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Abstract— This paper presents a nonlinear observer-based
control scheme to stabilize the annular pressure profile through-
out the well bore continuously while drilling. A simple mech-
anistic model is presented that captures the dominant phe-
nomena of the drilling system and forms the basis for model-
based observer and control design. A new nonlinear adaptive
observer is developed for state estimations. A new adaptive
controller is designed to stabilize the annular pressure and
achieve asymptotic tracking by applying feedback control of
the choke valve opening and the main pumps.

Index Terms— Drilling, nonlinear observer, adaptive control,
stabilization, tracking.

I. INTRODUCTION

During well drilling, a drilling fluid (mud) is pumped

into the drill string topside and through the drill bit at the

bottomhole of the well [1], [2]. The mud then transports

cuttings in the annulus side of the well (i.e. in the well

bore outside the drill string) up to the drill rig, where a

choke valve and a backpressure pump are used to control

the annular pressure. A more elaborate description of the

drilling process is given in [3].

The main objective is to precisely control the annular pres-

sure profile throughout the well bore continuously while

drilling, i.e. to maintain the annular pressure in the well

above the pore or collapse pressure and below the fracture

or sticking pressure. Usually, this amounts to stabilizing

the downhole annular pressure at a critical depth within its

margins, i.e. either at a particular depth where the pressure

margins are small, or at the drill bit where conditions are the

most uncertain.

Basically, two strategies for closed-loop control of the choke

are used: indirect topside control and direct bottomhole

control. Indirect topside control is to stabilize the bottomhole

pressure indirectly by applying feedback control to stabilize

the topside annulus pressure instead, where the pressure

setpoint corresponding to a desired bottomhole pressure is

calculated online using a steady-state model. This strategy

is the most common and straightforward mainly due to the

availability of high-frequency and robust topside pressure

measurements. Direct bottomhole control is to stabilize the

bottomhole pressure at the critical depth at a desired setpoint

directly. Even though a bottomhole measurement usually
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exists, an estimate of the pressure is needed between samples

because the transfer rate of the measurement usually is slow,

or for additional safety because the sensor itself may be

unreliable.

State-of-the-art solutions typically employ conventional PI

control applied to the choke, using one of the above strate-

gies. There are significant drawbacks with both strategies.

One is that the control system based on conventional PI

control will react slowly to fast pressure changes, which

results from movements of the drill string. Another draw-

back, is the uncertainty in the modelled bottomhole pressure,

due to uncertainties in the friction and mud compressibility

parameters in both the drill string and annulus.

There is significant potential to improve existing algorithms,

either the control law itself, or the observer used to estimate

the critical downhole pressure. Model-based control enables

improved compensation of pressure fluctuations during par-

ticularly critical drilling operations. Also, by using model-

based compensation with adaptation of uncertain parameters

rather than integral action in the controller, one typically en-

able faster reaction to changes in setpoints and disturbances.

In the absence of full-state measurement, observer design

is an effective way to control systems, such as in [4], [5],

[6], [7]. In this paper, we will address nonlinear adaptive

observer-based control of a drilling system in the presence

of unknown parameters and unmeasured downhole pressure.

A simple dynamic model developed for the observer and

model-based control design, is further developed to better

describe the liquid fluid flow behavior. A new nonlinear

observer is developed by using Lyapunov techniques to

estimate the unmeasured downhole pressure. Precise and

robust estimation of the annular pressure during drilling

allows for reduced pressure margins. Online adaptation of

unknown model parameters can extract more information

from the system. The adaptive controller is designed by using

Lyapunov techniques and parameter estimation to stabilize

the annular pressure at the desired setpoint. The stabilization

of the dynamic system is demonstrated by the proposed

control. It is shown that the proposed controller can guarantee

asymptotic tracking. Simulation results are presented to

illustrate the effectiveness of the proposed control scheme.

II. MODEL

In this section, we present a model developed in [8], which

captures the dominant phenomena of the drilling system and

forms the basis for model-based observer and control design.

The model only considers fluid phase flow and the well

is divided into two separate compartments. Figure 1 shows
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Fig. 1. A simplified schematical drawing of the drilling system.

the two control volumes considered, one control volume for

the drill string and one for the annulus. The volumes are

connected through the drill bit. The detailed derivation of

the model is given in [8], where the dynamics of the drilling

system is described by

ṗp = −a1qbit + b1up (1)

q̇bit = a2(pp − pc) −
Fd

M
|qbit|qbit (2)

−Fa

M
|qbit + qres| (qbit + qres) +

(ρd − ρa)g

M
v3

ṗc =
a5

v1
(qbit + qres + u + v2) . (3)

The states pp and pc are the inlet mud pump pressure and

outlet choke pressure (bar), qbit is the flow rate through the

drill bit (m3/s), u = qback − qchoke is control input, up,

qback and qchoke are the flow rates through the mud pump,

the back pressure pump and the choke valve, and qres is

the reservoir influx, v1, v2 and v3 are the annulus volume,

rate of change of the annulus volume and vertical depth of

the bit, respectively. The rest of the quantities in (1)–(3) are

constant parameters and can be explained as

• a1 = βd

Vd

, a2 = 1
M

, a5 = βa, b1 = βd

Vd

, M = Ma + Md;

• Vd: volume of the drill string;

• βd and βa: bulk modulus of the drill string and the

annulus;

• Md and Ma: density per meter of the drill string and

the annulus;

• Fd and Fa: friction factor of the drill string and the

annulus;

• ρd and ρa: density in the drill string and the annulus;

• g: gravity.

The parameters are known except as stated in the following

assumptions.

Assumption 1: The reservoir influx qres is an unknown

constant.

Assumption 2: θ = Fa

M
> 0 is an unknown constant.

Assumption 3: The flow rate qbit > 0 and qbit + qres ≥ 0.

Using these assumptions and the notations a3 = Fd

M

and a4 = (ρd−ρa)g
M

, the system (1)–(3) is rewritten as

ṗp = −a1qbit + b1up (4)

q̇bit = a2(pp − pc) − a3q
2
bit − θ (qbit + qres)

2
+ a4v3

(5)

ṗc =
a5

v1
(qbit + qres + u + v2) . (6)

The main variable of interest is the annular downhole pres-

sure pbit given by

pbit = pc + Maq̇bit + Fa(qbit + qres)
2 + ρagv3. (7)

Our objective is to design a control law for the control input

u which stabilizes pbit at the desired set-point pref .

III. NONLINEAR ADAPTIVE OBSERVER

A. Observer

Consider that pp and pc are measured and qbit is un-

measured, where the parameter θ and qres are unknown

constants. The following change of coordinates is defined

ξ , qbit + l1pp, (8)

where l1 is a positive constant. This gives the dynamics

ξ̇ = q̇bit + l1ṗp

= −l1a1qbit + l1b1up + a2 (pp − pc) − a3q
2
bit

−θ (qbit + qres)
2

+ a4v3. (9)

Defining Θ = [θ1, θ2, θ3]
T , θ1 = θ, θ2 = θqres, and θ3 =

θq2
res, the equation (9) can be written as

ξ̇ = −l1a1qbit + l1b1up + a2 (pp − pc) − a3q
2
bit

−ΘT φ(qbit) + a4v3, (10)

where φ(qbit) = [q2
bit, 2qbit, 1]

T and Θ will be estimated in

the observer design.

An adaptive observer for qbit is developed as follows

˙̂
ξ = −l1a1q̂bit + l1b1up + a2 (pp − pc)

−a3q̂
2
bit − Θ̂T φ(q̂bit) + a4v3, (11)

q̂bit = ξ̂ − l1pp, (12)

where Θ̂ = [θ̂1, θ̂2, θ̂3]
T and φ(q̂bit) = [q̂2

bit, 2q̂bit, 1]
T .

Firstly, we obtain the following error terms

θ2qbit − θ̂2q̂bit = θ2q̃bit + θ̃2q̂bit (13)

θ1q
2
bit − θ̂1q̂

2
bit = θ1q

2
bit − (θ1 − θ̃1)q̂

2
bit

= θ1(q
2
bit − q̂2

bit) + θ̃1q̂
2
bit (14)

q2
bit − q̂2

bit = (qbit + q̂bit)q̃bit, (15)

where θ̃i = θi − θ̂i and q̃bit = qbit − q̂bit, the error dynamics

of ξ̃ becomes
.

ξ̃ = −l1a1q̃bit − (a3 + θ1)(q
2
bit − q̂2

bit) − θ̃1q̂
2
bit

−2θ2q̃bit − 2θ̃2q̂bit − θ̃3, (16)
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and since ξ̃ = ξ − ξ̂ = q̃bit, we get
.

ξ̃ = −l1a1ξ̃ − (a3 + θ1)(qbit + q̂bit)ξ̃ − 2θ2ξ̃

−Θ̃T φ(q̂bit). (17)

B. Lyapunov Analysis

Consider the Lyapunov function

U
(

ξ̃, Θ̃
)

=
1

2
ξ̃2 +

1

2
Θ̃T Γ−1Θ̃, (18)

where Γ is the adaptation gain. Using (17), the time deriva-

tive of U is

U̇ = −l1a1ξ̃
2 − (a3 + θ1)(qbit + q̂bit)ξ̃

2 − 2θ2ξ̃
2

+Θ̃T Γ−1
(

˙̃Θ − Γφ(q̂bit)ξ̃
)

. (19)

This suggests that we should choose an adaptation law

satisfying
.

Θ̃ = Γφ(q̂bit)ξ̃, (20)

giving

U̇ = −l1a1ξ̃
2 − (a3 + θ1)(qbit + q̂bit)ξ̃

2 − 2θ1qresξ̃
2. (21)

If qbit > 0, q̂bit > 0, and qbit > 2|qres|, the time-derivative

of U satisfies

U̇ ≤ −l1a1ξ̃
2. (22)

Thus, ξ̃ → 0 as t → ∞. Consider the following dynamic

equation

˙̂qbit = −a3q̂
2
bit − θ̂1q̂

2
bit − 2θ̂2q̂bit − θ̂3

+a2 (pp − pc) + a4v3 + l1a1(qbit − q̂bit).(23)

It can be shown that q̂bit > 0 if q̂bit(0) > 0, and

pp > pc −
1

a2
a4v3 +

1

a2
max{θ̂3}. (24)

C. Adaptation Law

Note that (20) cannot be used for parameter estimation

because ξ̃ is unavailable. We introduce a new variable

σ , Θ + η
(

pp, ξ̂
)

, (25)

where η (·) is a vector function to be designed to assign σ
a desired dynamics. Differentiating σ with respect to time,

gives

σ̇ =
∂η

∂pp

ṗp+
∂η

∂ξ̂

.

ξ̂. (26)

Let an estimate θ̂ of the parameter vector be given by

.

σ̂ =
∂η

∂pp

(−a1q̂bit + b1up)+
∂η

∂ξ̂

.

ξ̂, (27)

Θ̂ = σ̂ − η
(

pp, ξ̂
)

. (28)

The resulting estimation error is then governed by
.

Θ̃ =
.

Θ −
.

Θ̂

=
.
σ − .

η
(

pp, ξ̂
)

−
( .

σ̂ − .
η

(

pp, ξ̂
))

= −a1
∂η

∂pp

ξ̃. (29)

Compared with (20), this suggests that η should be selected

such that

−a1
∂η

∂pp

, Γφ(q̂bit) = Γ





q̂2
bit

2q̂bit

1



 . (30)

A solution η (·) can be found by integrating (30)

η = − 1

a1

∫

Γφ(ξ̂ − l1pp)dpp = Γ







1
3l1a1

(ξ̂ − l1pp)
3

1
l1a1

(ξ̂ − l1pp)
2

− 1
a1

pp






. (31)

The resulting partial derivatives become

∂η

∂pp

= − 1

a1
Γ





(ξ̂ − l1pp)
2

2(ξ̂ − l1pp)
1



 , (32)

∂η

∂ξ̂
= Γ







1
l1a1

(ξ̂ − l1pp)
2

2
l1a1

(ξ̂ − l1pp)

0






. (33)

Lemma 1: With the application of the adaptive nonlinear

observer (11)–(12), and the parameter update law (27)–(28),

in the set

A =
{

(pp, q̂bit, pc) : qbit > 2|qres|, q̂bit(0) > 0,

pp > pc −
1

a2
a4v3 +

1

a2
max{θ̂3},

}

, (34)

the signals ξ̃ and Θ̃ are bounded and the observation error

converges to zero, i.e., limt→∞[qbit − q̂bit] = 0.

IV. ADAPTIVE CONTROLLER DESIGN

A. Annular pressure profile

The annular downhole pressure pbit, which from (5) and

(7), can be written as

pbit = Maa2pp + Mda2pc − Maa3q
2
bit

+MdΘ
T φ(qbit) + f0, (35)

where f0 = (Maa4 + ρag)v3.

B. Controller design

Based on the observer (11)–(12), the system (4)–(6) is

rewritten as

ṗp = −a1q̂bit + b1up − a1ξ̃

˙̂qbit = a2 (pp − pc) − a3q̂
2
bit − Θ̂T φ(q̂bit) (36)

+a4v3 + l1a1ξ̃ (37)

ṗc =
a5

v1

(

q̂bit + qres + u + v2 + ξ̃
)

, (38)
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and the output

y (pp, pc, q̂bit) = p̂bit (pp, pc, q̂bit)

= Maa2pp + Mda2pc − Maa3q̂
2
bit

+MdΘ̂
T φ(q̂bit) + f0. (39)

Hence the system (36)–(38) with (39) has relative degree

one. Our objective is to design a control law for the control

input u which stabilizes the annular down-hole pressure pbit

at the desired set-point pref . Define the set point error as the

following

e = y (pp, pc, q̂bit) − pref . (40)

Computing the derivative of e from (36)–(40) gives

ė = ẏ (pp, pc, q̂bit)

=
Mda2a5

v1
u + Maa2

(

˙̂pp − a1ξ̃
)

+
Mda2a5

v1

(

˙̂pc + ξ̃ + qres

)

+2
(

Mdθ̂1q̂bit + Mdθ̂2 − Maa3q̂bit

) (

˙̂q + l1a1ξ̃
)

−Mdφ
T (q̂bit)Γφ(q̂bit)ξ̃ + ḟ0, (41)

where

˙̂pp = −a1q̂bit + b1up (42)

˙̂pc = q̂bit + v2 (43)

˙̂q = a2 (pp − pc) − a3q̂
2
bit − Θ̂T φ(q̂bit) + a4v3.(44)

Thus the control law is designed as

u = −(q̂bit + v2 + q̂res)

+
v1

Mda2a5

(

− C1e − Maa2
˙̂pp − ḟ0 − k1B

2e

−2
(

Mdθ̂1q̂bit + Mdθ̂2 − Maa3q̂bit

)

˙̂q
)

, (45)

where C1 and k1 are positive constants, and

B = ‖ −Maa1a2 −
a2a5

v1
Md − MaφT (q̂bit)Γφ(q̂bit)

+2l1a1

(

Mdθ̂1q̂bit + Mdθ̂2 − Maa3q̂bit

)

‖ (46)

k1 >
1

4kl1a1
, (47)

and the parameter adaptive law for qres is given by

˙̂qres =
γMda2a5

v1
e, (48)

where γ is a positive adaptation gain.

C. Lyapunov analysis

Consider the control Lyapunov function

V = kU +
1

2
e2 +

1

2γ
q̃2
res. (49)

Using (22), (45) and (48), the derivative of V is

V̇ ≤ −C1e
2 + B|eξ̃| − k1B

2e2 − kl1a1ξ̃
2

− 1

γ
q̃res

(

˙̂qres − γ
Mda2a5

v1
e

)

≤ −C1e
2 − kl1a1ǫlξ̃

2 − kl1a1(1 − ǫl)ξ̃
2

+B|eξ̃| − k1B
2e2. (50)

Let

ǫl = 1 − 1

4kk1l1a1
. (51)

Note that ǫl ∈ (0, 1) due to (47) and the fact that k, k1, l1
and a1 are strictly positive constants. We obtain that

V̇ ≤ −C1e
2 − kl1a1ǫlξ̃

2 − 1

4k1
ξ̃2 + B|eξ̃| − k1B

2e2

≤ −C1e
2 − kl1a1ǫlξ̃

2 −
(

1

2
√

k1

|ξ̃| −
√

k1B|e|
)2

≤ −C1e
2 − kl1a1ǫlξ̃

2, (52)

where Young’s inequality was used. Since V is positive

definite and V̇ is negative semidefinite in A, it proves

that signals e, ξ̃, Θ̃, q̃res are bounded. From the LaSalle-

Yoshizawa Theorem in [9], it further follows that e, ξ̃ → 0 as

t → ∞. The signals y, ξ̃, Θ̂, q̂res are bounded and asymptotic

tracking is achieved, i.e.,

lim
t→∞

[p̂bit − pref ] = 0. (53)

Note that u in (45) includes the signals pp, pc and q̂bit. To

make the control input u bounded and the system (38)–(39)

stable, we will ensure that pp and q̂bit are bounded. Towards

that end, we consider the dynamics of pp and q̂bit, given as

˙̂qbit = a2pp − a3q̂
2
bit +

1

Md

(

− y + Maa2pp − Maa3q̂
2
bit

+ MdΘ̂
T φ(q̂bit) + f0

)

− Θ̂T φ(q̂bit) + a4v3 + l1a1ξ̃

=
1

Md

pp − M

Md

a3q̂
2
bit −

1

Md

y + l1a1ξ̃ + d(t) (54)

ṗp = −a1qbit + b1up, (55)

where d(t) = (Maa4

Md

+ ρag
Md

+ a4)v3(t) is a bounded term.

Assuming that pp is bounded, we obtain the boundedness

of q̂bit from the boundedness of y, ξ̃, v3, pp in (54) and

q̂bit > 0. Therefore, u is bounded from (45). Now we have

a conclusion that the signals in the closed-loop system can

be shown to be bounded, as stated in the following theorem.

Remark 1: In practice the pump will not be able to drive

the pressure to infinity. Thus, we can assume that the pump

speed signal will be such that pp stays bounded.

Theorem 1: With the application of the adaptive non-

linear observer (11)–(12), the control law (45), and the

parameter update law (27)–(28), in the set

A =
{

(pp, q̂bit, pc) : qbit > 2|qres|, q̂bit(0) > 0,

pp > pc −
1

a2
a4v3 +

1

a2
max{θ̂3}

}

, (56)
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all signals y, pp, q̂bit, Θ̂, and q̂res are bounded and asymptotic

tracking is achieved given as

lim
t→∞

[p̂bit − pref ] = 0. (57)

D. Tracking performance

We now introduce the following useful Lemma and propo-

sition as in [10], [11], [12].

Lemma 2: (Micaelli and Samson 1993 [10], Lemma 1).

Let f : ℜ+ → ℜ be any differentiable function. If f(t)
converges to zero as t → ∞ and its derivative satisfies

ḟ(t) = f1(t) + η(t) t ≥ 0

where f1 is a uniformly continuous function and η(t) tends

to zero as t → ∞, then ḟ(t) and f1(t) tend to zero as t → ∞.

Proposition 1: Suppose f1 is differentiable on (a, b) and

f
′

1 is bounded on (a, b). Then f1(t) is uniformly continuous

on (a, b).

Considering the error dynamics (17), we have from Lemma1

and Theorem 1 that

lim
t→∞

ξ̃ = 0 (58)

lim
t→∞

(

− l1a1ξ̃ − (a3 + θ1)(qbit + q̂bit)ξ̃ − 2θ2ξ̃
)

= 0. (59)

Define f1(t) = Θ̃T φ(q̂bit). So f1 is differentiable and

ḟ1(t) = φT Γφξ̃ + 2
(

q̂bitθ̃
T
1 + θ̃2

)(

a2 (pp − pc)

−a3q̂
2
bit − Θ̂T φ(q̂bit) + a4v3 + l1a1ξ̃

)

. (60)

From the boundedness of pp, pc, q̂bit, ξ̃, Θ̃, v3 in A, we have

ḟ1(t) is bounded in A. Therefore f1(t) is uniformly contin-

uous in A and limt→∞ Θ̃T φ(q̂bit) = 0 by using Lemma 2

and Proposition 1. From (35) and (39), we have

pbit − p̂bit = −Maa3(q
2
bit − q̂2

bit)

+Md(Θ
T φ(qbit) − Θ̂T φ(q̂bit))

= −Maa3(q
2
bit − q̂2

bit) + MdΘ̃
T φ(q̂bit)

+MdΘ
T





(q2
bit − q̂2

bit)
2(qbit − q̂bit)

0



 . (61)

Since limt→∞[qbit − q̂bit] = 0, limt→∞[q2
bit − q̂2

bit] = 0, and

limt→∞ Θ̃T φ(q̂bit) = 0 in A, it follows that limt→∞[pbit −
p̂bit] = 0, which in conjunction with Theorem 1 gives

Theorem 2: With the application of the adaptive non-

linear observer (11)–(12), the control law (45), and the

parameter update laws (27)–(28), in the set

A =
{

(pp, q̂bit, pc) : qbit > 2|qres|, q̂bit(0) > 0,

pp > pc −
1

a2
a4v3 +

1

a2
max{θ̂3}

}

, (62)

all signals y, pp, q̂bit, pc, Θ̂, and q̂res are bounded and asymp-

totic tracking is achieved given as

lim
t→∞

[pbit − pref ] = 0. (63)

V. SIMULATION RESULTS

In this section we test our proposed controller on model

(1)–(3). When doing so, we need to distribute the control

signal u from (45) to the two physical actuation devices,

the backpressure pump and the choke opening, according to

u = qback − qchoke. We assume that the backpressure pump

is set at a constant rate, while the choke opening is related

to the choke flow by the standard valve equation

qchoke = Kc

√

2

ρa

(pc − p0) zc. (64)

For simulation studies, the following values are selected for

the system: βa = βd = 14000, Vd = 28.3, Va = 96.1,

Md = 5700, Ma = 1700, Fd = 165000, Fa = 20800,

ρa = ρd = 1250×10−5, hbit = 2000, g = 9.8, p0 = 1, Kc =
0.004626, qres = 0.001, V̇a = 0, qpump = 0.01, qback =
0.003. The parameters Fa and qres need not be known in

the controller design. The design objective is to stabilize pbit

at the desired set point pref = 310(bar). With the proposed

adaptive observer and controller, we take the following set

of design parameters: l1 = 10−5, C1 = 0.01, k1 = 0.01,Γ =
diag{6.95 × 103, 0.0226, 0.012}, γ = 10−5. The initials are

set as pp(0) = 120, pc(0) = 70, qbit(0) = 0.014, q̂bit(0) = 0,

q̂res(0) = 1.2qres and F̂a(0) = 0.6Fa, respectively. Figure

2 shows the annular downhole pressure pbit, p̂bit and pref

and the choke opening zc. Figure 3 shows the parameter

estimations. Clearly, the annular pressure asymptotically

tracks the pressure reference and parameter convergence is

achieved.

The proposed nonlinear observer-based controller has been

tested on WeMod, a simulator based on a distributed pa-

rameter model of the fluid dynamics in the well [13]. The

model (1)–(3) was fitted to steady state data resulting in the

parameter values in Table I and the initials Va(0) = 100 and

V̇a(0) = 0. We turn on the observer at t = 5min with initials

q̂bit(0) = 1/600, Θ̂(0) = [0.8 × Fa/M ; 0; 0] and design

parameters l1 = 10−4 and Γ = diag(10000, 0.001, 0.001).
The controller starts at t = 20min with design parameters

C1 = 0.05, k1 = 3 ∗ 10−7 and γ = 10−6. The set point

is changed from 340 to 300(bar) at t = 25min. The pump

is changed from 1500 to 500(l/min) at t = 30min. From

t = 50min to t = 51min30s approximately 26m of the

drill pipe is pulled out of the bore hole. Figure 4 shows the

pump pressure pp, the choke pressure pc and the pump flow

up, the annular downhole pressure pbit and p̂bit, the flow

through the bit qbit and q̂bit, and the actual and desired choke

opening zc. From Figure 4 we can see that the controller

is able to suppress the changes in downhole pressure with

maximum deviation from the desired set point 300(bar) of

approximately 5(bar). The desired choke opening (zc) is

calculated from (64), but there is a difference between the

desired choke opening and the actual choke opening due to

the additional actuator dynamics in WeMod. The simulation

results show that the presented model can fit the data and the

annular pressure can track the pressure reference well with

the proposed controller.
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Fig. 2. Simulations of observed-based stabilization with adaptive controller.
(pbit(solid), p̂bit(dashed-dot) and pref (dashed))
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Fig. 3. Parameter estimations with adaptive nonlinear observer.

TABLE I

PARAMETER VALUES WITH WEMOD

Parameter Value Description

Vd 26.7 Volume drill string (m3)

βd 13000 Bulk modulus drill string (bar)

βa 7300 Bulk modulus drill string (bar)

ρa 0.0125 Density annulus (10−5 kg
m3 )

ρd 0.0125 Density drill string (10−5 kg
m3 )

Fd 170000 Friction factor drill string ( bar s2

m6 )

Fa 16000 Friction factor annulus ( bar s2

m6 )

Ma 1600 Density per meter of annulus

(10−5 kg
m4 )

Md 6000 Density per meter of drill string

(10−5 kg
m4 )

hbit 2010 Vertical depth of bit (m)

VI. CONCLUSIONS

During well drilling, the annular downhole pressure should

be precisely controlled throughout the well bore continuously

while drilling. A choke valve and a back pressure pump is

used to control the annular pressure. This paper presents

a nonlinear adaptive observer control applied to stabilize

the annular pressure. A simple model is used to capture

the dominant phenomena of the drilling system and for the

observer and model-based control design. A new nonlinear

adaptive observer-based control is developed to stabilize

the annular pressure and achieve asymptotic tracking. The
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Fig. 4. Simulations of observed-based control with WeMod

simulation results are presented to illustrate the effectiveness

of the proposed control scheme.
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