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Abstract— This paper considers two-dimensional (2D) differ-
ential linear systems recursive over the upper right quadrant
described by well known state-space models. Included are
differential linear repetitive processes which evolve over a
subset of the upper right quadrant of the 2D plane. In
particular, information propagation in one direction only occurs
over a finite duration and is governed by a matrix differential
linear equation. A stability theory exists for these processes but
there has also been work which has led to the assertion that
this is too strong in many cases of applications interest. This
paper develops strong practical stability for differential linear
repetitive processes as a possible alternative in such cases. Also
stabilizing control law design algorithms are developed as the
first step towards applying this new stability analysis to physical
examples.

I. INTRODUCTION

The unique characteristic of a repetitive, or multipass [1],

process is a series of sweeps, termed passes, through a set of

dynamics defined over a fixed finite duration known as the

pass length. On each pass an output, termed the pass profile,

is produced which acts as a forcing function on, and hence

contributes to, the dynamics of the next pass profile. This, in

turn, leads to the unique control problem in that the output

sequence of pass profiles generated can contain oscillations

that increase in amplitude in the pass-to-pass direction.

To introduce a formal definition, let α < +∞ denote the

pass length (assumed constant). Then in a repetitive process

the pass profile yk(t), 0 ≤ t ≤ α, generated on pass k acts as

a forcing function on, and hence contributes to, the dynamics

of the next pass profile yk+1(t), 0 ≤ t ≤ α, k ≥ 0.

Physical examples of these processes include long-wall

coal cutting and metal rolling operations [1]. Also in recent

years applications have arisen where adopting a repetitive

process setting for analysis has distinct advantages over

alternatives. Examples of such algorithmic applications in-

clude classes of iterative learning control schemes [2] and

iterative algorithms for solving nonlinear dynamic optimal

stabilization problems based on the maximum principle [3].

In this latter case, for example, use of the repetitive process

setting provides the basis for the development of highly

reliable and efficient iterative solution algorithms and in the

former it provides a stability theory which, unlike many

alternatives, provides information concerning an absolutely
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critical problem in this application area, i.e. the trade-off

between convergence and the learnt dynamics.

Attempts to control these processes using standard (or 1D)

systems theory and algorithms fail (except in a few very

restrictive special cases) precisely because such an approach

ignores their inherent 2D systems structure, i.e. information

propagation occurs from pass-to-pass (k direction) and along

a given pass (t direction) and also the initial conditions

are reset before the start of each new pass. To remove

these deficiencies, a rigorous stability theory has been de-

veloped [1] based on an abstract model of the dynamics in

a Banach space setting which includes a very large class of

processes with linear dynamics and a constant pass length

as special cases. Also the results of applying this theory

to a range of sub-classes, including the differential linear

repetitive processes considered here, have been reported [1].

Recognizing the unique control problem, the stability

theory for linear repetitive processes is of the bounded

input bounded output (BIBO) form, i.e. bounded inputs

are required to produce bounded sequences of pass profiles

(where boundedness is defined in terms of the norm on

the underlying Banach space). Moreover, it consists of two

concepts, one of which is defined over the finite pass length

and the other is independent of this parameter. In particular,

asymptotic stability guarantees this BIBO property over the

finite and fixed pass length whereas stability along the pass is

stronger since it requires this property uniformly (and hence

it is not surprising that asymptotic stability is a necessary

condition for stability along the pass).

If asymptotic stability holds for a differential linear repet-

itive process then any sequence of pass profiles it generates

converges in the pass-to-pass direction to a limit profile

which is described by a 1D differential linear systems state-

space model. This fact has clear implications for the design

of control schemes. Moreover, the condition for asymptotic

stability is very easy to test whereas one of the extra for

stability along the pass is much more involved and also

its frequency domain interpretation raises the question of

whether or not asymptotic stability alone would be sufficient

for many practically relevant cases. The answer for differen-

tial processes is no but it may be acceptable to use strong

practical stability which we develop here as an alternative to

stability along the pass.

Throughout this paper, the null and identity matrices with

the required dimensions are denoted by 0 and I respectively.

Moreover, M > 0 (< 0) denotes a real symmetric positive

(negative) definite matrix, Sym{M} is used to denote M +
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MT , and (⋆) is used to denote block entries in the symmetric

Linear Matrix Inequalities (LMIs) which are the means by

which the necessary computations can be completed for a

given numerical example.

II. STRONG PRACTICAL STABILITY ANALYSIS

The state-space model of a differential linear repetitive

process [1] has the following form over 0 ≤ t ≤ α, k ≥ 0

ẋk+1(t) = Axk+1(t) + Buk+1(t) + B0yk(t),
yk+1(t) = Cxk+1(t) + Duk+1(t) + D0yk(t).

(1)

Here on pass k, xk(t) is the n × 1 state vector, yk(t)
is the m × 1 pass profile vector and uk(t) is the l × 1
vector of control inputs, and α < ∞ is termed the pass

length. To complete the process description, it is necessary

to specify the boundary conditions i.e. the state initial vector

on each pass and the initial pass profile (i.e. on pass 0).

For the purposes of this paper, no loss of generality occurs

from assuming state initial vectors of the from xk+1(0) =
dk+1, k ≥ 0, where the n×1 vector dk+1 has known constant

entries, and initial pass profile y0(t) = f(t), where f(t) is

a known vector over 0 ≤ t ≤ α.
The stability theory [1] for linear repetitive processes is

based on an abstract model in a Banach space setting which

includes a wide range of such processes as special cases,

including those described by (1). In terms of their dynamics

it is the pass-to-pass coupling (noting again their unique

feature) which is critical. This is of the form yk+1 = Lαyk,
where yk ∈ Eα (Eα a Banach space with norm || · ||) and

Lα is a bounded linear operator mapping Eα into itself. (In

the case considered here Lα is a differential linear systems

convolution operator.)

Asymptotic stability, i.e. BIBO stability over the fixed

finite pass length α > 0, requires the existence of finite

real scalars Mα > 0 and λα ∈ (0, 1) such that ||Lk
α
|| ≤

Mαλk
α
, k ≥ 0, where || · || also denotes the induced operator

norm. For processes described by (1) it has been shown

elsewhere (see, for example, Chapter 3 of [1]) that this

property holds if, and only if, all eigenvalues of the matrix

D0 have modulus strictly less than unity — written here

as r(D0) < 1 where r(·) denotes the spectral radius of its

matrix argument.

Suppose that r(D0) < 1 and the input sequence applied

{uk+1}k converges strongly as k → ∞ (i.e. in the sense of

the norm on the underlying function space) to u∞. Then the

strong limit y∞ := limk→∞yk is termed the limit profile

corresponding to this input sequence and its dynamics are

described by

ẋ∞(t) = (A + B0(I − D0)
−1C)x∞(t) (2)

+ (B + B0(I − D0)
−1D)u∞(t),

y∞(t) = (I − D0)
−1Cx∞(t)

+ (I − D0)
−1Du∞(t),

x∞(0) = d∞,

where (again a strong limit) d∞ := limk→∞ dk. In physical

terms, this result states that under asymptotic stability the

repetitive dynamics can, after a “sufficiently large” number of

passes have elapsed, be replaced by those of a 1D differential

linear system. This fact has clear implications in terms of the

control of these processes — see [1] for a detailed treatment

of this point.

Asymptotic stability does not guarantee that the limit

profile has acceptable along the pass dynamics since it can be

unstable in the 1D linear systems sense. A simple example

here is the case when A = −1, B = 1, B0 = 1 + β, C =
1,D = D0 = 0, where β > 0 is a real scalar. Hence if β > 0
the limit profile for this proces is unstable.

If we wish to prevent cases such as the above example

from arising, one route is to demand the BIBO property for

any possible value of the pass length (mathematically this

can be analyzed by letting α → ∞). This is the stability

along the pass property which requires the existence of

finite real scalars M∞ > 0 and λ∞ ∈ (0, 1) such that

||Lk
α
|| ≤ M∞λk

∞, k ≥ 0. For the processes considered here

this requires that (i) r(D0) < 1 (asymptotic stability), (ii)

all eigenvalues of A have strictly negative real parts, and

(iii) all eigenvalues of the transfer-function matrix G(s) =
C(sI − A)−1B0 + D0 must lie inside the unit circle in the

complex plane for all s = ıω, ω ≥ 0. In the case of the

numerical example above it is this last condition which fails.

Stability along the pass for linear repetitive processes

demands that the signals involved are uniformly bounded

when both independent variables (k and t) are of unbounded

duration. As noted above, this requires r(G(ıω)) < 1, ω ≥ 0,
which, as discussed in more detail at the end of this section,

is a very strict condition. Strong practical stability relaxes

this by removing the uniform boundedness requirement as

both k → ∞ and α → ∞ but still demands it when (i)

both k and α are finite, (ii) the pass index k → ∞ and

the pass length α finite, and (iii) the pass index k is finite

and the pass length α → ∞. Also cases (ii) and (iii) here

have practical relevance which we discuss next in terms of

a robotic system.

Consider the case of a gantry robot whose task is to collect

an object from a location and place it on a moving conveyor

belt after a finite time has elapsed, then return to the original

location to pick up the next one and so on. Then this is

an obvious application for iterative learning control [2], and

hence repetitive process theory, in that the return journey

can be used to update the control law using previous pass

information to sequentially improve performance. Case (ii)

here is a mathematical formulation of the desire to execute

this operation a very large number of times without the

need to stop and hence lose throughput. Case (iii) is the

mathematical formulation where the process completes a

finite number of passes but the pass length is ‘very long’ and

there is a requirement to control the along the pass dynamics.

Next we analyze these two cases in turn.

Consider the case of t = 0 with zero state initial vector

sequence and zero control input vector. Then yk(0) =
Dk

0y0(0) and hence we require r(D0) < 1. Under this

condition, i.e. asymptotic stability, we achieve the limit

profile (2) as k → ∞ that is stable when the eigenvalues
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of A + B0(I − D0)
−1C have strictly negative real parts.

These are necessary conditions for strong practical stability.

Consider now any finite k. Then clearly (consider the

case when there is no previous pass profile contribution)

we require that all eigenvalues of the matrix A have strictly

negative real parts. Also as t → ∞

yk+1(∞) =
(
−CA−1B0 + D0

)
yk(∞), (3)

and hence we require r(−CA−1B0 +D0) < 1. In summary,

therefore, strong practical stability requires the following

conditions to hold

[a] r(D0) < 1,

[b] all eigenvalues of the matrix A have strictly nega-

tive real parts,

[c] all eigenvalues of the matrix A + B0(I −D0)
−1C

have strictly negative real parts, and

[d] r(−CA−1B0 + D0) < 1.

To explain the basic difference between asymptotic sta-

bility, strong practical stability and stability along the

pass, first note that G(0) = −CA−1B0 + D0 and also

lim|s|→∞ G(s) = D0. Consider also the case when there is

zero control input and the state initial vector on each pass is

zero. Then in Laplace transform terms yk(s) = Gk(s)y0(s).
Now set s = ıω and consider, for simplicity, the single-input

single-output case and then yk(ıω) = Gk(ıω)y0(ıω), k ≥ 0.
Hence stability along the pass requires that each frequency

component of the initial pass profile is attenuated from pass-

to-pass, asymptotic stability (i.e. r(D0) < 1) only requires

this at high frequencies, and strong practical stability at both

high and low frequencies together with conditions [b] and [c]

above.

In terms of design to track a given reference vector,

imposing the requirement for stability along the pass means

that the control law must achieve the required level of

attenuation over the complete frequency range and this, by

comparison with the 1D systems case, is most likely to

result in a very difficult design problem. In such cases,

strong practical stability may lead to acceptable design,

especially for applications where an unstable limit profile is

not acceptable and/or some control is required over the along

the pass dynamics. Note also that applications do exist where

asymptotic stability is all that is required or can be achieved.

III. LMI BASED STABILITY TESTS

The conditions for strong practical stability can, assuming

no numerical problems with computing the eigenvalues of

the matrices involved, be easily checked for a given example.

Suppose, however, that the task is to ensure this property, by

application of a control law (see also the next section) of the

form

uk+1(t) = K1xk+1(t) + K2yk(t), (4)

which is a combination of current pass state feedback plus a

feedforward term from the previous pass profile (in keeping

with the fact that use of only current pass state or pass

profile vector activated control laws cannot stabilize the

process dynamics in all but a few restrictive special cases).

Then when this control law is applied the process state-

space model matrices A, B0, C, D0 are mapped to A +
BF,B0 + FK2, C + DK1, and D0 + DK2 respectively.

Hence design to satisfy conditions [a] and [b] for the

controlled process is simply the 1D pole placement problem

for differential and discrete linear systems respectively. The

case for conditions [c] and [d] is far from clear and hence

as a preliminary step to overall control law design we make

novel use of results from 1D singular differential and discrete

linear systems theory for the state-space models

Eẋ(t) = Âx(t) + B̂u(t),

y(t) = Ĉx(t) + D̂u(t), (5)

and

Ex(h + 1) = Âx(h) + B̂u(h),

y(h) = Ĉx(h) + D̂u(h), (6)

respectively, where E is a singular matrix. This will lead

to stability tests in terms of LMIs which then (see the next

section) lead to control law design algorithms.

The starting point in terms of condition [c] is to note that it

is equivalent to stability of the 1D singular differential linear

system with state-space model

E1ż(t) =

[
A B0

C D0 − I

]
z(t) +

[
B
D

]
u(h), (7)

where

E1 =

[
I 0
0 0

]
. (8)

Similarly, condition [d] is equivalent to stability of the 1D

singular discrete linear system

E2z(h + 1) = Φz(h) +

[
B
D

]
u(h), (9)

where

E2 =

[
0 0
0 I

]
, Φ =

[
A B0

C D0

]
. (10)

We also need the following definitions.

Definition 1: A 1D differential singular linear system of

the form (5) is termed admissible [4] if it is stable, regular,

impulse-free, i.e. det(sE − Â) is not identically zero, and

deg
(
det(zE − Â)

)
= rank(E).

Definition 2: A 1D discrete singular linear system of

the form (6) is termed admissible [4] if it is stable,

regular, i.e. det(zE − Â) is not identically zero, and

deg
(
det(zE − Â)

)
= rank(E).

It is clear that there exists (appropriately dimensioned)

nonsingular matrices U and V such that

UEV =

[
I 0
0 0

]
. (11)

Also introduce

E⊥ = V (I − UEV )U, (12)

E‡ = UT (I − UEV )U−T , (13)
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and

E† = U−1(I − UEV )U. (14)

Then we have the following result [5].

Lemma 1: A 1D differential singular linear system of the

form (5) is admissible if, and only if, there exist appropriately

dimensioned matrices X , Y and Z such that the following

LMI is feasible

EXET + Sym{E†Z} > 0, (15)

Sym{ÂXET } + Sym{ÂE⊥Y } < 0. (16)

The corresponding result for the discrete case is as fol-

lows [6].

Lemma 2: A 1D discrete singular linear system of the

form (6) is admissible if, and only if, there exist appropriately

dimensioned matrices X , Y and G such that the following

LMI is feasible for a given β > 1

[
−EXET (E⊥Y E‡)T

E⊥Y E‡ X

]

+ Sym

{[
ÂG
−G

] [
U−T βV T

]}
< 0.

(17)

Now we can establish the first major new result of this

paper which gives computable necessary and sufficient con-

ditions for strong practical stability.

Theorem 1: A differential linear repetitive process de-

scribed by (1) is strongly practically stable if, and only if,

there exist the appropriately dimensioned matrices

W1 > 0, W2 > 0, X1
11 = (X1

11)
T , X2

11 = (X2
11)

T ,

X2
22 = (X2

22)
T , X1

21, X2
21, Y 2

11, Y 1
22, Y 1

21, Z1
22, Z1

21, G̃2.

such that the following LMIs are feasible for a scalar β > 1
[

−W1 WT
1 DT

0

D0W1 −W1

]
< 0, (18)

AT W2 + W2A < 0, (19)

[
X1

11 ZT
21

Z21 ZT
22 + Z22

]
> 0, (20)

Sym

{[
AX1

11 + B0X
1
21 + B0Y

1
21

CX1
11 + (D0 − I)(X1

21 + Y 1
21)

B0Y
1
22

(D0 − I)Y 1
22

]}
< 0, (21)




0 0 (Y 2
11)

T 0
0 −X2

22 0 0
Y 2

11 0 X2
11 (X2

21)
T

0 0 X2
21 X2

22




+Sym

{[
ΦG̃2

−G̃2

]
[

U2 βU2

]
}

< 0,

(22)

where

U2 :=

[
0 I
I 0

]
. (23)

Proof: In the case of conditions [a] and [b] respectively,

simply note that the LMIs of (18) and (19) are commonly

used in 1D linear systems stability theory. The fact that the

LMIs (20) and (21) are equivalent to condition [c] follows

immediately on interpreting Lemma 1 for this case. Finally,

interpreting Lemma 2 for the case here shows that the

LMI (22) is equivalent to condition [d].

IV. CONTROL LAW DESIGN

If the control law (4) is applied then the controlled process

state-space model is given by

ẋk+1(t) = (A + BK1)xk+1(t)
+ (B0 + BK2)yk(t),

yk+1(t) = (C + DK1)xk+1(t)
+ (D0 + DK2)yk(t),

(24)

and the following result gives the necessary and sufficient

conditions for strong practical stability.

Theorem 2: The process of (24) is strongly practically

stable in the strongly practically stable if, and only, if the

following hold

[e] r(D0 + DK2) < 1,

[f] all eigenvalues of A + BK1 have strictly negative

real parts,

[g] all eigenvalues of A + BK1 + (B0 + BK2)(I −
D0 − DK2)

−1(C + DK1) have strictly negative

real parts, and

[h] r(D0 + DK2 − (C + DK1)(A + BK1)
−1(B0 +

BK2)) < 1.
Control law design based on Theorem 2 is somewhat

complex since we only have the two control law matrices

K1 and K2 to simultaneously satisfy the four conditions.

Moreover, even though the first two are simply the pole

placement problem for 1D differential and discrete linear

systems respectively, the third and fourth clearly require

further development and for that we require the following

results from, for example, [5] and [6].

Lemma 3: Suppose that the control law

u(t) = Kx(t), (25)

is applied to the 1D differential singular linear system

described by (5). Then the resulting system is admissible

if, and only if, there exist matrices X , Y , Z, R and G such

that the following LMI is feasible

EXET + Sym{E†Z} > 0, (26)

Sym{XET } + Sym{E⊥Y } > 0, (27)[
0 (XET + E⊥Y )T

XET + E⊥Y 0

]
+

+Sym

{[
ÂG + B̂R

−G

] [
I I

]}
< 0. (28)

If this condition holds, the stabilizing control law matrix is

given by

K = RG−1. (29)

Lemma 4: Suppose that the control law

u(h) = Kx(h), (30)

is applied to the 1D discrete singular linear system described

by (6). Then the resulting system is admissible if, and only
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if, there exists matrices X, Y, G such that the following LMI

is feasible
[

−EXET (E⊥Y E‡)T

E⊥Y E‡ X

]

+ Sym

{[
ÂG + B̂R

−G

] [
U−T βV T

]}
< 0,

(31)

for a given β > 1. If this condition holds, the stabilizing

control law matrix is given by

K = RG−1. (32)

The following is the second major new result in this paper

and provides an effective solution to the control law design

problem of this section.

Theorem 3: A controlled differential linear repetitive pro-

cess described by (24) is strongly practically stable if, and

only if, the following LMIs are feasible
[

W2 − G2 − GT
2 (∗)

D0G2 + DR2 −W2

]
< 0, (33)

AW1 + BR1 + W1A
T + RT

1 B < 0, (34)

[
X1

11 (∗)
Z21 ZT

22 + Z22

]
> 0, (35)

Sym

{
X1

11 0
X1

21 + Y 1
21 Y 1

22

}
> 0, (36)




0 (∗) (∗) (∗)
0 0 (∗) (∗)

X1
11 0 0 (∗)

X1
21 + Y 1

21 Y 1
22 0 0


 + Sym





AW1 + BR1

CW1 + DR1

−W1

0

B0G2 + BR2 AW1 + BR1

D0G2 − G2 + DR2 CW1 + DR1

0 −W1

−G2 0

B0G2 + BR2

D0G2 − G2 + DR2

0
−G2





< 0, (37)




0 0 (Y 2
11)

T 0
0 −X2

22 0 0
Y 2

11 0 X2
11 (X2

21)
T

0 0 X2
21 X2

22


+

+Sym





AW1 + BR1 B0G2 + BR2

CW1 + DR1 D0G2 + DR2

−W1 0
0 −G2

AW1β + BR1β B0G2β + BR2β
CW1β + DR1β D0G2β + DR2β

−W1β 0
0 −G2β





< 0, (38)

for given β > 1 and W1 > 0, W2 > 0, X1
11 = (X1

11)
T ,

X1
22 = (X1

22)
T , X2

11 = (X2
11)

T , X2
22 = (X2

22)
T , X1

21, X2
21,

Y 2
11, Y 1

22, Z21, Z22, G2, R1, R2.

If these LMIs hold, stabilizing control law matrices are

given by

K1 = R1W
−1

1 ,
K2 = R2G

−1

2 .
(39)

Proof: Conditions (33) and (34) are well known for

nonsingular 1D discrete and differential linear systems re-

spectively. The proofs for conditions [e] and [f] here follow

the arguments of Lemmas 3 and 4 applied to the controlled

process. However, the same blocks W1 and G2 have to ensure

that [g] and [h] hold. This can be achieved by making the

following choices in block structure of the matrices R and

G in the application of Lemma 3 and 4 respectively to the

controlled process.

• R =
[

R1 R2

]
and G =

[
W1 0
0 G2

]
for [(g)].

• R =
[

R2 R1

]
and G =

[
0 W1

G2 0

]
for [(h)].

Routine mathematical manipulations yield the required re-

sult. ¥

Note here that the above result gives an arbitrary element

of the set of all possible stabilizing control laws. We can

limit this set by assuming, for example, block-diagonal

decision matrices. Also by imposing additional constraints

and use GEVP optimization procedures we can attempt to

limit the values of the control signals required, which has

obvious (potential) benefits in terms of applying this theory

to physical examples.

V. A NUMERICAL EXAMPLE

Consider the case when
[

A B B0

C D D0

]
=




−0.746 1.5623 −0.151 0. − 0.005
1.156 0.110 −1.090 −0.546
−0.596 −0.233 0.483 −2.974


 ,

with the boundary conditions

xk+1(0) = [1, 1]T , k ≥ 0,

y0(t) = −5, 0 ≤ t ≤ 10,

This process is asymptotically unstable and hence is nei-

ther stable along the pass or strongly practically stable. The

LMIs of Theorem 3 are feasible for given β > 1 and we can

attempt to use this last parameter to assist with along the pass

performance of the resulting controlled process. Here we

consider the cases of β = 1.01 and β = 25.01 respectively

for which the corresponding control law matrices are

K1 =
[

1.2257 0.49659
]
, K2 = 4.4262,

K1 =
[

1.2333 0.48497
]
, K2 = 5.9488,

Pass profiles dynamics generated by the controlled process

for each value of β is given in Figs. 1 and 2 respectively.

In the case of Fig. 1, and to a lesser extent Fig. 2, closer
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inspection shows that the along the pass dynamics contain

oscillations which are eventually damped out but this could

take a relatively long number of passes. For example, Fig. 3

shows the along the pass dynamics when k = 69 where

this feature is still present (but much less prominent than on

earlier passes and also the final value is lower). Along the

pass oscillations are much less prominent in Fig. 2 (where

the value of β is much larger). Clearly further research is

required on how to chose this tunable parameter to best

effect.

Fig. 1. Pass profile sequence generated by the controlled process with
β = 1.01.

Fig. 2. Pass profile sequence generated by the controlled process with
β = 25.01.

VI. CONCLUSIONS

Differential linear repetitive processes propagate informa-

tion in two independent directions where for one of them

the duration is finite and the dynamics are described by

a matrix differential linear system. A stability theory for

these processes exists which has clear physical motivation

but more detailed studies have strongly suggested it is too

strong for some cases. In this paper, we have developed

strong practical stability as an alternative for such cases and

characterized it in terms of necessary and sufficient LMI
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Fig. 3. Along the pass dynamics generated by the controlled process on
pass k = 69 with β = 1.01.

conditions. This provides an immediate route to the design

of stabilizing control laws. Moreover, a design parameter

is available to tune the control law to meet performance

specifications.

This last aspect is the subject of on-going work using

differential repetitive process models obtained by modeling

physical examples. Moreover, it should be possible to extend

the analysis here to deal with cases where there is uncertainty

associated with the process model and/or disturbances acting

on both the current pass state and pass profile vectors, and

hence the need for H2 or H∞ or mixed H2/H∞ analysis.

Finally, the control law used here by no means exhausts the

possibilities. For example, it should be possible to extend

this control law to include terms related to the available

information on pass k+1 and at point t. Options here include

adding a term of the form K3yk(t − 1) or K4yk(t + 1), or

replacing the current pass state vector by the current pass

profile vector and hence avoid problems which could arise

due to the fact that all elements in the current pass state

vector may not be available for measurement.
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