance to encounter CD4 T-cells, which are important

components of the human immune system. An HIV-infected

CD4 T-cell does not fulfill its function in the immune system

and becomes a virus factory, making multiple HIV copies.

Therefore the number of CD4 T-cells decreases in the HIV-

infected patient. In 2006, the estimated number of people

infected with HIV worldwide was 39.5 million and more

than three-million people died of AIDS [14].

While HIV-infected patients are expected to develop

AIDS, the possibility of a long-term nonprogressor (LTNP)

is supported by the clinical data in [3], [10], and studied by

means of mathematical models1 describing the progress of

the HIV infection in [1], [15], [16]. LTNP is the status of a

patient who has HIV, but also a sufficient number of CD4

T-cells, so the immune system can fight off other infections.

The mathematical models in the literature, with no drug

input, have at least two asymptotically stable equilibrium

points, one of which corresponds to the AIDS status, while

the other corresponds to the LTNP status. The state of an

HIV positive patient is usually located in the region of

attraction of the equilibrium corresponding to the AIDS sta-

tus. Accordingly, HIV positive patients without medication

generally proceed to AIDS, so it makes sense to study drug

scheduling methods which drive the state of the patient into

the region of attraction of the LTNP status, where drug
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treatment can be stopped. This problem has been studied

with model predictive control methods in [17], [18], and a

control method based on the understanding of the boosting

mechanism of the immune response has been proposed in

[5], [6]. These works show that the state of a patient can be

successfully driven into the region of attraction of the LTNP.

The purpose of this research is to provide an observation

methodology for the immune system of the HIV patient

on the basis of available measurements. In this paper we

justify the state estimation idea from a theoretical perspective

and also show the applicability of this idea with numerical

simulations. Note that experimental verification by clinical

data is out of the scope of the paper.

The paper is organised as follows. In Section II we

describe the HIV dynamic model of [15], and results from

[6] are briefly summarised. Section III proposes a state esti-

mation method based on a nonlinear observer. The method

is illustrated by means of computer simulations. In Section

IV we suggest an alternative method to monitor the im-

mune status of the HIV infected patient taking into account

implementation issues. Finally, Section V describes some

future works, and discusses available measurements and their

relation with the states of the HIV model.

II. HIV MODEL AND OUTPUT FEEDBACK CONTROL

A. HIV Model

In this paper we consider the model from [15] described

by the equations

ẋ = λ − dx − ηβxy, (1)

ẏ = ηβxy − ay − p1z1y − p2z2y, (2)

ż1 = c1z1y − b1z1, (3)

ẇ = c2xyw − c2qyw − b2w, (4)

ż2 = c2qyw − hz2, (5)

where the states x, y, z1, w, z2 describe the populations of

specific cells in a unit volume of blood and therefore are

meaningful only when positive. In particular, x describes

the concentration of uninfected CD4 T-cells, y the con-

centration of infected CD4 T-cells, z1 the concentration of

helper-independent cytotoxic T lymphocytes (CTL), w the

concentration of CTL precursors, and z2 the concentration

of helper-dependent CTLs.

The quantity η describes the effect of the drug, possibly

varying between zero and one. In view of the presence of a

control input, η can be rewritten as

η(t) = 1 − η∗u(t),
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where η∗ is the maximum effect of the drug [18]. From

a control perspective the input u represents the drug dose,

which takes values between zero and one. If u = 1 a patient

receives maximum dose, while u = 0 means no medication.

Note that u is restricted to be either 0 or 1, because the

use of partially suppressive therapy, that is 0 < u < 1,

is problematic [18]. The remaining parameters λ, d, β, a,

p1, p2, c1, c2, q, b1, b2, and h are positive. For a detailed

explanation of the model see [15].

The model with u = 0 has five equilibrium points, three

of which are of interest, and are given in what follows [7].

Point A:

x(A) =
λ

d
, y(A) = 0, z1

(A) = 0, w(A) = 0, z2
(A) = 0.

Point B:

x(B) =
λc1

dc1 + b1ηβ
, y(B) =

b1

c1
,

z1
(B) =

ηβx(B) − a

p1
, w(B) = 0, z2

(B) = 0.

Point C:

y(C) =

c2(λ − dq) − b2ηβ −
√

[c2(λ − dq) − b2ηβ]2 − 4ηβc2qdb2

2ηβc2q
,

x(C) =
λ

d + ηβy(C)
, z1

(C) = 0, w(C) =
hz2

(C)

c2qy(C)
,

z2
(C) =

y(C)(c2ηβq − c2a) + b2ηβ

c2p2y(C)
.

In this paper we regard (1), (2) as the infection dynamics

and (3)-(5) as the immune system. Also, we use the same

parameters as in [18], namely λ = 1, d = 0.1, β = 1,

a = 0.2, p1 = 1, p2 = 1, c1 = 0.03, c2 = 0.06, q = 0.5,

b1 = 0.1, b2 = 0.01, h = 0.1, and η∗ = 0.9799. The initial

point for all simulations is also identical to one of those

used in [18], namely x(0) = 10, y(0) = 0.1, z1(0) = 0.1,

w(0) = 0.1, and z2(0) = 0.1. Note that this point represents

a newly infected patient.

B. Existing Results

Results from [6] are recalled in this subsection. Consider

the following output feedback control procedure.

Initialization: Select a sufficiently large positive number2

Ti. Let L1 = L1(x, y) = y − Cy and L2 = L2(x, y) =
y − (x − q) where y(C) < Cy < y(B). XI is the initial

condition of model (1)-(5).

STEP 1: (Preliminary Control Action)

Integrate model (1)-(5) with initial condition XI for Ti days

with full medication.

STEP 2: (The Control Law)

If L1 < 0 and L2 < 0, then u = 0. Otherwise, u = 1.

2Ti denotes the period of full medication preceding the application of
the proposed control scheme and driving the state to Point A.

The purpose of the output feedback is to boost the re-

sponse of the immune system in order to steer the system to

Point C, the LTNP status. This control idea stems from the

concepts of immune increasing factor and immune increasing

area introduced in [5].

Assumption 1: The parameters of the model (1)-(5) are

such that

d < a,
a

q
< β, aq < λ,

b1

c1
> max

{

λ

2βq
,
1

2

(

λ

a
− q

)}

,

b2

c2
< min

{

(
√

λ −
√

dq)2

β
,
1

4

(

λ

a
− q

)2
}

,

(1 − η∗)β < min

{

ad

λ
,
(a − d)c1

2b1

}

.

By Assumption 1 the components of Point C (the tar-

get state of this paper) are well-defined and positive [6].

Moreover the interpretation of Assumption 1 and the proofs

of the following propositions are given in [6]. Let X(t) =
[x(t), y(t), z1(t), w(t), z2(t)]

T and P = [0,∞)
5
.

Proposition 1: Consider the model (1)-(5). Assume As-

sumption 1 holds and u(t) = 1 for all t ≥ 0. Then all

trajectories with initial condition X(0) ∈ P converge to the

Point A.

Consider now the trapezoidal set3τ defined by the inequal-

ities y > 0, y < Cy , y < x − q, and x + y < λ
d

.

Proposition 2: Consider the model (1)-(5) with the input

u selected as in STEP 1. Then all trajectories of the model

enter the set τ in finite time.

Proposition 3: Consider the model (1)-(5) with the input

u selected as in STEP 2. Then the set τ is a positive invariant

set, i.e. all trajectories starting in τ remain in τ for all future

time t. In addition lim
t→∞

z1(t) = 0.

Assumption 1 requires a strongly effective drug and the

mathematical analysis in the paper is based on this as-

sumption. However the value of η∗ from [18] is such that

Assumption 1 does not hold. Nevertheless, in simulations

we use this value of η∗ to highlight the robustness of the

proposed methodology.

C. Simulations

Fig. 1 shows the results of the application of the output

feedback control with Cy = 0.5 and Ti = 20. In STEP 1 the

state moves sufficiently close to Point A and enters the set

τ . The control input becomes eventually zero and the patient

state converges to the LTNP status, i.e. to Point C. The top

graph of Fig. 1 shows that the (x, y) trajectory stays within

the set τ , which is the area enclosed by the dotted line.

Fig. 2 shows the result of the same control scheme applied

using a sample-and-hold device. The sample period Ts is

0.25 (day). Note that a sufficiently small Ts guarantees that

the (x, y) trajectory is such that y(t) < b1
c1

because Cy < b1
c1

.

3The conditions in Initialization guarantee that Point C and Point B are
located inside and outside of the set τ , respectively.
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Fig. 1. Results of the application of the control procedure of Section II-B to
model (1)-(5). The top graph shows the state trajectory in the (x, y)-plane.
The (x, y) trajectory stays within the set τ , and converges to the Point C.

Fig. 2. Results of the application of the control procedure of Section II-B
with a sample-and-hold device.

In these figures the solid line indicates the (x, y) trajectory,

and the area enclosed by the dotted line corresponds to the

set τ . Also, π0 and π200 indicate the projection into the

(x, y)-plane of the initial state and the state after 200 days,

respectively. πA and πC correspond to the projection into

the (x, y)-plane of Point A and Point C, respectively. Note

that the projection of Point B (i.e. πB) is not located in the

range of these figures.

III. STATE ESTIMATION OF IMMUNE SYSTEM

In this section we suggest a state estimation method for

the immune states in model (1)-(5). The method is aimed

to be used during the control STEP 2. Note that we do not

need any state estimation during STEP 1 because we know

the state converges to Point A by Proposition 1. Also, in

STEP 2, z1 does not need to be estimated because it goes to

0 by Proposition 3.

A. Nonlinear Observer Design

Lemma 1: Consider model (1)-(5) and assume that As-

sumption 1 holds. Then x(t) + y(t) < λ
d

for all t > Tf , for

some Tf > 0.

Lemma 1 implies that even if the initial condition of (x, y)
is located outside the right-angled triangle shown in Fig. 3,

the point (x(t), y(t)) enters the shaded triangle after a while,

and then remains within this triangle.

Theorem 1: Consider the model (1)-(5). Assume that

Assumption 1 holds, z1(t) is sufficiently small4 for all t,

and the states x and y are the system outputs and are twice

differentiable. Then the states of the system

˙̂w = K(x, y)ŵ + Lwγw − Lwŵ, (6)

˙̂z2 = c2qyγw + Lz2
γz2

− (h + Lz2
)ẑ2, (7)

where K(x, y) = c2xy − c2qy − b2, Lw > K(1
2

(

λ
d

+ q
)

,
1
2

(

λ
d
− q

)

), Lz2
> −h,

γz2
= γz2

(x, ẋ, y, ẏ) =
λ − dx − ay − ẋ − ẏ

p2y
,

and

γw = γw(x, ẋ, ẍ, y, ẏ, ÿ) =
1

c2qp2y2
×

[(

h − ẏ

y

)

(λ − dx − ay − ẋ − ẏ) − (dẋ + aẏ + ẍ + ÿ)

]

,

converge to the states of the system (4), (5) exponentially.

Proof: By Lemma 1 the point (x, y) enters the shaded

triangle in Fig. 3, where the function K(x, y) is bounded by

K(1
2

(

λ
d

+ q
)

, 1
2

(

λ
d
− q

)

) (see Fig. 3). By (1), (2), and the

assumption on z1(t), γz2
(x, ẋ, y, ẏ) = z2. Then, by (5), the

function γw(x, ẋ, ẍ, y, ẏ, ÿ) is such that

1

c2qp2y

[

h

y
(λ − dx − ay − ẋ − ẏ)−

(

ẏ

y2
(λ − dx − ay − ẋ − ẏ) +

1

y
(dẋ + aẏ + ẍ + ÿ)

)]

=
1

c2qp2y

[

h
1

y
(λ − dx − ay − ẋ − ẏ)

+
d

dt

(

1

y
(λ − dx − ay − ẋ − ẏ)

)]

=
1

c2qy
(hz2 + ż2) = w.

Hence, from (6) and (7),

˙̂w = K(x, y)ŵ + Lw(w − ŵ),

˙̂z2 = c2qyw + Lz2
(z2 − ẑ2) − hẑ2.

Consider now the errors

ew = w − ŵ,

ez2
= z2 − ẑ2,

4During the proposed drug treatment z1(t) decreases exponentially by
Proposition 1 and Proposition 3. Consequently z1(t) becomes negligible as
time goes by.
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Fig. 3. Proof of Theorem 1. K(x, y) = c2xy − c2qy − b2 and

KMAX = K( 1

2

(

λ

d
+ q

)

, 1

2

(

λ

d
− q

)

). The shaded right-angled triangle

is an attractive region by Lemma 1.

and note that

ėw = K(x, y)(w − ŵ) − Lw(w − ŵ)

= (K(x, y) − Lw) ew.

Thus ew converges to 0 exponentially because Lw >

K(1
2

(

λ
d

+ q
)

, 1
2

(

λ
d
− q

)

). Similarly,

ėz2
= −hz2 − Lz2

(z2 − ẑ2) + hẑ2

= −(h + Lz2
)ez2

,

with Lz2
> −h. Hence the state of system (6), (7) converges

to the state of system (4), (5) exponentially.

In Theorem 1 we assign a sufficiently high gain Lw to the

nonlinear observer (6), (7) to make the error dynamics expo-

nentially stable. However we can have a different observer

by using a function Lw(x, y), instead of a constant Lw, as

shown in the following corollary.

Corollary 1: Under the assumptions of Theorem 1, the

state of the system

˙̂w = K(x, y)ŵ + Lw(x, y)γw − Lw(x, y)ŵ,

˙̂z2 = c2qyγw + Lz2
γz2

− (h + Lz2
)ẑ2,

where Lw(x, y) = c2xy − c2qy − L∗

w, with L∗

w < b2,

converges to the state of system (4), (5) exponentially.

B. Simulations

Two simulations of the nonlinear observer have been

carried out for the examples from Section II-C. We use

the ODE command of MATLAB to solve the differential

equations numerically and the time ranges of the graphs are

selected to show the performance of the observer clearly.

Note that the output of this observer is not used in the

feedback control loop (see Fig. 4). The purpose of the

observer is to monitor the immune system.

Fig. 5 shows the behaviour of the nonlinear observer (6),

(7) in the interval [50, 100] for the case in Fig. 1. The initial

Fig. 4. Diagram describing the connections of the HIV model, the
controller, and the nonlinear observer. The block inside the dotted-line
indicates the HIV dynamics (1)-(5), which consist of two subsystems, the
infection dynamics and the immune system.

Fig. 5. State histories of the nonlinear observer (6), (7) for the example
in Fig. 1 for the time interval [50, 100]. w(t) and z2(t) of model (1)-(5)
are depicted with dotted lines in the first and third graph, respectively.

condition (ŵ(50), ẑ2(50)) is (50, 3), and the observer gains

Lw and Lz2
are both equal to 10. Note that the value of

K(1
2

(

λ
d

+ q
)

, 1
2

(

λ
d
− q

)

) is 1.3438.

From the assumptions of Theorem 1, the observer (6), (7)

cannot guarantee good performance in the interval [20, 50],
because this interval includes too many switches between 0
and 1 of the input function u(t). The switching renders ẋ

and ẏ discontinuous, by (1) and (2), which implies that ẍ

and ÿ are not defined.

However we can apply the observer (6), (7) in the time

interval [20, 200] for the case in Fig. 2, because this case

has only a few input switching instants and we can integrate

the observer piece by piece for each period in which the

input is constant. Note that constant input u implies twice

differentiable system outputs, x and y, by (1) and (2). Fig. 6

shows ŵ and ew, particularly in the interval [26, 38]. ẑ2 and

ez2
are not shown in the figure, and the observer gain Lw is
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Fig. 6. State histories of the nonlinear observer (6), (7) for the example
in Fig. 2 for the time interval [26, 38]. w(t) is depicted by the dotted line
in the top graph. ew and a rescaled u(t) are presented in the second graph.
Note that the time range of the bottom graph is [20, 200].

1.5. The third graph in the figure confirms the performance

of the observer in the whole time period, [20, 200].

IV. STATE INFERENCE OF IMMUNE SYSTEM

Although the system (6), (7) is a nonlinear observer for

the immune system, we need to consider an alternative state

estimation method because the continuous output injection

in (6), (7) is hardly implementable in practice. In fact, the

levels of x and y are measured at discrete time instants from

patient’s blood sample (see Section V-B for more discussion

on HIV measurements). This implies that we cannot use the

observer (6), (7) which requires ẋ, ẍ, ẏ, and ÿ. The method

in this section relies on approximations hence we use the

terminology, state inference.

Firstly, we infer z2(t) for the example in Fig. 2, where

x and y are measured every 0.25 day. The approximation

idea stems from [12]. We can approximately calculate ẋ

and ẏ from two samples of x and y, respectively. Also

approximation ẍ and ÿ can be obtained from three samples

of x and y, respectively.

We assume that z1 is sufficiently small, because y(t) is

such that y(t) < b1
c1

. Then, by (1) and (2),

z2 =
λ − dx − ay − ẋ − ẏ

p2y
,

and the inference of z2, denoted by z̃2, is plotted in Fig.

7. In the first graph, the solid line corresponds to z2(t)
from the model (1)-(5) and the points depict z̃2, at every

0.25 (day) in the time interval [26, 38]. The second graph

shows the error between z2 and z̃2 from the first graph. The

last graph presents the overall performance of the inference

method in the time interval [20, 200]. We see that discrete-

time measurements of x and y can be used to estimate the

level of z2.

w is inferred using the same method. By equation (5)

w =
1

c2q

(

ż2 + hz2

y

)

,

Fig. 7. State inference of z2 for the example in Fig. 2 with 1 sample each
0.25 (day) period. In the top graph, z̃2 is the inference of z2. z̃2 is given
by points at each 0.25 (day), while z2 is shown with the solid line.

Fig. 8. State inference of w for the example in Fig. 2 with 4 samples each
0.25 (day) period. In the top graph w̃ is the inference of w. w̃ is given by
points at each 0.25 (day), while w is shown with the solid line.

and an approximation of ż2 is obtained from z̃2. However

z̃2 is oscillating in the interval [26, 36], which makes the

inference of w unreliable in this interval. This oscillation is

caused by the switching of the input u between 0 and 1. If

the input u is changed from 1 to 0 (or vice versa) at a certain

instant, then z̃2 is not reliable by (1) and (2), because ẋ and

ẏ are not continuous.

To overcome this problem in z̃2, we apply the method

used in the previous section. By multiple measurements in

each period, where the input u is guaranteed to be constant,

we reliably obtain not only z̃2 but also w̃, i.e. the inference

of w, as shown in Fig. 8. From the ideas in [12], three

measurements of x and y are needed to approximate ẍ and

ÿ, respectively, although we use four measurements to infer

w̃ in Fig. 8.

V. CONCLUSION

We have presented two estimation methods to monitor the

immune status in a HIV dynamic model. In particular, the
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second method allows us to infer the states of the immune

system using only three (or four) measures of x and y if

the system parameters are known. We complete the paper

with further remarks as well as a discussion on current HIV

measurements.

A. Further Remarks

1) The function γw in Theorem 1 does not depend on the

w dynamics (4) except for c2 and q which are scaling

factors. Thus we do not need any information on (4)

in order to know the trend of w. This implies that we

can use extremum seeking methods for the boosting of

the immune term w regardless of (4), which will be the

subject of future research.

2) The control example in Fig. 2 requires four HIV mea-

surements in a day, which means the patient’s blood

must be sampled every 6 hours. This is hard to be

achieved practically. However this frequent sampling is

not needed in all the time interval [20, 200]. In other

words, we need a 0.25 (day) sampling period only for

the first few days in order for the HIV patient to be

driven into the region of attraction of the LTNP. For

example, if we assign 0.25 (day) sampling period in the

interval [20, 28), 1 (day) period in the interval [28, 35),
and 7 (day) period in the interval [35, 200], then the

immune system of the patient is boosted enough to be

in the region of attraction of LTNP. (This result is not

presented in this paper.)

3) Although we obtain an input function u(t) to enhance

the immune system of the HIV patient, the implementa-

tion of u(t) in the human body should be studied with

care. In this paper we assume that u(t) is a square

wave. However, the dynamics of drug effect in the

human body cannot be assumed to be a square wave.

Further modeling of the drug delivery dynamics must

be included in the model (1)-(5).

4) While the high gain observer (6), (7) shows exponen-

tially stable error dynamics by Theorem 1, measure-

ment noise and model uncertainty problems should be

researched for the observer in future works. Also the

cases in which Assumption 1 does not hold should be

considered in future research.

B. Discussion on HIV Measurement

In [7] we have assumed that the states x and y are

clinically measurable by means of polymerase chain reaction

(PCR) test and flow cytometry. PCR returns the level of HIV

loads while a flow cytometer counts the level of CD4 T-cells

(see [8], [11] for more information on PCR). The population

of HIV is not explicitly shown in the model (1)-(5)5, and the

y state corresponds to infected CD4 T-cell in model (1)-(5).

The state y is approximately considered as proportional to

the HIV load [4], [15], because the turnover of HIV is much

faster than that of y [13].

Although we have assumed that x corresponds to the

CD4 T-cells measured by a flow cytometer in [7], different

5See [16] for a model including the population of HIV explicitly.

assumptions are claimed in [1] because the result from flow

cytometer could include the number of infected CD4 T-

cells as well as uninfected CD4 T-cells. Nevertheless we can

measure the number of infected CD4 T-cell y with the help

of PCR.

To this end, firstly we must separate white blood cells from

blood sample of the HIV patient by Ficoll-Hypaque method

[9]. The PCR measures the number of HIV genome [2], and

an infected CD4 T-cell has the HIV genome in its cellular

DNA. Consequently, if we do PCR with the separated white

blood cells, then we can count only the number of infected

CD4 T-cells y and we obtain the number of healthy CD4

T-cells x by subtracting y from the CD4 count x+y of flow

cytometry.
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