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Abstract— A common approach to designing feedback con-
trollers for nonlinear partial differential equations (PDEs) is
to linearize the system about an equilibrium and use the
linearized model as a starting point in the design process. In
many practical applications (fluid flow control, thermal fluids,
etc.) the equilibrium of interest is not the trivial zero state
and this equilibrium must be computed numerically. This can
be a complex task, especially if the equilibrium is unstable.
In an earlier paper the authors showed that even for the 1D
Burgers’ equation, standard time marching numerical schemes
can produce false steady state solutions. Consequently, in this
case the first step in the design and analysis process is based on
an erroneous linearization and even robust controllers may fail.
It has been suggested that replacing the time marching scheme
by a Newton algorithm would eliminate this false equilibrium.
In this short paper we illustrate that even Newton’s method
can produce a numerically false equilibrium in problems that
are highly sensitivity to boundary conditions. This result has
important consequences when one uses numerical tools for
design and control of non-linear partial differential equations
that govern typical fluid flows.

I. INTRODUCTION

In recent years it has become increasingly popular for

technical papers in applied mathematics and engineering to

contain simulations validating the authors work. Facilitated

by the recent development of user friendly software, even

with very limited knowledge of numerical methods, one can

generate “approximate solutions” and impressive graphical

images for extremely complex problems. For the vast ma-

jority of practical problems governed by partial differential

equations (fluid dynamics, porous media, flexible structures,

etc.) even the most experienced scientist is constrained to

study properties of solutions obtained numerically. However,

relying solely on numerical methods, not supported by a de-

tailed theoretical study of the problem may lead to erroneous

results. In [1] and [6] the authors encountered a remarkable

anomaly associated with a standard hydrodynamic model –

the one-dimensional viscous Burgers’ equation. In [1] the

authors considered a “time marching” numerical scheme for

approximating steady state solutions of a particular bound-

ary value problem for Burgers’ equation. Several examples

were given to illustrate that even theoretically convergent

numerical schemes can produce numerical steady state so-

lutions that do not correspond to steady state solutions of

the boundary value problem. Burgers’ equation has been

used as a model problem for many recent studies in both

optimal and feedback control (see, [2], [3], [4], [7], [8],

[11], [12], [13], [14]). In 1993 Marrekchi, while work-

ing on a Neumann boundary control problem for Burgers’

equation, observed that a finite element scheme used to

design feedback controllers produced non-constant steady

state solutions (see [17]). Moreover, recent work strongly

suggests that a similar anomaly takes place for a broad class

of nonlinear n-dimensional (n ≥ 1) parabolic equations

containing convective type terms. In particular, there is a

strong numerical evidence that the same type of anomaly

may occur in standard hydrodynamic models such as Euler

and Navier Stokes equations (see [9], [10], [16]).

In this paper we consider the stationary problem associated

with the dynamic problem considered in [1]. Using Newton’s

method we show that, due to finite precision arithmetic, this

theoretically convergent numerical algorithm can produce

false (purely numerical) steady state solutions.

The Model and Problem Formulation

Consider the the initial boundary value problem defined

bu Burgers’ equation in L2
AS(0, 1)

zt(x, t) = R−1zxx(x, t) − z(x, t)zx(x, t), 0 ≤ x ≤ 1,

z(x, 0) = ϕ(x) ∈ L2
AS(0, 1) (I.1)

zx(0, t) = 0,

zx(1, t) = 0.

It is known (see [1]) that this equation with Neumann

boundary conditions is invariant for Anti-Symmetric (AS)

functions (i.e., odd about x = 1/2 in (0, 1)). An AS function

z satisfies z(x) = −z(1−x) and we denote by L2
AS(0, 1) the

Hilbert subspace of L2(0, 1) consisting of all AS functions.
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It is also known that z = 0 is the unique asymptotically

stable equilibrium (see the short discussion below) and in

[15] it was shown that for every initial function ϕ the solution

of (I.1) satisfies

sup
x∈[0,1]

|z(x, t)| → 0 t→ ∞.

Here we are interested in the numerical solution of the

stationary problem for this dynamical system. The motivation

for this analysis is that, even though zero is the only AS sta-

tionary solution, even convergent numerical time-marching

algorithms for (I.1) can produce false (purely numerical)

steady state solutions (see [1]). The corresponding stationary

Burgers’ system is given by

R−1vxx(x) − v(x)vx(x) = 0, 0 ≤ x ≤ 1, (I.2)

vx(0) = 0, vx(1) = 0,

in the space L2
AS(0, 1).

Since our main interest is in the case of AS solutions on

the interval [0, 1] and since all such functions must vanish

at x = 1/2 we can study the steady state problem on the

interval [0, 1/2] with Dirichlet conditions at the right end.

Namely, we can consider the equivalent problem for Burger’s

equation on 0 ≤ x ≤ 1/2 defined by

zt(x, t) = R−1zxx(x, t) − z(x, t)zx(x, t), (I.3)

z(x, 0) = ϕ(x) ∈ L2
AS(0, 1)

zx(0, t) = 0,

z(1/2, t) = 0.

Similarly, we can replace the steady problem (I.2) by the

problem

R−1vxx(x) − v(x)vx(x) = 0, 0 ≤ x ≤ 1/2, (I.4)

vx(0) = 0, v(1/2) = 0.

We now make one further simplification which makes all

the formulas a bit simpler. In particular, we formulate the

above problems as problems on the interval [0, 1]. Hence

we replace the problems (I.3) and (I.4) with corresponding

problems defined on the standard interval [0, 1] defined by

zt(x, t) = R−1zxx(x, t) − z(x, t)zx(x, t),

z(x, 0) = ϕ(x) (I.5)

zx(0, t) = 0,

z(1, t) = 0,

and

R−1vxx(x) − v(x)vx(x) = 0, 0 ≤ x ≤ 1, (I.6)

vx(0) = 0, v(1) = 0,

respectively.

It is simple exercise to show that the general solution to

(I.6) is

v(x) =
√

2c0 tanh

(
R
√

2c0
2

(c1 − x)

)
, (I.7)

where c0 and c1 are arbitrary constants. A straightforward

calculation yields

vx(x) = −Rc0 sech2

(
R
√

2c0
2

(c1 − x)

)
, (I.8)

and these functions cannot vanish at x = 0 (unless c0 = 0).

Thus, as we have already mentioned (see [15]), the only

stationary solutions to Burgers’ equation satisfying homoge-

neous Neumann boundary condition at x = 0 and Dirichlet

condition at x = 1 is the zero function.

In order that v satisfy the Dirichlet condition at x = 1 we

need c1 = 1. Thus, we consider functions h(·) defined by

h(x) =
√

2c0 tanh

(
R
√

2c0
2

(1 − x)

)
, (I.9)

which for large R and/or large c0 gives

h′(0) = −Rc0 sech2

(
R
√

2c0
2

)
= −α, (I.10)

where α is, for modest values of R and c0, an exponentially

small positive number. For α sufficiently small, on a com-

puter with finite precision arithmetic, α would be set equal

to zero. In effect, on a digital computer, the function h(x)

would appear to satisfy the steady Burgers’ problem (I.4).

II. NEWTON’S METHOD

We now turn to the numerical solution of the problem

(I.4) using an iterative scheme based on Newton’s method.

To this end we consider the nonlinear map F from H2(0, 1)

to L2(0, 1) given by

F (ϕ) = R−1ϕxx − ϕxϕ. (II.1)

Newton’s method for solving F (ϕ) = 0 becomes

ϕk = ϕk−1 − [F ′(ϕk−1)]−1(F (ϕk−1)), (II.2)

for k = 1, 2, · · · and ϕ0 = ϕ0 ∈ H2(0, 1). Here we use the

notation F ′ to denote the Gateaux derivative given by

F ′(ϕ)(η) = lim
ǫ→0

F (ϕ+ ǫη) − F (ϕ)

ǫ
(II.3)

= R−1ηxx − (ϕη)x.
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We claim that depending on the choice of starting value

ϕ0 the iterates, which we have already argued must converge

to zero, in fact converges to a nonzero function.

In order to compute the Newton iterate in (II.2) we rewrite

the equation as

F ′(ϕk−1)(ϕk − ϕk−1) = −F (ϕk−1) (II.4)

and appeal to (II.3) to obtain

R−1(ϕk − ϕk−1)xx − (ϕk(ϕk − ϕk−1))x (II.5)

= −(R−1ϕk−1
xx − ϕk−1

x ϕk−1).

After some simplification, we can write (II.5) (with bound-

ary conditions) as

R−1ϕk
xx − (ϕk−1ϕk)x = −ϕk−1ϕk−1

x (II.6)

ϕk
x(0) = 0, ϕk(1) = 0. (II.7)

In order to numerically compute the Newton iterate, one

must introduce some type of numerical discretization for

solving this two point boundary value problem. Here we

consider two methods. The first numerical scheme is based

on a shooting method and the second scheme is a finite

difference approximation.

III. DIRECT NUMERICAL SOLUTION

In this section we consider the corresponding stationary

Burgers’ problem with a small non-homogeneous Neumann

boundary condition at x = 0 and homogeneous Dirichlet

condition at x = 1. Thus, we consider the problem
(

1

R

)
vxx(x) − v(x)vx(x) = 0, (III.1)

vx(0) = −α, v(1) = 0, α > 0.

As noted above, the solution to the stationary Burgers’

problem (I.6) is given by (I.9) with derivative at x = 0 given

by (I.10).

For computational solutions of (III.1), we use a shooting

method for the corresponding initial-value problem

R−1vxx(x) − v(x)vx(x) = 0, 0 < x < 1 (III.2)

v(1) = 0, v′(1) = −β, β > 0,

where −β is to be computed so that vx(0) = vx(0;β) = 0.

Specifically, −β is initially guessed for the slope and (III.2)

is solved from x = 1 to x = 0 using an initial-value solver

such as a Runge-Kutta procedure. After solving (III.2) from

x = 1 to x = 0, the slope −β is adjusted so that F (β) =

vx(0;β) decreases to zero.

Assuming that initial value problem (III.2) is solved

exactly by the initial-value solver, then vx(x) = vx(x, β)

satisfies

vx(x;β) = h′(x) = −Rc0 sech2

(
R
√

2c0
2

(1 − x)

)
,

where c0 is determined by the condition h′(1) = −β. But

h′(1) = −β implies that c0 = β/R. Thus, (with v(x;β) =

h(x;β)) we have

v(x;β) =
√

2β/R tanh

(
R
√

2β/R

2
(1 − x)

)
(III.3)

solves (III.2) with an initial guess of slope −β.

It follows that the shooting method procedure, with exact

initial-value solver, reduces to finding β so that F (β) =

vx(0;β) = −β sech2
(√

Rβ/2
)

= 0. Then, the solution to

(III.2) is equal to v(x;β∗) where β∗ is a value such that

F (β∗) = 0. We now consider the problem of finding β so

that

F (β) = −β sech2
(√

Rβ/2
)

= 0. (III.4)

Clearly the only solution to this equation is β = 0.

So, let us proceed to solve the problem F (β) = 0 using

Newton’s method. Note that (III.4) implies

F ′(β) = − sech2
(
β̃
)(

1 +
(
β̃
)

tanh
(
β̃
))

(III.5)

where we have set

β̃ =
√
Rβ/2, (III.6)

and therefore Newton’s method gives

βj+1 = βj − F ′(βj)
−1F (βj)

which, using (III.4) and (III.5) and doing some simplifying,

can be written as

βj+1 = βj −
βj(

1 +
(
β̃
)

tanh
(
β̃
)) .

After a bit more simplifying we obtain

βj+1 = βj

γj

1 + γj

, γj =
(
β̃
)

tanh
(
β̃
)
. (III.7)

Notice that the function

g(γ) =
γ

1 + γ

satisfies 0 ≤ g(γ) < 1 and is only zero when γ = 0.

Furthermore, g is a monotone decreasing function of γ.

From this, we conclude that the iterates βj are monotone

decreasing with increasing j, as they should be. Indeed, for

infinite precision arithmetic the numerical method produces

a sequence of iterates that satisfies βj → 0 as j → ∞.
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However, on a finite precision digital computer this limit may

not be achieved and it becomes important to understand what

the algorithm actually produces.

Let ξ denote the base for a computer system and t the

number of digits. On the interval [ξm−1, ξm], the floating

point numbers are evenly spaced with separation ξm−t. In

addition, for prescribed exponent limit L for underflow, any

number between −ξL−1 and ξL−1 is set equal to zero in

the computer. For example, in MATLAB, ξ = 2 and L =

−1074. Indeed, in the IEEE Standard 754, for denormalized

floating point numbers with base ξ = 2, L = −149 for single

precision and L = −1074 for double precision.

With this in mind we consider starting values β0 for

the Newton iterations. Recall that to compute β1 one must

compute

F (β0) = −β0 sech2
(√

Rβ0/2
)
.

If we choose β0 large enough so that

β0 sech2

(√
Rβ0

2

)
< ξL−1,

then, for the arithmetic described above we have

F (β0) = 0.

For example, suppose that ξ = 2, L = −149 and

R = 2.22104. If β0 is chosen greater than unity, then

F (β0) < 2−150 and F (β0) would be set equal to zero on

the computer. The Newton iterations would terminate with

the computed solution v(x;β0) given by (III.3). This can be

easily verified in MATLAB version 7 using the command

single. In particular, with β0 = .999 the command

single
(
−β0 sech2

(√
Rβ0/2

))

produces −1.4013 × 10−45 = −1.9637 × 2−149 but with

β0 = 1.0001 the same command gives F (β0) = 0.

IV. A FINITE DIFFERENCE METHOD

In this section we employ a finite difference method

for approximating solutions of the steady state Burgers’

boundary value problem

R−1vxx(x) − v(x)vx(x) = 0, (IV.1)

vx(0) = −α, v(1) = 0,

for α > 0 or α = 0. We note that for α > 0 there are two

non-zero solutions. One is a “small” stable equilibrium and

the other equilibrium is given by (I.9) - (I.10) and is known

to be unstable.

We use a second order approximation for both derivative

terms. Let

xj = (j − 1)h, h =
1

N
, j = 1, 2, · · · , (N + 1),

and denote by ϕj the approximate values of ϕ(xj). The

difference approximations are defined by

ϕ′′(xj) ≈
ϕj−1 − 2ϕj + ϕj+1

h2
,

ϕ′(xj) ≈
ϕj+1 − ϕj−1

2h
.

The boundary conditions are approximated by

ϕN+1 ≈ ϕ(xN+1) = ϕ(1) = 0

and
ϕ2 − ϕ0

2h
≈ ϕ′(0) = −α,

which implies that

ϕ2 − ϕ0 = −2αh, and ϕ0 = ϕ2 + 2αh. (IV.2)

With this notation we can write the discretization of the

boundary value problem (IV.1) as

ϕj−1 − 2ϕj + ϕj+1

h2
−R

(
ϕj+1 − ϕj−1

2h

)
ϕj = 0 (IV.3)

which can be written as

ϕj−1 − 2ϕj + ϕj+1 −
Rh

2
(ϕj+1 − ϕj−1)ϕj = 0. (IV.4)

The special case of j = 1 for (IV.3) (using (IV.2)) gives

(ϕ2 + 2hα) − 2ϕ1 + ϕ2 −
Rh

2
(−2hα)ϕ1,

which simplifies to

(
Rh2α− 2

)
ϕ1 + 2ϕ2 = −2hα. (IV.5)

Also, when j = N in (IV.3) it follows that

ϕN−1 − 2ϕN + ϕN+1 −R(ϕN+1 − ϕN−1)ϕN = 0

and since ϕN+1 = 0 we have

ϕN−1 − 2ϕN +RϕN−1ϕN = 0.

Define the vectors Φ and Ψ in R
N (coefficient functions)

by

Φ =




ϕ1

ϕ2

...

ϕN


 , Ψ =




ψ1

ψ2

...

ψN


 . (IV.6)
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We also define the N×N matrix A with A11 = (Rh2α−2)

by

A =




A11 2 0 · · · 0

1 −2 1
. . .

...

0 1 −2 1
. . . 0

...
. . .

. . .
. . .

. . . 0
...

. . .
. . . 1

0 · · · · · · 0 1 −2




. (IV.7)

Finally, define the N ×N matrices M and P by

M =
Rh

2




0 0 0 · · · 0

1 −1
. . .

...

0 1 −1
. . . 0

...
. . .

. . .
. . .

. . . 0
...

. . .
. . . −1

0 · · · · · · 0 1 0




, (IV.8)

P =




−2hα

0

...

0.




(IV.9)

The nonlinear function C is defined by

C(Φ) = (MΦ). ∗ Φ + P, (IV.10)

where .∗ denotes the Hadamard (component-wise) multipli-

cation defined by

Φ. ∗ Ψ =




ϕ1ψ1

ϕ2ψ2

...

ϕNψN


 .

Finally, we define the nonlinear vector function F by

F (Φ) = AΦ + C(Φ).

In this setting the problem (IV.1)becomes: Find Φ satisfy-

ing

F (Φ) = 0.

To find zeros of F we apply a Newton iteration. Thus, we

introduce the Newton iteration in R
N

Φk = Φk−1 − F ′(Φk−1)(F (Φk−1)), k = 1, 2, · · ·

where we choose the initial vector Φ0.

A simple calculation yields

F ′(Φ)(Ψ) = AΨ + diag(Φ)MΨ + diag(MΦ)Ψ

≡ Mk−1Ψ, (IV.11)

where

diag(Φ) =




Φ1 0 · · · 0

0 Φ2
. . .

...
...

. . .
. . . 0

0 · · · 0 ΦN



.

Therefore, the Newton iteration can be written as

Φk = Φk−1 − Mk−1

(
AΦk−1 + C(Φk−1)

)
. (IV.12)

Numerical Examples and Conclusions

Example 1: Set R = 10, α = 10−8 and choose the

initial function ϕ(x) = M(1 − 2x) with M = 5. The

corresponding Newton iterates defined in (IV.12) converge

after 10 iterations with N = 500 to the numerical solution

obtained in Section III. Namely, for this α we find c0 =

12.1065 and the stationary solution is

h(x) =
√

2c0 tanh

(
R
√

2c0
2

(1 − x)

)

In the following figure we have plotted both h(x) and the

numerical solution. Observe that the two plots are identical

and for α = 10−8 > 0, Newton’s method converges to h(x)

which is an unstable equilibrium in this case.

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

x

φ

We note that for M small enough or negative the numerical

solution converges to the zero function.

However, it is important to note that the parameter α

in the Newton iteration only appears in two places in the

numerical scheme. It appears in the (1, 1) position in matrix

A and in vector P in the nonlinear term. If we set these

terms equal to zero, i.e., if we set α = 0, then the numerical

scheme still converges to a nonzero stationary function which

is determined by the numerical precision of the particular
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computer on which the program is run. This is again a false

numerical steady state solution and, as seen above, it can be

an order of magnitude away from the only true equilibrium.

Example 2: The choice of initial function certainly can

influence the convergence of the algorithm. However, if

R = 10, α = 10−8 and the initial function is selected to

be ϕ(x) = M cos(πx) with M = 1, then the corresponding

Newton iterates defined in (IV.12) again converge to exactly

the same stationary solution as above.

Conclusions and Future Work

The examples above illustrate the need to conduct a careful

analysis of the numerical methods used to compute equilib-

rium (steady state) solutions for nonlinear parabolic partial

differential equations. Such systems are common in fluid

flow control and heat transfer applications. These problems

are typically highly sensitive to boundary conditions and

even standard convergent numerical methods can produce

false solutions. Also, we note that for problems of this

type it is impossible to use numerical methods alone to

make predictions about existence, uniqueness or stability of

stationary solutions. This is especially true for complex Euler

flows (see [16]). Finally, the results presented here merely

point out an important issue that is often ignored in numerical

design of controllers. Work needs to be done to provide a

rigorous foundation for analyzing this approach for highly

sensitive systems.
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