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Abstract— In this paper we study the error covariance matrix
of the recursive Kalman filter when the parameters of the filter
are driven by a Markov chain taking values in a countably
infinite set. In this context, the error covariance matrix of the
filter depends on the Markov state realizations, and in this sense
forms a stochastic process. We show in a rather direct and
comprehensive manner that a standard stochastic detectability
concept plays the role of a sufficient condition for the mean of
the error covariance process of the Kalman filter to be bounded.
Illustrative examples are included.

I. INTRODUCTION

The recursive Kalman filter (KF) is one of the most well-

known and employed filters for dynamical systems. It is

optimal in different senses, linear, recursive, computationally

efficient, and allows for off-line implementations, see for in-

stance [1], [21] and references therein. Moreover, it presents

structural links with the plant that allows to characterize

upper bounds for the error covariance of the estimates,

stability and other fundamental aspects of the filter, based

on the models of the system and noise. Along this line,

it is known that the KF for a linear time varying (LTV)

system presents bounded error covariance when the system

is uniformly detectable1 [2]. In general, the more accurate is

the information available on the models, the more complete

is the characterization of the filter properties. A priori exact

knowledge of the system matrices for each time instant

k ≥ 0 makes possible to check detectability and thus to

infer properties on the error covariance of the recursive KF,

while, for instance, an uncertain model description does not

allow to check uniform detectability and motivates the use

of modifications to achieve robustness [24], [26], [27]

In this paper we investigate an existence condition for

bounded error covariance of the KF, assuming that the filter,

system and noise matrices are taken from certain sets of

matrices, accordingly to a subjacent denumerable Markov

chain. More precisely, we consider the recursive KF applied

to discrete-time, linear infinite Markov jump parameters

(LIMJP) systems. We assume that the jump variable θ
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1Please refer to Section II for the definition of detectability.

(referred to as the jump state) is observed at each time instant

k, and takes values in a countably infinite set Z = {1,2, . . .}.

Note that this is more general than considering a priori exact

knowledge of the system matrices, since we only know which

matrix is associated with each k ≥ 0 after observing the jump

state; in a sense, an LTV system is an LIMJP system with

particular choices for the transition probabilities and initial

distribution of the jump state, see Section IV. LIMJP systems

comprise a class of systems featuring strong properties that

parallel the ones of deterministic linear systems, see for

instance [7], [10] and [16]. Different formulations of filters

for LIMJP systems without observation of the jump state

and/or stationary filters can be found in [3], [12], [17], [18]

and [22].

In the scenario when the jump state is accessible, the

recursive KF is the filter of choice for many applications,

in view of the aforementioned properties. However, exist-

ing results for the error covariance of the filter considers

deterministic concepts such as uniform detectability, and

consequently the stochastic nature of the LIMJP system is not

taken into account. This is precisely the gap that this paper

fills, by showing that stochastic (S) detectability implies the

existence of an upper bound for the error covariance of

the KF, as stated in Theorem 1. The method of proof is

direct, having as a starting point the idea of comparison

with a suboptimal filter, similarly e.g. to [2]. In fact, the

optimality of the KF allows for an ordering with the error

covariance X̃K of a linear estimator with any fixed sequence

of gains K = {K1, . . .} (possibly adapted to the observations).

Then, we use the S-detectability hypothesis to set K as a

stabilizing gain and, considering the associated conditional

covariances WK,i (defined for each jump state i) we show

that E {WK,i(k)} ≤ Xi(k) where Xi is the conditional second

moment of a certain LIMJP system with stationary complete

noise excitation. The result follows by showing that Xi(k)
is bounded from above, by employing available results on

infinite dimensional LIMJP systems. We do not assume

ergodicity nor require the existence of limiting probabilities

for the Markov chain.

The paper is organised as follows. Section II presents

notation, some preliminary results and the S-detectability

concept. Section III shows that S-detectability ensures an

upper bound for the error covariance. Section IV considers

some particular scenarios and existing results, and Section V

presents illustrative examples. Finally, Section VI provides

some conclusions.
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II. DEFINITIONS AND PRELIMINARY RESULTS

Let R
n denote the n−th dimensional Euclidean space. Let

D (respectively D̄) be the open (closed) unit disk in the com-

plex plane. Let Rr,s (respectively, Rr) represent the normed

linear space formed by all r× s real matrices (respectively,

r×r) and Rr0 the closed convex cone {U ∈Rr : U =U ′ ≥ 0}
where U ′ denotes the transpose of U . For V,W ∈Rr, σ+(V )
stands for the largest singular value of V , ‖V‖ = σ+(V ),
and V ≥W indicates that V −W ∈ Rr,0. Let Z = {1,2, . . .}
and let H r,s denote the linear space formed by sequences of

matrices H = {Hi ∈R
r,s; i ∈Z } such that supi∈Z ||Hi||< ∞.

For H ∈ H r,s, we write ‖H‖∞ = supi∈Z ‖Hi‖ and ‖H‖1 =

∑i∈Z ||Hi||. Let H
r,s

1 ⊂ H r,s be such that ||H||1 < ∞ holds

for any H ∈H
r,s

1 . H r,r is denoted by H r, and H r0 ⊂H r is

such that Hi ∈Rr0, i∈Z , holds for any H ∈H r0; similarly,

H r
1 ≡H

r,r
1 and H r0

1 is such that Hi ∈Rr0, i ∈Z , holds for

any H ∈ H r0
1 . For U,V ∈ H r,s, U +V = {Ui +Vi, i ∈ Z },

U ≥V indicates that Ui ≥Vi for each i∈Z , and similarly for

any operation involving elements of H
r,s. For each operator

L : H r0
1 → H r0

1 , rσ (L ) represents the spectral radius of

L . E (·) denotes the expected value of a random variable.

IA (·) is the indicator function of a set A and, with a slight

abuse of notation, we write Ii(·) when A = {i}.

Consider the LIMJP system defined in a fixed stochastic

basis (Ω,F,(Fk),P) by

Ψ :











x(k + 1) = Aθ(k)x(k)+ Bθ(k)w(k),

y(k) = Cθ(k)x(k)+ Dθ(k)v(k), k ≥ 0,

x(0) = x0, θ (0) = θ0,

(1)

where x(k) ∈ R
n, y(k) ∈ R

r is the output process, w(k) ∈
R

p and v(k) ∈ R
q form stationary zero-mean indepen-

dent white noise processes satisfying E {w(k)w(k)′} = I,

E {v(k)v(k)′} = I, x0 is a (independent) zero-mean random

variable satisfying E {x0x′0} = Σ, and θ is the state of an

underlying discrete-time time-stationary Markov chain Θ =
{θ (k);k ≥ 0} taking values in Z and having a transition

probability matrix P = [pi j], i, j ∈Z , with initial distribution

P(θ0 = i) = πi(0), i∈Z . The state of the system is the pair

of variables (x(k),θ (k)), and we say that x is the continuous

state and θ is the jump state. A ∈ H n, B ∈ H n,p, C ∈ H r,n

and D ∈ H r,q, with DD′ > 0 (nonsingular measurement

noise). In addition, with no loss of generality we consider

C′D = 0. We assume observation of the output and the jump

state, i.e., the available information at the time instant k is

Fk = {y(0),θ (0), . . . ,y(k),θ (k)}.

For estimating the continuous state x(k), we consider the

recursive KF, which provides the estimates x̂(0) = 0 and

x̂(k + 1) = Aθ(k)x̂(k)+ Lk[y(k)−Cθ(k)x̂(k)] (2)

where the Kalman gain Lk = Aθ(k)P(k)C′
θ(k)[Cθ(k)P(k)C′

θ(k) +

Dθ(k)D
′
θ(k)]

−1 is calculated via the Riccati difference equa-

tion (RDE)

P(k + 1) = Aθ(k)[P(k)−P(k)C′
θ(k)×

× (Cθ(k)P(k)C′
θ(k) + Dθ(k)D

′
θ(k))

−1×

×Cθ(k)P(k)]A′
θ(k) + Bθ(k)B

′
θ(k)

(3)

with initial condition P(0) = Σ ∈ R
n0. Note that the in-

formation Fk allows to calculate P(k) and Lk at the time

instant k (off-line implementations in which the gains L are

calculated a priori cannot be considered); moreover, given a

realization of θ (0), . . . ,θ (k), the above filter coincides with

the standard KF for LTV systems. Among the interesting

features of the KF, the fact that it is a linear minimal mean

square estimator is of central importance, and it is formalized

in what follows in a suitable form. For a sequence of gains

K ∈ H n,r, consider the state estimate x̂K(0) = 0 and

x̂K(k + 1) = Aθ(k)x̂K(k)+ Kk[y(k)−Cθ(k)x̂K(k)]. (4)

We assume that K is possibly Fk-adapted, in the form Kk =
Kθ(k). The estimation error is obtained from (1) and (4),

x̃(0) = x(0)− x̂K(0) = x(0) and

x̃K(k + 1) = (Aθ(k)−KkCθ(k))x̃K(k)

+ Bθ(k)w(k)−KkDθ(k)vk.
(5)

Consider X̃K(k) ∈ Rn0 defined recursively as

X̃K(k + 1) = (Aθ(k) −KkCθ(k))X̃K(k)(Aθ(k) −KkCθ(k))
′

+ KkDθ(k)D
′
θ(k)K

′
k + Bθ(k)B

′
θ(k),

X̃K(0) = Σ, k ≥ t ≥ 0.

(6)

The connection with the error covariance is as follows, see

e.g. [25].

Proposition 1. Consider X̃K defined in (6).

E {x̃(k)x̃(k)′|Fk} = X̃K(k).

It is simple to check from (3) and (6) that P(k) = X̃L(k),
k ≥ 0. The minimal mean square property of the KF can be

formalized as follows.

Proposition 2. P(k) = X̃L(k) ≤ infK∈H n,r X̃K(k), k ≥ 0.

Note from (5) and Proposition 1 that the error covari-

ance matrix X̃K(k) is a function of the random variables

θ (0), . . . ,θ (k), in such a manner that X̃K(k) (and in particular

P(k) = X̃L(k)) forms a stochastic process. We refer to the

process as the error covariance process of the KF. We are

seeking for a condition for E {P(k)}= E {E {x̃(k)x̃(k)|Fk}}≤
P̄ for some P̄∈Rn0. We say that a KF satisfying this relation

is a mean bounded error covariance KF.

Regarding the system Ψ, certain linear operators have

been introduced in [14]. These play an important role in

characterizing stability and other aspects of LIMJP systems,

see for instance [10], [16], [9], [13]. Following the notation

of [7], we consider LV : H r
1 → H n

1 , defined for V ∈ H n,r
∞

and H ∈ H r0
1 by

LV,i(H) = ∑
j∈Z

p jiV jH jV
′
j , i ∈ Z . (7)

It is shown in [11] that L in (7) is well-defined, and

is a positive linear operator. We denote L 0(H) = H, and

for k ≥ 1, we can define L k(H) recursively by L k(H) =
L (L k−1(H)). The following result is simple to check by

inspection of (7).
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Proposition 3. If U,H ∈ H
n0

1 are such that U ≥ H, then

LV (U) ≥ LV (H), for each V ∈ H n,r
∞ .

Notions of stochastic stability and detectability can be

traced back to [19], [20]. We consider the next formulation.

Definition 1. We say that (A,P) is stochastically stable (S-

stable) if, for each V ∈H n0
1 , there exists V̄ ∈ Rn0 such that

∑
∞
k=0 L k

A (V ) ≤ V̄ . We say that (A,C,P) is S-detectable if

there exists K ∈ H n,r such that (A + KC,P) is S-stable.

A sharp condition for S-stability in terms of the spectral

radius of the operator L was obtained in [11], see also [10],

[16] for similar results.

Proposition 4. (A,P) is S-stable if and only if rσ (LA) < 1.

S-stability has the following interpretation, regarding the

process formed by the continuous state [11].

Proposition 5. Consider the system Ψ with B = 0. (A,P) is

S-stable if and only if E {∑
∞
k=0 ‖x(k)‖2} < ∞.

For U ∈H
n,0

1 , consider the sequence X(k)∈H
n,0

1 defined

as X(0) = X0 ∈ H
n,0

1 and

X(k + 1) = LA(X(k))+U, k ≥ 0. (8)

A condition for existence of an upper bound for X(k) is

presented next. If we additionally assume that the Markov

chain is ergodic, the result follows as a particular case of

the results in [10], which ensure convergence of X(k) to a

limiting X ; however, since the Markov chain has no limiting

distribution in general, X(k) does not converge and those

results cannot be used here.

Lemma 1. Assume that (A,P) is S-stable. Then, for each

X0 ∈ H
n,0

1 and U ∈ H
n,0

1 there exists X̄ ∈ H
n,0

1 such that

X(k) ≤ X̄ , k ≥ 0.

Proof: Set ε > 0 such that (1+ε)rσ (LA) < 1, and Ā =
(1+ε)1/2A. From (7) we have that LĀ = (1+ε)LA < 1 and

rσ (LĀ) = (1+ε)rσ (LA) < 1. Note from (8) that X(k+1) =
LA(X(k))+U = (1 + ε)−1LĀ(X(k))+U , with the solution

X(k) = (1 + ε)−k
L

k
Ā
(X0)+

N−1

∑
ℓ=0

(1 + ε)−ℓ
L

ℓ
Ā
(U).

Note that L k
A (V )≤∑

∞
k=0 L k

A (V ) and, since (Ā,P) is S-stable,

we have from Definition 1 that L k
A(V ) ≤ ∑

∞
k=0 L k

A(V ) ≤ V̄ .

A similar evaluation holds for L k
Ā
(U). Hence,

X(k) ≤ (1 + ε)−kX̄ +
N−1

∑
ℓ=0

(1 + ε)−ℓŪ

≤ X̄ +(1− (1 + ε)−1)−1Ū .

Lemma 2. There exists U ∈ H
n,0

1 such that

∑ j∈Z p jiπ j(k)
(

K jD jD
′
jK

′
j + B jB

′
j

)

≤U.

Proof: Note that

∑
j∈Z

p jiπ j(k)
(

K jD jD
′
jK

′
j + B jB

′
j

)

≤ ∑
j∈Z

π j(k)
(

K jD jD
′
jK

′
j + B jB

′
j

)

≤ (‖K‖2
∞‖D‖2

∞ +‖B‖2
∞)I ∑

j∈Z

π j(k)

≤ (‖K‖2
∞‖D‖2

∞ +‖B‖2
∞)I.

III. S-DETECTABILITY ENSURES AN UPPER BOUND FOR

THE AVERAGE ERROR COVARIANCE OF THE KF

Theorem 1. Assume (A,C,P) is S-detectable. Then, there

exists P̄ ∈ Rn0 such that E {P(k)} ≤ P̄.

Proof: Assume that K ∈ H n,r is an Fk-adapted se-

quence, with Kk = Kθ(k), such that (A−KC,P) is S-stable

or, equivalently, rσ (LA−KC) < 1, see Proposition 4. From

Proposition 2, for each realization of θ (0), . . . ,θ (k) we have

that P(k)= X̃L(k)≤ X̃K(k), k ≥ 0. Employing basic properties

of expected value (see e.g. [4]) we write

E {P(k)} ≤ E {X̃K(k)}. (9)

Associated with the random process X̃K(k), consider the

quantity WK(k) ∈ H n,0, k ≥ 0, defined by WK,i(k) =
X̃K(k)Ii(θ (k)), i ∈ Z . From (9) we obtain

‖E {P(k)}‖ ≤ ‖E {X̃K(k)}‖ = ‖ ∑
j∈Z

E {X̃K(k)I j(θ )}‖

= ‖ ∑
j∈Z

E {WK, j(k)}‖.
(10)

Now, consider X(k) defined as in (8) with X0,i =

E {WK,i(0)|F0} = Σπi(0), U ∈ H
n,0

1 as in Lemma 2 and A

replaced by A−KC. We show inductively that

E {WK(k)} ≤ X(k). (11)

For k = 0 we have that

E {WK,i(0)} = E {X̃K(0)Ii(θ (0))} = ΣE {Ii(θ (0) = i)}

= Σπi(0) = X(0).

Denoting Φi = KiDiD
′
iK

′
i + BiB

′
i, assuming E {WK,i(k)} ≤

Xi(k), and employing (6) and Lemma 2, we evaluate

E {WK,i(k + 1)} = E {X̃K(k + 1)Ii(θ (k + 1))}

= E {
(

(Aθ(k)−Kθ(k)Cθ(k))X̃K(k)×

× (Aθ(k)−Kθ(k)Cθ(k))
′ + Φθ(k)

)

Ii(θ (k + 1))}

= ∑
j∈Z

(

E {
(

(Aθ(k)−Kθ(k)Cθ(k))X̃K(k)×

× (Aθ(k)−Kθ(k)Cθ(k))
′ + Φθ(k)

)

Ii(θ (k + 1)I j(θ (k))}

= ∑
j∈Z

p ji(A j −K jC j)E {WK, j(k)}(A j −K jC j)
′

+ ∑
j∈Z

p jiπ j(k)Φ j

≤ ∑
j∈Z

p ji(A j −K jC j)X j(k)(A j −K jC j)
′ +Ui

≤ LA−KC,i(X(k))+Ui = Xi(k + 1), i ∈ Z ,
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which completes the induction. Since rσ (LA−KC) < 1, we

have from Lemma 1 that there exists X̄ ∈ H
n,0

1 such that

X(k) ≤ X̄ , hence (10) and (11) yield

‖E {P(k)}‖ ≤ ∑
j∈Z

‖E {WK, j(k)}‖

≤ ∑
j∈Z

‖X j(k)‖ = ‖X(k)‖1 ≤ ‖X̄‖1.

IV. PARTICULAR SCENARIOS AND EXISTING RESULTS

AND CONDITIONS

One interesting feature of infinite dimensional LIMJP sys-

tems is that they comprise LTV systems in the sense that, if

we set pi,i+1 = 1 and assume initial distribution π1(0)= 1 and

πi(0) = 0, i 6= 1, then it is simple to check that θ (k) = k +1,

k≥ 0, almost surely, implying that Aθ(k) = Ak+1 almost surely

and similarly for other system matrices. Taking this setup

into account, Theorem 1 reads as follows: if there exists a

sequence of gains K ∈H n,r such that state trajectories of the

system x(k + 1) = (Ak −KkCk)x(k) converges exponentially

to zero, then P(k) = E {P(k)} ≤ P̄. This retrieves a result for

LTV systems, see e.g. [2].

Now, consider finite dimensional LIMJP systems with

Z = {1, . . . ,Z}. To the best of our knowledge there is no

previous result ensuring bounded error covariance for the KF

that takes into account the stochastic characteristics of Ψ. A

question that arises in this scenario is whether the concept

of weak detectability presented in [6] (see the Appendix for

a definition), which is weaker than S-detectability, ensures

mean bounded error covariance. Weak detectability implies

that finite cost controls are stabilizing, thus playing an im-

portant role in control of LIMJP systems. The next example

establishes that the answer is negative. It is a remarkable

feature of LIMJP systems that the most adequate concepts for

filtering and control, respectively S-detectability and weak

detectability, are not equivalent.

Example 1. Consider the system Ψ with

A1 =

[

0.9 0

1 1.5

]

A2 =

[

0.9 0.01

0.01 0.9

]

,

B1 = B2 = Σ = I, C1 = C2 =
[

1 0
]

, D1 = D2 = 1,

P =

[

0.95 0.05

1 0

]

and π(0) =
[

1 0
]

.

Employing the S-detectability test of Proposition 6 (in the

Appendix), one can check that (A,C,P) is not S-detectable

and is weakly detectable. Figure 1 presents the estimated

E {P(k)}, obtained via Monte Carlo simulation based on

10,000 realizations of the Markov chain, clearly suggesting

that is is not bounded, in spite of the fact that (A,C,P) is

weakly detectable.

Finally, linear periodic systems are of course a particular

case of the above ones. In this context, S-detectability,

weak detectability, uniform detectability and exponential

detectability are equivalent. Moreover, detectability is a

sufficient condition for the KF to present bounded error

covariance, which follows immediately from available results

on Riccati difference equations [23].

x 10

k
0 5 10 15 20

4

8

12
5

Fig. 1. Covariance error for the KF in Example 1. ‖P(k)‖ (marked by •)

and ‖P(k)‖±σ (+) where σ is the estimated standard deviation of ‖P(k)‖.

k

−600

−400

−200

0

200

400

600

800

0 100 200 300 400

Fig. 2. Covariance error for the KF in Example 2. ‖P(k)‖ (marked by •)

and ‖P(k)‖±σ (+) where σ is the estimated standard deviation of ‖P(k)‖.

V. ILLUSTRATIVE EXAMPLES

Example 2. Consider the system Ψ of Example 1 with

P =

[

0.5 0.5
0.5 0.5

]

.

The main qualitative difference from the system of Example

1 is that, now, the average occupation time in the jump

state i = 2 increases, and A2 is a stable matrix, leading

to S-detectability of (A,C,P) (checked using Proposition 6

in the Appendix). Figure 2 presents the estimated E {P(k)},

obtained via Monte Carlo simulation based on 1,000 real-

izations, clearly suggesting that it is bounded, as expected

from Theorem 1.

Example 3. Consider the system Ψ of Example 1 with

Bi = Σi = 0, i = 1,2. Clearly, P(k) = 0, k ≥ 0, for each

realization of θ . On the other hand, recall from Example

1 that the system is not S-detectable, hence we conclude

that S-detectability is not a necessary condition for bounded

error covariance. It is interesting to mention that, in cases

when the noise does not provide a complete excitation for

the system, as in this example, a bounded error covariance

does not ensures that the KF is stable. Figure 3 illustrates the

behaviour of the estimation error x̃(k) (obtained via Monte

Carlo simulation based on 10,000 realizations) when we

consider a non-modelled error x(0) = 1×10−4 6= x̂(0) = 0.
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k
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0.12

0.16

5 10 15 200

Fig. 3. Estimation error for the KF in Example 3. ‖x̃(k)‖2 (marked by •)

and ‖x̃(k)‖2±σ (+) where σ is the estimated standard deviation of ‖x̃(k)‖2.

Conditions for stability of the KF can be found in [25],

[5] for LTV systems. For LIMJP systems, some case studies

were presented in [8] suggesting that a notion of weak

stabilizability ensures stochastic stability, assuming mean

bounded error covariance; hence, this paper represents a first

step for the study of stochastic stability of the KF.

Example 4. Consider the system Ψ with

Ai =
1

i

[

1 −2

1 2

]

and Bi = Ci = Di = Σ = I, i ∈ Z .

Let P = [pi j] be given by p11 = p, p12 = 1− p, pi, i−1 = p

and pi, i+1 = 1 − p, i ≥ 2. θ forms the so-called random

walk process, and it is known [4, Section 6.2] that π(k)
diverges when p < 0.5. Let p = 0.4. It is difficult, in general,

to check S-detectability of an infinite dimensional LIMJP

system. However, in this particular setup, the matrix Ai has a

simple relation with the matrix Ai+1, yielding that ‖Aiv‖
2 ≤

‖Ai+1v‖2 for each v ∈ R
2, and we can test S-detectability

via a simplified version of the system Ψ. Indeed, consider the

“truncated” version Ψ̄ of system Ψ with Z̄ = {1, . . . ,z}, and

pz,z−1 = p, pzz = 1− p, and pi j as above for each 1 ≤ i < z.

Let x̄ be the corresponding continuous state. The average

occupation time of the jump states 1 ≤ i ≤ z increases,

and it can be checked from the above property of A that

E {x̄(k)} ≤ E {x(k)}, k ≥ 0. For system Ψ̄ with z = 10, the

test for S-detectability in Proposition 6 (in the Appendix)

yields that Φ̄ is S-detectable, hence Proposition 5 provides

that E {∑
∞
k=0 ‖x̄(k)‖2} < ∞; the evaluation above allows to

write E {∑
∞
k=0 ‖x(k)‖2} < E {∑

∞
k=0 ‖x̄(k)‖2} < ∞ and from

Proposition 5 we have that (A,C,P) is S-detectable. The

E {P(k)} estimated via Monte Carlo simulation based on

10,000 realizations is illustrated in Figure 4.

VI. CONCLUDING REMARKS

The error covariance of the standard recursive KF is

studied in the situation when the system matrices Ai, Bi, Ci

and Di evolves accordingly to a Markov chain. We take into

account the stochastic nature of the problem (P(k) forms a

stochastic process) to show that S-detectability of (A,C,P)
is a sufficient condition for the existence of an upper bound

k
25 50 75 1000

3

6

9

Fig. 4. Covariance error for the KF in Example 4. ‖P(k)‖ (marked by •)

and ‖P(k)‖±σ (+) where σ is the estimated standard deviation of ‖P(k)‖.

in the form E {P(k)} ≤ P̄ for some matrix P = P′ ≥ 0. The

result retrieves available sufficient conditions for bounded

error covariance of the KF in particular scenarios of LTV

and periodic systems. Examples illustrate the obtained result

and clarify that S-detectability is not necessary for mean

bounded error covariance, whereas weak detectability (an

existing notion that is weaker than S-detectability) is not a

sufficient condition.

APPENDIX

The following testable conditions for S-detectability and

weak detectability are adapted from [6] and [15].

Proposition 6. Consider the system Ψ in (1) with Z =
{1, . . . ,z}. (A,C,P) is S-detectable if and only if the LMI

Xi > 0,
[

Xi

(

AiGi +(C′
iCi)Mi

)′

AiGi +(C′
iCi)Mi GiG

′
i −Ei(X)

]

< 0, 1 ≤ i ≤ z.

(12)

in the variables X ∈H
n0, G ∈H

n and M ∈H
n is feasible.

Consider O(k) ∈ H n0 defined recursively by Oi(0) = CiC
′
i

and Oi(k) = ∑
z
j=1 pi jA

′
iO j(k−1)Ai, i∈Z . (A,C,P) is weakly

detectable if and only if (A,O(0) + · · ·+ O(n2z),P) is S-

detectable.

REFERENCES

[1] B. D. O. Anderson and J. B. Moore. Optimal Filtering. Prentice-Hall,
London, first edition, 1979.

[2] B. D. O. Anderson and J. B. Moore. Detectability and stabilizability
of discrete-time linear systems. SIAM Journal of Control and Opti-
mization, 19(1):20–32, 1981.

[3] P. E. Caines and J. Zhang. On the adaptive control of jump parameter
systems via nonlinear filtering. SIAM J. Control and Optimization,
33(6):1758–1777, 1995.
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