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Abstract— A dynamic extension for position feedback of port-
Hamiltonian mechanical systems is studied. First we look at the
consequences for the matching equations when applying Inter-
connection and Damping Assignment Passivity-Based Control
(IDA-PBC). Then we look at the possibilities of asymptotically
stabilizing a class of port-Hamiltonian mechanical systems
without having to know the velocities, as once presented for
Euler-Lagrange (EL) systems. Here it is shown how the idea of
damping injection by dynamic extension works when shaping
the total energy in the port-Hamiltonian framework.

I. INTRODUCTION

The successful application of IDA-PBC for mechanical

systems has been shown in recent work [1], [2] and [3], for

systems where physical damping (e.g. friction) is neglected.

The advantage of IDA-PBC is the possibility of shaping

the total energy of a system, which is especially useful for

underactuated system. These systems usually require kinetic

and potential energy shaping in order to achieve the desired

stable equilibrium points. Total energy shaping has also been

shown in [4] for a class of mechanical EL systems. In this

paper we restrict ourselves to total energy shaping for port-

Hamiltonian (mechanical) systems.

In this paper we want to study the idea of a dynamic

extension for port-Hamiltonian systems as presented in [5]

for EL systems. The application of a dynamic extension

for mechanical EL systems allows to inject damping to the

system, making it unnecessary to know the velocities for

damping assignment. We want to combine this idea with

total energy shaping, realized by applying IDA-PBC. In [6] a

dynamic extension for port-Hamiltonian systems was already

presented. They also showed that velocity measurements

can be omitted, but they do that only for potential energy

shaping. They also interconnect the system with the con-

troller through the ports. The idea of a dynamic extension

for port-Hamiltonian systems for total energy shaping has

been presented in [7] and in [8], where a port-Hamiltonian

plant was interconnected to a port-Hamiltonian controller. In

contrast to what is done in [5] these controllers, or dynamic

extensions, depend only on the controller coordinates qc. The

result is a closed-loop system where the interconnection is

realized through the ports. A dynamic extension for output

stabilization was presented in [9] for a class of nonholonomic

Hamiltonian systems. Here the authors realized a dynamic

extension by adding an integrator to the system via a

generalized canonical transformation. After this they derived

an output feedback stabilization method. In the following we

want to explore the idea of controllers with potential energy

depending on both system coordinates q and qc. This is done

for a class of systems where velocity measurements are not

necessary for stabilization. Section II shortly recaps PBC for

EL systems and the application of a dynamic extension in this

case. A short summary is also given of how IDA-PBC works.

Section III shows how a dynamic extension, as described in

[5], is realized for port-Hamiltonian systems and what the

consequences are when this type of dynamic extension is

used. This section first looks at the matching conditions [10]

when applying IDA-PBC and the effect that the dynamic

extension has on these conditions. Then we explore the

possibilities of asymptotically stabilizing a system without

having to know the velocity q̇ as presented in [5] for EL

mechanical systems. The application of IDA-PBC on port-

Hamiltonian systems with dynamic extension is shown for

two examples in section IV. In the final section concluding

remarks are given.

II. PASSIVITY-BASED CONTROL

Euler-Lagrange systems

In [5] it is shown how for EL mechanical systems the

potential energy is shaped to achieve the desired equilibrium

points. It is also shown how with a dynamic extension

the system can be asymptotically stabilized when velocities

are not measured. A dynamical system with generalized

coordinates q = (q1, ..., qn)⊤ and external forces Q can be

described by the EL equations

d

dt

(

∂L

∂q̇
(q, q̇)

)

−
∂L

∂q
(q, q̇) = Q (1)

where L(q, q̇) is the Lagrangian function defined to be the

difference between the system kinetic energy, T (q, q̇), and
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the potential energy, V (q). With this equation we define a

plant system

d

dt

(

∂L

∂q̇
(q, q̇)

)

−
∂L

∂q
(q, q̇) = Mpu (2)

with input matrix Mp and input u. An EL controller can

be defined in the same way with the only difference that

the potential energy of the controller depends on both plant

coordinates q and controller coordinates qc,

d

dt

(

∂Lc

∂q̇c

(q, qc, q̇c)

)

−
∂Lc

∂qc

(q, qc, q̇c) +
∂Fc

∂q̇c

(q̇c) = Mcuc

(3)

Here Lc(q, qc, q̇c) is the controller Lagrangian, Mc the con-

troller input matrix and uc the controller input. The controller

also has dissipation energy Fc(q̇c). In [5] the feedback

interconnection between plant and controller is established

by

Mpu = −
∂Vc

∂qm

(q, qc), (4)

qm being the measurable coordinates of q. The measurable

output qm enters into the dynamic extension via ∂Vc

∂qc

(qm, qc).
By an appropriate choice of the controller energy Vc the

potential energy of the plant is shaped such that the desired

equilibrium point q∗ is realized. In [5] it is also shown under

which conditions the plant can be asymptotically stabilized

by the dynamic extension. Velocity measurement is not

necessary since damping is injected through the controller.

Port-Hamiltonian systems

One advantage of IDA-PBC is the possibility of shaping

the total energy [1] of underactuated systems. If a conserva-

tive port-Hamiltonian mechanical system is described by

ẋ = J(x)
∂H

∂x
(x) + g(x)u (5)

y = g(x)⊤
∂H

∂x
(x) (6)

where x are the states of the system: x = (q, p)⊤ the vector

of generalized configuration coordinates q = (q1, ..., qn)
and generalized momenta p = (p1, ...pn)⊤, interconnection

matrix J(x) and input matrix g(x). The Hamiltonian H(x)
is defined as the kinetic plus potential energy of the system

H(q, p) =
1

2
p⊤M(q)−1p + V (q) (7)

with M being the plant mass matrix. By applying IDA-PBC

we want to achieve a port-Hamiltonian system with a new

interconnection matrix Jd(x) and desired Hamiltonian Hd,

ẋ = (Jd(x) − Rd(x))
∂Hd

∂x
(x) (8)

Jd(x) usually (for mechanical systems) takes the form

Jd =

[

0 M(q)−1Md(q)
−Md(q)M(q)−1 J2(x)

]

(9)

with J2(x) a free to choose skew symmetric matrix. Damp-

ing is assigned through the damping matrix Rd ≥ 0. The

new Hamiltonian Hd(x) has the desired equilibrium points

q∗,

Hd(q, p) =
1

2
p⊤Md(q)

−1p + Vd(q) (10)

Md being the new mass matrix. This results in a partial

differential equation (PDE) to be solved

g(x)⊥[(Jd(x) − Rd(x))
∂Hd

∂x
(x) − J(x)

∂H

∂x
(x)] = 0 (11)

with g⊥g = 0, which can be divided into a kinetic energy

PDE and a potential energy PDE. These PDEs are also called

the matching equations (or matching conditions) [10]. The

input signal is naturally decomposed in two terms [1]

u = ues(q, p) + udi(q, p) (12)

where the first term shapes the energy and the second

term injects damping. To asymptotically stabilize the system

damping is injected through the damping matrix Rd. The

energy shaping input signal becomes

ues = (g(x)⊤g(x))−1g(x)⊤[Jd(x)
∂Hd

∂x
(x) − J(x)

∂H

∂x
(x)]

(13)

and the second term

udi = −Rd(x)g(x)⊤
∂Hd

∂x
(x) (14)

The system described by (8) does not describe physical

damping present in the system. Taking the physical damping

into consideration results in an additional condition to be

satisfied, the dissipation condition [11]. In this paper we only

look at systems where physical damping is neglected.

III. DYNAMIC EXTENSION FOR PORT-HAMILTONIAN

SYSTEMS

Realization

As mentioned in the introduction a dynamic extension

for port-Hamiltonian systems has already been presented in

[7], [6] and [8]. However, the interconnection between plant

and controller was made through the ports. In this paper

we want to interconnect the systems through an appropriate

new, desired, Hamiltonian H̃d(q, p, qc, pc). To be more pre-

cise, it is in the new potential energy Ṽd(q, qc) where this

interconnection is described. In the original setup applying

IDA-PBC results in a solution Hd(q, p) which has the desired

equilibrium points. In the setup proposed in this paper this

solution is still present, but the interconnection between plant

and controller is also described in the new Hamiltonian. This

results in the extended closed-loop system

[

ẋ

ẋc

]

=

[

Jd(x) 0
0 Jc(xc) − Rc

]

[

∂H̃d

∂x

∂H̃d

∂xc

]

(15)

with

H̃d(q, p, qc, pc) =
1

2
p⊤Md(q)

−1p +
1

2
p⊤c M−1

c (qc)pc +

+Ṽd(q, qc) (16)
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in which xc = [qc, pc]
⊤, Mc is the controller mass matrix,

Jc = −J⊤
c is the controller interconnection matrix and

Rc = R⊤
c ≥ 0 is the controller damping matrix. The

potential energy Ṽd is not entirely free to choose since we

now have the matching condition

g(x)⊥[Jd(x)
∂H̃d

∂x
(x, xc) − J(x)

∂H

∂x
(x)] = 0 (17)

ensuring that the closed-loop equations describing ẋ and (8)

match.

Influence on matching conditions

At first sight it may seem that the matching conditions

(11) and (17) are almost similar, if Rd in (11) is neglected.

However, in the conditions of (17) extra terms are present

caused by the states interconnecting plant and controller.

Since now we have additional terms, is it possible that the

extension is helpful when solving the resulting PDEs? First

we assume the system (8) to be of the form

[

q̇

ṗ

]

=

[

0 I

−I 0

]

[

∂H
∂q
∂H
∂p

]

+

[

0
G

]

u (18)

The matching condition can be divided into a kinetic energy

PDE and a potential energy PDE. For the dynamic extension

only the potential energy of the controller depends on plant

states, so we only look at the potential energy PDE. For the

system (18), resulting in a closed-loop system of the form

(15), this potential energy PDE becomes

G⊥[
∂V

∂q
(q) − Md(q)M(q)−1 ∂Ṽd

∂q
(q, qc)] = 0 (19)

If we want to solve this PDE we have to solve ∂Ṽd

∂q
(q, qc)

for

G⊥Md(q)M(q)−1 ∂Ṽd

∂q
(q, qc) = G⊥

∂V

∂q
(q) (20)

In the original setup (no dynamic extension) we would have

to solve

G⊥Md(q)M(q)−1 ∂Vd

∂q
(q) = G⊥

∂V

∂q
(q) (21)

Notice that it does not matter whether we have Vd(q) or

Ṽd(q, qc) since the solution of both is fixed by V (q). Both

(20) and (21) have the same right hand term, forcing the same

solution in both situations. We can also define for simplicity

G as in [11] to have the form

G =

[

0(n−m)×m

Im

]

(22)

for a system with actuated and unactuated coordinates q =
(qu, qa). For underactuated systems Vc(q, qc) cannot have

influence on the unactuated coordinates qu. An extra term

could influence the efforts on the actuated coordinates qa,

but this freedom was already present because of actuation.

It becomes clear that a controller with potential energy

depending on both plant and controller coordinates does not

influence the solvability of the matching equations. This was

shown in [13] for the general case.

Asymptotic stabilization

One of the nice properties of dynamic extension applied

to EL systems is the ability to inject damping without

having to know the velocity q̇. The necessary damping to

asymptotically stabilize the system was provided by the

damping of the controller. The conditions to asymptotically

stabilize a system by dynamic extension presented in [5] are

somewhat different in the port-Hamiltonian case since now

we also have to satisfy the matching condition (17). The

following proposition is limited to two kind of systems:

• Systems that need only potential energy shaping (e.g.

fully actuated systems), or

• Systems with constant mass matrix M .

For the first type of systems the kinetic energy does not have

to be shaped (can stay the same) and Md(q) can be chosen

equal to M(q). Because only the potential energy is shaped

velocity measurements are not necessary for stabilization.

The same idea applies for the second type of systems. Since

M is constant, Md can be chosen constant too and the kinetic

energy PDE disappears. In both cases the free matrix J2 can

be chosen equal to zero making ues, see (12), depend only

on q measurements.

Proposition 1: A dynamic extension for port-Hamiltonian

systems resulting in the closed-loop system (15) asymptoti-

cally stabilizes the plant (8) belonging to the class described

above if

1) The Hamiltonian H̃d has its minimum ∂H̃d

∂q
(q, qc) = 0

in q = q∗, qc = q∗c .

2) The matching condition (17) is satisfied.

3) For ∂Ṽd

∂qc

(q, q∗c ) = 0, we have that q is constant.

Proof. The desired equilibrium point is realized if the new

Hamiltonian (the new energy function) H̃d has its minima

at the equilibrium point q = q∗. The second condition is

necessary for the closed-loop system equations describing q̇

and ṗ and the (uncontrolled plant) to match, [10], [12]. The

last condition comes from the in [5] presented dissipation

propagation condition. Asymptotic stability is proved invok-

ing LaSalle’s invariance principle for the closed-loop system

(15) where
d

dt
H̃d = −q̇⊤c Rcq̇c (23)

From LaSalle’s principle we know that for asymptotic sta-

bility we need d
dt

H̃d ≤ 0, being equal to zero only for

the equilibrium points. The function (23), which is negative

semidefinite, is equal to zero only when q̇c = 0, meaning

that qc must be a constant. The equilibrium point q∗c of the

controller is found by

∂Ṽd

∂qc

(q, qc) = 0 (24)

For a constant qc q should also be constant to satisfy (24).

The coordinates (q, qc) are constants only if they are also

the equilibrium points. �
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In [5] it is mentioned that the kinetic energy plays no role

in stabilizing the system but may however affect transient

response. For this reason they are able to define controllers

(with some abuse of terminology also called EL controllers)

that depend only on potential and dissipative energy. For

port-Hamiltonian systems such a controller could be a special

case of the dynamic extension because the dynamics do

not depend on pc. The controller dynamics is described by

interconnection and damping matrices:

Jc = 0, Rc =

[

R̃−1
c 0
0 0

]

(25)

resulting in the (special case) port-Hamiltonian system

q̇c = −R̃−1
c

∂Ṽd

∂qc

(q, qc) (26)

with the interconnection between plant and controller being

described in the new potential energy Ṽd(q, qc). The result

is also a port-Hamiltonian closed-loop system since we have

[

ẋ

q̇c

]

=

[

Jd 0

0 −R̃−1
c

]

[

∂H̃d

∂x

∂H̃d

∂qc

]

(27)

In all cases the interconnection between plant and controller

is established by the new potential energy function Ṽd(q, qc).

From an applications point of view this can be interesting

since the dynamic extension eliminates the need to measure

the velocities to achieve damping injection. Actually we are

omitting the term udi of (12). This is especially attractive

when stabilization and costs are important, since now less

sensors are necessary. However, a tradeoff with performance

is inevitable, as will be shown in the examples in the next

section.

IV. EXAMPLES

In this section two examples are studied to show how the

dynamic extension works for port-Hamiltonian systems. The

first system is the TORA1, used in [5]. In this example only

the potential energy needs to be shaped. The second example

is an inertia wheel pendulum where the total energy needs

to be shaped. The application of IDA-PBC on this system

was presented in [1], [3]. In the following examples kp, kc

and kd are control constants. The systems are modeled as

presented in (18) with control input

u = (G⊤G)−1G⊤[
∂H

∂q
− MdM

−1 ∂H̃d

∂q
] (28)

Some simulation results are also presented to show the time

response of the systems.

1A translational oscillator with an attached eccentric rotational proof mass
actuator.

TORA

The TORA system is described by

M(q) =

[

Mcart + m −ml cos q2

−ml cos q2 I + ml2

]

V (q) =
1

2
kq2

1

G =

[

0
1

]

with Mcart being the cart mass, a proof mass actuator with

mass m and inertia I at a distance l from its rotational

axis. The system is shown in figure 1 , gravitational forces

being neglected because motion takes place in an horizontal

plane. This example only requires potential energy shaping

q2

q1

k
u

m

l
I

Mcart

q2

q1

k
u

m

l
I

Mcart

Fig. 1. Rotational/translational proof mass actuator.

and Md(q) can be chosen equal to M(q). In this case only

the potential energy PDE (19) is important which becomes

G⊥[
∂V

∂q
(q) −

∂Ṽd

∂q
(q, qc)] = 0

with G⊥ = [1 0] and is satisfied by

Ṽd(q, qc) =
1

2
kq2

1 +
1

2
kpq

2
2 +

1

2
kc(q2 − qc)

2

Fc(q̇c) =
1

2
kdq̇

2
c

The control signal (28) realizes the closed-loop system of the

form (27). Although the controller energy part is somewhat

different than the one used in [5], it still is possible to

achieve similar results as in the EL case. The difference is

now that we are working in the port-Hamiltonian framework

and we have a different extended closed-loop interconnection

matrix than the one presented in [7], [8]. The results for the

TORA are shown in figure 2. These results are similar to the

ones obtained in [5], where the time response is simulated

for saturated EL controllers. There the response converged

faster, but with higher inputs. Notice in the figure that smaller

deviations for q2 are accomplished compared to the situation

where velocity measurements are used.
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Fig. 2. Trajectories for the TORA system. Initial conditions: [q(0) p(0)] =
[0.025 0 0 0]. The dotted lines represent the results when there is damping
input udi (no extension)

Fig. 3. Inertia wheel pendulum.

Inertia wheel pendulum

The inertia wheel pendulum, figure 3, is described in the

form of (18) by

M =

[

I1 + I2 I2

I2 I2

]

V (q) = mgl(cos q1 − 1),

G =

[

0
1

]

where I1 is the moment of inertia of the pendulum, I2 the

moment of inertia of the wheel, m is the pendulum mass,

g the gravity constant and l the length of the pendulum.

In [3] IDA-PBC was applied on this example, with input

signal (12). We now want to use the energy shaping input

ues presented there and omit the damping injection signal

udi, which depends on velocity measurements. From [3] we

have

Md =

[

a1 a2

a2 a3

]

Vd(q) =
mglI1

a1 − a2
cos q1 +

+
P

2
[q2 − q∗2 + γ1(q1 − q∗1)]2

Here q∗ are the desired equilibrium points, P and γ1 are

constants. In the new setup the potential energy has to be

changed such that we have the plant interconnected with the

controller and also satisfying the matching condition (17)

which now can be written as

G⊥[
∂V

∂q
− MdM

−1 ∂Ṽd

∂q
] = 0 (29)

In order to achieve this it is proposed to have the new

potential energy

Ṽd(q, qc) =
mglI1

a1 − a2
cos q1+

+
P

2
[q2 − q∗2 + γ1γ2(q1 − q∗1) +

1

2
kc(q2 − qc)]

2

and dissipation energy

Fc(q̇c) =
1

2
kdq̇

2
c

with γ2 = 1 + kc, a constant necessary to satisfy the

matching condition. The control signal (28) results in a

closed-loop system (27). In [3] two equilibrium points

were studied for q1, the hanging position q∗ = (π, 0)⊤

and the upright position q∗ = (0, 0)⊤. For the hanging

position Md is chosen equal to M (actually resulting in

only potential energy shaping) and for the upright position

we have (a1, a2, a3) = (1, 2, 5), as in [3]. The results for

both desired equilibrium points are shown in figures 4 and 5.

Remark. For both examples simulation results are shown

for only the closed-loop system of the form described by

(27). If in addition to the potential energy also kinetic

energy is assigned to the controller, then the performance

(time response) either deteriorates (larger deviations, larger

input signals) or stays the same, provided that Mc is small

enough.

V. CONCLUDING REMARKS

One of the important advantages of a dynamic extension

is the possibility of injecting damping without having to

know the velocities of the system in order to asymptotically

stabilize it. Damping was injected through the damping of an

appropriate (virtual) controller. This paper showed how this

could be accomplished for port-Hamiltonian systems, with

an interconnection not made through the ports, as is usually

done. The interconnection is established in the new desired

energy function. In short, it is possible to shape the total

energy of a mechanical system and asymptotically stabilize
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Fig. 4. Trajectories for the inertia wheel pendulum, stabilization of hanging
position. Initial conditions: [q(0) p(0)] = [0.7π 0 0 0]. The dotted lines
represent the results when there is damping input udi (no extension).
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Fig. 5. Trajectories for the inertia wheel pendulum, stabilization of upright
position. Initial conditions: [q(0) p(0)] = [0.3π 0 0 0]. The dotted lines
represent the results when there is damping input udi (no extension).

it without having to measure the velocities. For applications

this could be interesting since it means that velocity sensors

are not necessary.

Two examples, for which the dynamic extension makes

velocity measurements unnecessary, were shown. The dis-

sipation energy of the controller asymptotically stabilizes

the systems if this dissipation was propagated to the other

coordinates. We finalize by giving a remark about the TORA

system. Although the results show convergence to the desired

points, further improvement of the performance can possibly

be achieved by another choice of the function H̃d.
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