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Abstract— The stabilization problem of networked control
systems with bounded packet loss is addressed. We model such
networked control systems as a class of switched systems, and
present sufficient conditions for the stabilization by using a
packet-loss dependent Lyapunov function. Moreover, different
from existing results, we propose the design for packet-loss
dependent stabilizing controllers for two types of packet-loss
processes: one is a arbitrary packet-loss process, and the other
is a Markovian packet-loss process. Several numerical examples
and simulations are worked out to demonstrate the effectiveness
of the proposed design technique.

I. INTRODUCTION

Networked control systems(NCSs) are a class of

feedback control systems with network channels, and have

many industrial applications, such as large-scale distributed

industrial processes, fieldbus systems and intelligent traffic

systems, etc. Compared with the traditional point-to-point

wiring, the use of the communication channels provides a

control system with many advantages such as lower costs

of cables and power, simpler installation and maintenance

of the whole system, and higher reliability. NCSs have

received increasing attentions in recent years [1]-[9] and the

references therein. Among these results, [1] introduced the

tryonce-discard protocol for multiple-input-multiple-output

NCSs, and provided firstly an analytic proof of global

exponential stability for both the new protocol and the

more commonly used access methods; Both state and output

feedback were considered in [2] where knowledge of the

plant dynamics was used to reduce the usage of the network,

and necessary and sufficient conditions for stability were

derived. Based on the theories for the discrete-time switched

systems, an H∞ control problem for a remotely controlled

system over a shared network was discussed in [3]. [4]

studied the optimal LQG control problem of a class of NCSs

with packet dropout, and designed optimal linear quadratic

Gaussian controllers by using a separation principle. [7]
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discussed the stabilization problem of NCSs with network-

induced delay, and sufficient conditions expressed in the form

of linear matrix inequalities(LMIs) have been derived by

viewing the time-varying delay as time-varying parameter

uncertainties; In order to reduce the amount of the data sent

to the network, [8] presented a framework for stabilization of

NCSs with limited data rates by only sending a nonsingular

transform of the state vector at each time instants; In [9],

switching impulse was considered in order to reduce the error

between theory and application for an NCS, and a sufficient

condition for exponential stabilization of networked control

systems under a given switching rule was derived by multiple

Lyapunov-like functions.

However, the use of communication network in the feed-

back control loop causes that many ideal assumptions made

in the traditional control theory can not be applied to NCSs

directly, for example, the standard assumption on the state

measurement that all information can be obtained by the

controller. Therefore, the analysis and design for an NCS

is more complex due to the use of communication network

than that for a traditional control system. In an NCS, com-

munication capacity depends not only on the protocol, but

also on the topology of the network. One of the major issues

raised in NCSs is the packet loss which is a potential source

of instability and poor performance of NCSs, therefore, it

is very essential to construct a feedback controller using

the most fresh information to stabilize an NCS with packet

dropout. To our best knowledge, two effective approaches

have been used in existing results in existing results: one

is delayed system approach [7][10] where NCSs were mod-

elled as delayed systems, and the other is switched system

approach [11][13] where NCSs were modelled as a class of

switched systems with several subsystems. In addition, in

these two approaches, two types of packet loss processes

have been considered: one regards the data packet dropout

as a arbitrary process [11]-[13], and the other is a Markovian

process [14] [15].

The advantage of the switched system approach is that the

controllers can make full use of the previous information to

stabilize NCSs when the current state measurements are not

available from the network. Based on the bounded packet

loss, NCSs were modelled as a class of switched systems

in [11], and many existing switched system theories [16]-

[20] can be used. [11] presented the design for output

feedback controllers by using the feasible solutions of some

LMIs. [12] presented an extension of the results in [11]

into a nonlinear NCS. Recently, [13] considered the same

stabilization problem as [11], and designed state feedback
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controllers by introducing the packet-loss dependent Lya-

punov function. In the field of control, if a single controller

fails to solve a control problem, a multiple of controllers

might be used in the hope that the problem may be solved

by switching among these controllers. However, it is noticed

that most of the existing results concerned the design for a

single controller, even when NCSs are modelled as switched

systems. By the delayed system approach, delay-dependent

controllers were designed in [15] where the packet dropout

in the backward channel was regarded as a bounded delay.

However, as for switched system approach, few results have

concerned such a multiple of controllers. In this paper,

we discuss the stabilization problem by using the switched

system approach. Similar approach has been used in [11][13],

but different from them, for the NCSs with the bounded

packet loss, we present a new control design method, that

is, we propose the design for packet-loss dependent state

feedback controllers, and such design can provide the NCSs

under study with better performances. Moreover specifically,

two types of packet-loss processes are considered: one is the

arbitrary packet-loss process, and the other is the Markovian

packet-loss process. For both cases, sufficient conditions in

the form of LMIs for stabilization are derived by using a

packet-loss dependent Lyapunov function, and packet-loss

dependent state feedback controllers are designed by solving

some LMIs.

The paper is organized as follows: Section II introduces

the mathematical model of NCSs under study, and some

definitions and lemmas are also presented in this section.

Section III deals with the stabilization problem for NCSs

with the arbitrary packet-loss process, and stabilizing state

feedback controllers are constructed by using the feasible

solutions of some LMIs. Section IV discusses the stabiliza-

tion for NCSs with the Markovian packet-loss process, and

stabilizing state feedback controllers are derived by solving

some LMIs. Some numerical examples demonstrating the

effectiveness of the proposed design technique are given in

Section V. The conclusion is provided in Section VI.

Notations. Throughout this paper, the following notations

are used. ‖ · ‖ refers to the Euclidean norm for vectors and

induced 2-norm for matrix; For any two positive integers i

and j satisfying j ≥ i, [i, j] = {i, i + 1, · · · , j}.

II. PROBLEM FORMULATION

Consider the NCS with the bounded packet loss in both the

channel between the sensor and the controller(the backward

channel) and the channel between the actuator and the

controller(the forward channel) illustrated in Fig. 1, where

the sensor is clock-driven and the actuator is event-driven.

We first consider the NCS setup with a clock-driven sensor,

and both the controller and the actuator are combined into

one event-driven node, that is, network communication only

occurs form the sensor to the controller through a communi-

cation channel with finite bandwidth. The NCS with a time-

varying controller is described as

x(t + 1) = Ax(t) + Bu(t),
u(t) = F (t)x̄(t),

(1)

where t ∈ N, x(t) ∈ R
n is the plant state vector, u(t) ∈ R

m

is the plant input vector. A, B are known real constant

matrices with proper dimensions. F (t) ∈ R
m×n is the

state feedback gain matrix to be designed. x̄(t) ∈ R
n is

the state measurement that is successfully transmitted over

the network. We suppose that a sensor data containing the

SensorActuator

Controller

Plant

Buffer 2

Network

u
x

Buffer 4

u x

Buffer 1

Buffer 3

Fig. 1. Structure of a networked control system with packet losses.

state information will substitute the old data when it is

successfully sent to the controller through the communication

channel, and the updated data is denoted by x̄(t). The

controller reads out the content of x̄(t) and utilizes it to

compute the new control input, which will be applied to the

controller. Further, we suppose that the update instants of

x̄(t) is numerable and the set of successive update instants

{t0 = 0, t1, · · · , tk, · · · } is a subset of N, and the update

instants of x̄(t) is described as

x̄(t) =







x(t), if the packet containing x(t)
is transmitted successfully;

x̄(t − 1), otherwise.

Here, we consider NCS (1) by using the switched system

approach [11] and discuss the stabilization of (1) by mod-

elling the NCSs as a class of switched systems which are

different from the switched systems in [11]. In what follows

we describe our model using the switched system approach.

Without loss of generality, we assume that the packet

containing x(0) is transmitted to the controller successfully,

that is x̄(0) = x(0), then x(1) = (A + BF (0))x(0). In

the next time instant, if the data packet containing x(1) is

transmitted to the controller successfully, then

x(2) = (A + BF (1))x(1),

otherwise,

x(2) = Ax(1) + BF (1)x(0)
= (A(A + BF (0)) + BF (1))x(0).

We refer to the time interval between tk and tk+1 as

one transmission interval. In this pattern of transmission, the
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states of NCS (1) at the successive update instants can be

described as follows:

x(tk+1) = (Atk+1−tk +
tk+1−tk−1

∑

l=0

AlB

×F (tk+1 − l − 1))x(tk), k ∈ N.

Define

z(0) = x(0), z(1) = x(t1), · · · , z(k) = x(tk), · · · ,

and

A(k) = Atk+1−tk +

tk+1−tk−1
∑

l=0

AlBF (tk+1 − l − 1),

we can obtain

z(k) = A(k)z(k − 1). (2)

We assume that the maximum transmission interval is d,

therefore the upper bound of the dropped data packets is

d− 1. With a set of candidate gains {F1, F2, · · · , Fd} to be

designed, we propose the following schedule algorithm to

stabilize NCS (1):

Schedule Algorithm 1. For any tk, assuming that there is

a counter which records the length of the last transmission

interval [tk−1, tk), we take the packet-loss dependent feed-

back gain as Ftk−tk−1
in the following transmission interval,

i.e.,

u(t) = Ftk−tk−1
x̄(t), t ∈ [tk, tk+1).

Without loss of generality, for any tk, let tk+1 − tk =
i, tk − tk−1 = j, and apply Schedule Algorithm 1 to NCS

(1), we get

A(k) = Āij = Ai +
i−1
∑

l=0

AlBFj . (3)

Then the state evolution of NCS (1) at the transmission

instants can be described as the following switched system

z(k + 1) = Āη(k)z(k), k ∈ N, (4)

where

Āη(k) = Ar(k) +
r(k)−1

∑

l=0

AlBFr(k−1) ∈ Ω̄ =

{Ā11, Ā12, · · · , Ā1d, · · · , Ād1, Ād2, · · · , Ādd},
and r(k) = tk+1−tk, η(k) = (r(k), r(k−1)) ∈ [1, d]×[1, d]
with η(1) = (r(1), 1), which means that x(0) is transmitted

to the controller successfully.

Remark 1: For the NCS with packet dropout in both the

forward and the backward channels, we suppose that the set

of successive update instants of plant input ū(t) is {t0 =
0, t1, · · · , tk, · · · }, which is a subset of N. Similarly, by

using Schedule Algorithm 1, we can obtain the same model

as those above. Thus, the model is suitable for the NCS

with packet dropout in both the forward and the backward

channels.

Remark 2: Let F1 = F2 = · · · = Fd. Then our problem

under study reduce to stabilization problem via a single state

feedback control law discussed in [11] [13]. In fact, suppose

that F1 = F2 = · · · = Fd = F , then (3) becomes Āi =

Ai +
i−1
∑

l=0

AlBF. It follows that (4) reduces to (4) in [13].

Thus, the stabilization problem discussed in [13] is a special

case of ours.

Now, we present the following definitions and technical

lemmas for later use.

Definition 1: [13] A packet-loss process {r(k) ∈ N :
r(k) = tk+1 − tk} is said to be arbitrary if it takes values in

the interval [1, d] arbitrarily.

Definition 2: A packet-loss process {r(k) ∈ N : r(k) =
tk+1 − tk} is said to be Markovian if it is a Markov chain

whose probability matrix is P = [pij ] ∈ R
d×d, with pij =

Pr(r(tk+1) = i|r(tk) = j) ≥ 0 for any (i, j) ∈ [1, d]×[1, d],
and

∑d

i=1 pij = 1.

Lemma 1: [21] Given the symmetric matrix S =
[

S11 S12

ST
12 S22

]

, where S11 is r× r, then the following three

statements are equivalent:

a) S < 0,

b) S11 < 0, S22 − ST
12S

−1
11 S12 < 0,

c) S22 < 0, S11 − S12S
−1
22 ST

12 < 0.

III. STABILIZATION OF NCSS WITH ARBITRARY

PACKET-LOSS PROCESS

In this section, we suppose that the packet loss of NCS

(1) is arbitrary, and study the stabilization problem of the

NCS via state feedback. Sufficient conditions in the form of

LMIs for the stabilization are derived by using a packet-loss

dependent Lyapunov function, and stabilizing state feedback

controller are designed by solving some LMIs.

Definition 3: A function φ : R
n → R+ is of class K if

it is continuous, strictly increasing, and φ(0) = 0.

Without loss of generality, we assume that 0 is an unique

equilibrium of NCS (1), and the state response starts at

t0 = 0 with an initial condition x(0). The following result

ensures the uniformly asymptotic stability of NCS (1). It is

a generalization of Lemma 1 in [11].

Lemma 2: If there exist a function V : Rn → R+ taking

its value in a continuous function set Ω = {V1, V2, · · · , Vq}
with Vl(0) = 0 for all l ∈ [1, q], and functions α, β, γ of

class K such that for all x ∈ Br = {x : ‖x‖ ≤ r},

α(‖x‖) ≤ Vl(x) ≤ β(‖x‖), ∀l ∈ [1, q], (5)

and

∆V (x(tk)) = V (x(tk+1)) − V (x(tk))

≤ −γ(‖x(tk)‖), ∀k ∈ N,

(6)

then NCS (1) is uniformly asymptotically stable.

Here, we omit the proof due to the limit of the length.
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Theorem 1: If there exist symmetric positive definite ma-

trices X1, X2, · · · , Xd and matrices Y1, Y2, · · · , Yd such that








Xj (AiXj +
i−1
∑

l=0

AlBYj)
T

AiXj +
i−1
∑

l=0

AlBYj Xi









> 0,

∀(i, j) ∈ [1, d] × [1, d],
(7)

then NCS (1) is stabilizable via the state feedback control

law

u(t) = Yr(k−1)X
−1
r(k−1)x̄(t), t ∈ [tk, tk+1), k ∈ N.

We omit the proof due to the limit of the length.

IV. STABILIZATION OF NCSS WITH MARKOVIAN

PACKET-LOSS PROCESS

In this section, we suppose that the packet loss of NCS

(1) is a Markovian process defined in Definition 2, and

discuss the mean square stabilization problem of (1). We

derive sufficient conditions for the mean square stabilization

via state feedback, and propose the design for packet-loss

dependent stabilizing state feedback controllers by solving

some LMIs.

Here, we still use Schedule Algorithm 1 to stabilize NCS

(1). Based on the analysis in Section II, we can obtain the

states of NCS (1) at the update instants

z(k + 1) = Āη(k)z(k), (8)

where Āη(k) ∈ Ω̄, and for all k > 1, η(k) = (r(k), r(k −
1)) ∈ [1, d] × [1, d], η(1) = (r(1), 1), and r(k) is a

Markovian chain as defined in Definition 2.

Definition 4: NCS (1) with the Markovian packet-loss

process defined in Definition 2 is said to be mean square

stable(MS) if limt→∞ E[‖x(t)‖2] = 0 for any initial state

x0.

The following result is a simple generalization of Theorem

9 in [13]. Here, we omit its proof.

Lemma 3: NCS (1) with the Markovian packet-loss

process defined in Definition 2 is MS if there exist positive

definite matrices Pi with i ∈ [1, d], such that

s
∑

i=1

[pij(A
i +

i−1
∑

l=0

AlBFj)Pi(A
i +

i−1
∑

l=0

AlBFj)] − Pj < 0.

(9)

Remark 3: From (9), we get that the arbitrary packet-loss

stability implies the Markovian packet-loss stability for NCS

(1) since
∑d

i=1 pij = 1.

Based on Lemma 3, we can get that the following result

which proposes a sufficient condition for the MS of NCS (1)

with the Markovian packet-loss process defined in Definition

2.

Theorem 2: NCS (1) with the Markovian packet-loss

process defined in Definition 2 is MS if there exist symmet-

ric positive definite matrices X1, X2, · · · , Xd, and matrices

G1, G2, · · · , Gd,Y1, Y2, · · · , Yd satisfying
[

Λ QT
i

Qi Xi

]

> 0, ∀i ∈ [1, d], (10)

where

Λ = diag(G1 + GT
1 − X1, · · · , Gd + GT

d − Xd),

Qi = [
√

p1i(AGi + B1Yi)
T · · · √

pdi(A
dGi + BdYi)

T ],

with Bj =
j−1
∑

l=0

AlB.

Moreover,

u(t) = Fr(k−1)x̄(t) = Yr(k−1)G
−1
r(k−1)x̄(t), t ∈ [tk, tk+1),

is a stabilizing control law.

V. NUMERICAL EXAMPLES

In this section, some numerical examples and simulations

are given to demonstrate the effectiveness of the proposed

design technique.

Example 1: Consider a third-order NCS presented in [13]

x(t + 1) =





0.6065 0 −0.2258
0.3445 0.7788 −0.0536

0 0 1.2840



x(t)

+





−0.0582
−0.0093
0.5681



u(t),

u(t) = Fix̄(t),∀i ∈ [1, d],
(11)

where the state feedback gains Fi, i ∈ [1, d] are to be
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Fig. 2. State response (arbitrary packet loss).
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Fig. 3. State response (arbitrary packet loss).

designed. Here, we suppose that the maximum transmission

interval d = 3. When the packet loss of NCS (11) is arbitrary,
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we solve the LMIs in Theorem 1 by using the Matlab LMI

Toolbox, and obtain the feedback gains:

F1 =
[

0.2554 0.1473 −1.2090
]

,

F2 =
[

0.2576 0.1514 −1.2092
]

,

F3 =
[

0.2704 0.1589 −1.2165
]

.
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Fig. 4. State response (Markovian packet losses).
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Fig. 5. Frequency of packet losses (Markovian packet losses).

Next, suppose that the distribution of transmission interval

is 1, 2, 3, 1, 2, 3, · · · , and we give the simulations of the

the state response under the state feedback above. When

the initial state is x0 = [−10 10 1]T , the system state

response is shown in Fig. 1. When the initial state is x0 =
[0.1 − 0.1 0.01]T , the system state response is simulated in

Fig. 3.

In addition, when the packet loss of NCS (11) is a

Markovian process whose transition probability matrix is

P =





0.1 0.2 0.2
0.3 0.1 0.3
0.6 0.7 0.5



 . (12)

By solving the LMI in Theorem 2, the use of the Matlab

LMI Toolbox yields the following feedback gains:

F1 =
[

0.0773 0.0373 −1.0776
]

,

F2 =
[

0.0762 0.0365 −1.0635
]

,

F3 =
[

−0.0045 −0.0327 −1.0704
]

.

When the initial state is x0 = [−10 10 1]T , the system

state response under the state feedback above and the time

instants when x̄(t) updating its state are simulated in Fig. 1

and Fig. 5 separately. From all the analysis and simulations,

we see that NCS (11) presented in [13] can be stabilized

effectively by the designed packet-loss dependent controller.

Example 2: Consider a second-order NCS

x(t + 1) =

[

1.166 0.209
−0.123 −1

]

x(t) +

[

−1
1

]

u(t),

u(t) = Fix̄(t),∀i ∈ [1, d],
(13)

where the state feedback gains Fi with i ∈ [1, d] are to be

designed. Notice that the open-loop system is unstable since

since one of its poles 1.1541 is outside the unit disk. Next,

we design packet-loss dependent controllers to stabilize the

unstable system.
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Fig. 6. State response (arbitrary packet loss).
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Fig. 7. State response (no packet loss).

We suppose that the maximum transmission interval d = 3
which means that 66% of the packets may be lost, and the

initial state is x0 = [−10 10]T . When the packet loss of NCS

(13) is arbitrary, we solve the LMI in Theorem 1 and the use

of the Matlab LMI Toolbox yields the following feedback

gains:

F1 =
[

0.4610 0.0894
]

,

F2 =
[

0.3732 0.0732
]

,

F3 =
[

0.4226 0.0960
]

.

When the distribution of transmission interval is

1, 2, 3, 1, 2, 3, · · · , the state response of NCS (13) is shown

in Fig. 6. It can be seen clearly from the figure that even

in such a case that the controller can only obtain 33% of
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Fig. 9. Frequency of packet losses(Markovian packet losses).

the packets, the system can still be effectively stabilized via

the packet-loss dependent state feedback controller. Fig. 7

depicts the trajectory of the system when no packet loss

occurs. Compare Fig. 6 with Fig. 7, we can see that the

state response under the packet-loss controller is very similar

with that when there are no packet loss, which means that

the effect of the packet loss to the stabilization is small when

we use the packet-loss controller to stabilize the NCS.

Suppose that the packet loss of NCS (13) is a Markovian

process with the transition probability matrix given by (12).

We solve the LMI in Theorem 2 and the use of the Matlab

LMI Toolbox yields the following feedback gains:

F1 =
[

0.4422 0.2473
]

,

F2 =
[

0.4274 0.2838
]

,

F3 =
[

0.5072 0.2733
]

.

When the initial state is x0 = [−10 10]T , the state response

is shown in Fig. 8. The small circles in Fig. 9 simulate the

time instants when x̄(t) updating its states.

VI. CONCLUSION

This paper has discussed the stabilization problem of

the NCSs with the bounded packet loss by modelled

such NCSs as a class of switched systems. Two types

of the packet-loss processes have been considered: one

is the arbitrary packet-loss process, and the other is the

Markovian packet-loss process. For both cases, we have

derived the sufficient conditions in the form of LMIs

for the state feedback stabilization by using packet-loss

dependent Lyapunov functions, and presented a new control

design method. More specially, based on the theories for

the discrete-time switched systems, we have proposed the

design for the packet-loss dependent stabilizing controllers

which are easy to obtain by solving some LMIs via using

the Matlab LMI Toolbox. Several examples and simulations

have been worked out to demonstrate the effectiveness of

the proposed design technique.
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