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Abstract— For the class of MIMO minimal LTI systems
controlled by an estimation based multiple model switched
adaptive controller (EMMSAC), bounds are obtained for the
closed loop lp gain, 1 ≤ p ≤ ∞, from the input and output
disturbances to the internal signals.

1. INTRODUCTION

In standard approaches to multiple model switched adap-

tive control (MMSAC) e.g. in the sense of Morse [10],

[11], Liberzon [9], etc. an LTI controller is constructed

for every member of a “candidate” plant set such that the

corresponding plant, controller pair is closed loop stable.

Then for all candidate plants, observers are employed and the

plant corresponding to the observer with the smallest output

error is considered to be the best candidate. The algorithm

then sequentially switches to the controller corresponding to

the best candidate.

For non-zero input and output disturbances and in the

presence of unmodeled dynamics, the analysis of the closed

loop system becomes difficult. This is reflected by the fact

that although this approach has been around since the early

1950s and although it functions well in practice, nevertheless

it shares the lack of workable theoretical robustness results

with classical adaptive approaches [3], [8], although see [5]

for recent results in classical adaptive control based on the

nonlinear robust stability theory of [7].

A different approach to MMSAC introduced by [4], [12],

which we call EMMSAC, is to employ estimators instead

of observers. An estimator observes the input and output

signals of a process and explains this “observation” by input

and output disturbances acting on plant models. At time

k ∈ N the algorithm then switches to the controller which

corresponding plant model’s estimator is able to “explain”

the observation with smallest disturbance.

This change of perspective allowed the construction of

gain bounds in [4], [12] for two distinct plant models, in [6]

for the class of dead beat stabilisable systems, and in [2] the

further construction of gain function bounds invariant to the

size of the candidate plant set was given. In this paper we

generalise [6] and [2] to the class of all finite dimensional

MIMO LTI systems. Such gain bounds are motivated by

robust stability considerations [7] and leads to the MMSAC

counterparts of the robust stability results of [5] for classical

adaptive controllers.

We will also show that the EMMSAC approach naturally

leads to nonlinear generalisations, and substantively differ-

ent assumptions (of a convexity type) are required for the

realisation of nonlinear estimation based schemes than those

required for nonlinear MMSAC (which are of a structural

type to allow the construction of observers).

2. DEFINITIONS

A. Norms and signals

Let S = map(N, Rh), h ∈ N. For a ∈ S, 1 ≤ r < ∞
define the norms

‖a‖r :=
(

∑

0≤i<∞

|a(i)|r
)1/r

, ‖a‖∞ := sup
0≤i<∞

|a(i)|.

Let the truncation operator Tk : S → S be defined by

(Tka)(i) =

{

a(i), 0 ≤ i ≤ k
0, otherwise

, k ∈ N

and for i, k ∈ N let the restriction operator Ri,k : S →
R

h(i+1) be defined by

Ri,ka := (a(k − i), a(k − i + 1), . . . , a(k − 1), a(k)).

An operator O : S → S is said to be to be causal if

TkOTkv = TkOv, ∀k ∈ N, v ∈ S.

Finally let

V = lr, 1 ≤ r ≤ ∞, Ve := {v ∈ S | ∀k ∈ N : Tkv ∈ V}

where Ve ⊇ V is the extended space of possibly unbounded

signals.

B. Plant and controller

For m, o ∈ N let U = Vm, Y = Vo, W = U × Y ,

We = Ue × Ye. Given a plant P : Ue → Ye and a

controller C : Ye → Ue the closed loop system [P,C] under

consideration in Figure 1 is defined via the following set of

system equations:

y1 = Pu1, u0 = u1 + u2, y0 = y1 + y2, (2.1)

u2 = Cy2 (2.2)

where w0 = (u0, y0)
⊤ ∈ W represents the input and output

disturbances, w1 = (u1, y1)
⊤ ∈ We represents the plant

input and output and w2 = (u2, y2)
⊤ ∈ We represents the

observed signal or observation. By abuse of notation we let

w0(−k) = w1(−k) = w2(−k) = 0, ∀k ∈ N \ {0}.

Let P , C be (plant, controller) parameter sets parametrising

the class of all causal, MIMO minimal LTI systems. For all

p ∈ P , c ∈ C define the plant and controller operators

Pp : Ue → Ye, Pp(−k) = 0, k ∈ N (2.3)

Cc : Ye → Ue, Cc(−k) = 0, k ∈ N (2.4)

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

ThC08.3

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 5330



P

C

u0

y0

+ u1 y1

−

+y2u2

−

Fig. 1. The closed loop system [P, C]

and let

uc
2 = Ccy

c
2 (2.5)

yp
1 = Ppu

p
1 (2.6)

up
0 = up

1 + u2 (2.7)

yp
0 = yp

1 + y2. (2.8)

Define σ(p), p ∈ P to be the number of time steps the

signal w1 needs to be observed to uniquely determine the

plant’s initial condition. Respectively define σ(c), c ∈ C
with respect to the signal wc

2 = (uc
2, y

c
2)

⊤.

C. The closed loop operator

Since we want to study the effect of input disturbances on

the closed loop signals we introduce the closed-loop operator

ΠC//P : W → We : w0 7→ w2

and define the gain

‖ΠC//P ‖ := sup
w0∈W\{0}

‖ΠC//P w0‖

‖w0‖

as well as the gain function

g[P,C](r) := sup
w0∈W, ‖w0‖≤r

‖ΠC//P w0‖.

We say that the closed loop [P,C] is gain stable if

‖ΠC//P ‖ < ∞ and gain function stable if g[P,C](r) < ∞,

∀r ≥ 0.

D. The disturbance estimator

One contribution of [6], [2] was the identification of

necessary estimator properties for EMMSAC which com-

pletely separates the question of realisation of the disturbance

estimation process from the stability analysis of the overall

algorithm. We state these abstract assumptions (generalised

from [2]) after introducing some necessary notation.

For k ∈ N, p ∈ P define the estimation operator

E : We → map(N,map(P,map(N, Rh))) (2.9)

by

w2 7→
[

k 7→ (p 7→ dp[k])
]

(2.10)

where dp[k] will represent the time series of disturbance

estimates up to time k corresponding to a plant p ∈ P
denoted by

dp[k] : N → map(N, Rh)

and

dp[k] = (dp[k](0), dp[k](1), . . . , dp[k](k), 0, · · · )

where h ∈ N depends on p ∈ P . We define the norm operator

N : map(N,map(P,map(N, Rh)))

→ map(N,map(P, R+)) (2.11)

by
[

k 7→ (p 7→ dp[k])
]

7→
[

k 7→ (p 7→ ‖dp[k]‖)]. (2.12)

The operator NE : We → map(N,map(P, R+)) is called

the disturbance estimator.

Define the set Wp(i, k), k, i ∈ N of weakly consistent

disturbance signals at time k of length i to a plant p ∈ P
and the observation (u2, y2)

⊤ as follows:

Wp(i, k) :=















v ∈ R
m(i+1) × R

n(i+1)
∣

∣

∃(up
0, y

p
0)⊤ ∈ We s.t.

Ri,kPp (up
0 − u2) = Ri,k(yp

0 − y2)
v = (Ri,kup

0,Ri,kyp
0)















where we consider a vector v ∈ R
m(i+1) × R

o(i+1) to be

weakly consistent over the interval i with (u2, y2)
⊤ and the

plant Pp if and only if v ∈ Wp(i, k).
Let p∗ be the parameter corresponding to the “true”

unknown plant P := Pp∗ ∈ P .

Assumption 2.1: Let λ ∈ R be given.

1) (Causality): E is causal.

2) (Minimality): There exists a µ > 0 such that for all k ≥
0, for p ∈ P and for all (w0, w1, w2) ∈ W×We×We

satisfying (2.1) for P = Pp

NE(w2)(k)(p) = ‖[E(w2)(k)](p)‖ ≤ µ‖w0‖.

3) (Weak consistency): Let 0 ≤ j ≤ λ. For all p ∈ P
there exists

Φj : map(N, Rh) → R
m(j+1) × R

o(j+1),

such that for all (w0, w1, w2) ∈ W × We × We

satisfying (2.1) for P = Pp and for all k ∈ N,

ΦjE(w2)(k)(p) ∈ Wp(j, k)

and

‖ΦjE(w2)(k)(p)‖ ≤ ‖Rj,kE(w2)(k)(p)‖.

4) (Monotonicity): For all p ∈ P , for all k, l ∈ N with

0 ≤ k ≤ l and for all (w0, w1, w2) ∈ W ×We ×We

satisfying (2.1) for P = Pp there holds

‖E(w2)(k)(p)‖ ≤ ‖TkE(w2)(l)(p)‖.
We will now give two examples of estimators (from [6])

and show that they fullfill the given assumptions. It is

important to note the the implementation of the EMMSAC

controller requires a realisation of the operator NE and it

is only the analysis that requires the factorisation into the

operators N , E. This important point is illustrated by our

first example estimator (estimator A), which we give next.

The direct formulation of estimator A is via the factorisation

N , E. However, it is known in the l2 setting that this

deterministic least squares estimator NE can be realised by a
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process of determining the residuals in a Kalman filter bank,

see [4], [13].

For p ∈ P , k ∈ N let estimator A with h = ∞ in equation

(2.9) be given by:

EA(w2)(k)(p) = argmin
x∈Wp(k,k)

‖x‖

where Wp(k, k) is the set of all truncated disturbance signals

consistent with the observation Tkw2 an the plant Pp over

the interval [0, k], k ∈ N.

Lemma 2.2: Estimator A fulfils assumptions 2.1.

Proof Let k ∈ N. 1. Causality: The disturbance estimate

at time k ∈ N does not depend on future information

w2|(k,∞) and is therefore causal. 2. Minimality: Observe

that for any (w0, w1, w2) ∈ W ×We ×We satisfying (2.1)

for P = Pp and for k ∈ N we have Tkw0 ∈ Wp(k, k).

Hence ‖EA(w2)(k)(p)‖ =
∥

∥

∥Tk argminx∈Wp(k,k) ‖x‖
∥

∥

∥ ≤

‖Tkw0‖ ≤ ‖w0‖ and hence µ = 1. 3. Weak consis-

tency: Let 0 ≤ j ≤ λ, p ∈ P . Let Φj be defined by

Φjx = Rj,kx, x ∈ S, and therefore ‖ΦjEA(w2)(k)(p)‖ =
‖Rj,kEA(w2)(k)(p)‖. We then have ΦjEA(w2)(k)(p) =
Rj,kEA(w2)(k)(p) ∈ Rj,kWp(k, k) ⊆ Wp(j, k). Mono-

tonicity: Let p ∈ P , let k ≤ l, k, l ∈ N and suppose

(w0, w1, w2) ∈ W × We × We satisfy equations (2.1)

for P = Pp. Observe that TkEA(w2)(l)(p) ∈ Wp(k, k).
Since EA(w2)(k)(p) = argminx∈Wp(k,k) ‖x‖ it follows that

‖EA(w2)(k)(p)‖ ≤ ‖TkEA(w2)(l)(p)‖ as required. 2

The second example estimator (estimator B) is motivated

by the fact that by Assumption 2.1(3) we only require

consistency over suitable finite intervals of length j ∈ N, 0 ≤
j ≤ λ, where λ is fixed. This allows for the construction of

a finite horizon estimator as follows.

Let λ ∈ N. For p ∈ P, 0 ≤ i ≤ k, k, i ∈ N let estimator

B with h = (m + o)(λ + 1) in equation (2.9) be given by:

EB(w2)(k)(p) = dB
p [k] ∈ map(N, Rh)

dB
p [k](i) = argmin

x∈Wp(λ,i)

‖x‖,

where Wp(λ, i) is the set of all disturbance signals consistent

with the observation Rλ,iw2 and the plant Pp over the

interval [i − λ, i]. Note that dB
p [k](j) = dB

p [l](j) for l ≥
k ≥ j.

Lemma 2.3: Estimator B fulfils assumptions 2.1.

Proof Let k ∈ N. 1. Causality: EB is invariant to w2|(k,∞).

2. Minimality: Observe that for any (w0, w1, w2) ∈ W ×
We × We satisfying (2.1) for P = Pp and for k ∈ N we

have Rλ,iw0 ∈ Wp(λ, i), 0 ≤ i ≤ k. Hence ‖dB
p [k](i)‖ =

argminx∈Wp(λ,i) ‖x‖ ≤ ‖Rλ,iw0‖, 0 ≤ i ≤ k, k ∈ N. Then

we obtain

‖EB(w2)(k)(p)‖ = ‖dB
p [k](0), dB

p [k](1), . . . , dB
p [k](k)‖

≤ ‖Rλ,0w0, Rλ,1w0, · · · , Rλ,kw0‖

≤

∥

∥

∥

∥

∥

∥

∥

∥

∥

w0(−λ), w0(1 − λ), · · · , w0(k − λ)
w0(1 − λ), w0(2 − λ), · · · , w0(k + 1 − λ)

...
...

...
...

w0(0), w0(1), · · · , w0(k)

∥

∥

∥

∥

∥

∥

∥

∥

∥

= (λ + 1)1/r‖w0‖ = µ‖w0‖

where the first inequality follows from the fact that

‖‖a‖, ‖b‖‖ = ‖(a, b)‖ holds in lr, 1 ≤ r ≤ ∞. 3. Weak

consistency: Let 0 ≤ j ≤ λ, p ∈ P . Let Φj be defined by

Φjd
B
p [k] = Rj,λdB

p [k](k). Since Rj,λdB
p [k](k) ⊆ Rj,kdB

p [k]
there holds ‖ΦjEB(w2)(k)(p)‖ ≤ ‖Rj,kEB(w2)(k)(p)‖.

Also Φjd
B
p [k] = Rj,λdB

p [k](k) ∈ Wp(j, k). 4. Mono-

tonicity: Let p ∈ P , let k ≤ l, k, l ∈ N and suppose

(w0, w1, w2) ∈ W × We × We satisfy (2.1) for P = Pp.

Since TkdB
p [l] = dB

p [k] it follows that ‖EB
p (w2)(k)(p)‖ =

‖TkEB
p (w2)(l)(p)‖ ≤ ‖EB

p (w2)(l)(p)‖. 2

Observe that the use of a finite horizon estimator in

estimator B is penalised with a µ > 1. However the

computational complexity of estimator B is invariant to k
and only depends on the horizon i ∈ N. In contrast, the

computational complexity of estimator A grows unboundedly

with k (with the important known exception of the Kalman

filter realisation which holds only in the l2 setting). We

further remark that the finite horizon estimation computation

of estimator B is a standard optimisation problem with many

possible implementations. For example in l2 we can solve

the least squares problem by calculating a suitable pseudo

inverse; in l∞ we can solve the convex optimisation problem

by linear programming. In the nonlinear setting the given

assumptions remain valid, and note that under appropriate

convexity assumptions, the nonlinear optimisation problem

remains computationally tractable.

E. Finite horizon behaviour of the closed loop [Pp, Cc]

One crucial design step for any MMSAC algorithm is to

assign stabilising controllers to all members of the candidate

plant set. We will do this via the design procedure given by

the map

K : P → C.

We now state some general requirements on the atomic

closed loop systems [Pp, Cc] and [Pp, CK(p)]:
Assumption 2.4: There exist functions

α, β : P × C × R × R → R

such that the following hold:

1) (Linear growth of [Pp, Cc]): Let p ∈ P, c ∈ C.

Let l1, l1, l2, l3, l4 ∈ N, l1 < l2 ≤ l3 < l4 and

I1 = [l1, l2), I2 = [l2, l3), I3 = [l3, l4). Suppose

w2, w
c
2, w

p
1 ∈ We, wp

0 ∈ W satisfy equations (2.5)-

(2.8) on I1 ∪ I2 ∪ I3.
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Suppose wc
2|I1

∈ {0, w2|I1
}, wc

2|I2∪I3
= w2|I2∪I3

where

|I1| = l2 − l1 ≥ max{σ(p), σ(c)}. (2.13)

Then:

‖w2|I3
‖ ≤ α(p, c, |I2|, |I3|)‖w2|I1

‖

+ β(p, c, |I2|, |I3|)‖w
p
0 |I1∪I2∪I3

‖. (2.14)

2) (Stability of [Pp, CK(p)]): Let p ∈ P and x ∈ N. Then

α(p,K(p), a, x) → 0 as a → ∞ (2.15)

and α is monotonic in a.

We remark that the above assumptions are in fact standard

properties for minimal LTI systems Pp, Cc. Such plants and

controllers satisfy Assumption 2.4(1), and stabilising LTI

control design procedures K satisfy Assumption 2.4(2).

Although the nonlinear case is not the focus of this paper,

we further remark that for nonlinear plants and controllers,

Assumptions 2.4(1)-(2), also hold under appropriate Lip-

schitz and stabilizability assumptions; and that we expect

that these conditions may be relaxed further for a nonlinear

analysis without linear growth requirements. However note

that the practical realisation of computationally tractable

estimation schemes requires further convexity assumptions

on the nonlinear plant (see Section 2D).

F. The switching algorithm

Before we explicitly define the switching algorithm we

introduce the “plant generating” operator G. This operator

is used to restrict the number of plants under consideration

by the switching algorithm at any time k ∈ N, and is

motivated by the construction in [2] of an uncertainty for

which an overly large (time-invariant) candidate plant set

leads to a high closed loop gain; on the other hand a time-

varying candidate plant set as specified by a suitable G led

to improved closed loop gain properties. We will return to

this construction in Section 3B.

Let the “candidate” plant set under consideration be given

by

Pi := {p1, p2, . . . , pli}, pj ∈ P, 1 ≤ j ≤ li, i ∈ N (2.16)

where

∅ 6= P1 ⊆ P2 ⊆ · · · ⊆ P, ∪i∈NPi = P∗ ⊂ P. (2.17)

Let Ω = {Pi | i ∈ N}. Define

G : We → map(N,Ω) (2.18)

Pi(k) = G(w2)(k), k ∈ N (2.19)

subject to the constraint

G(w2)(0) = P1, G(w2)(k) ⊆ G(w2)(k+1),∀k ∈ N (2.20)

where G defines the (time varying) plant set at time k ∈ N

based on the observation w2.

Let the minimisation operator

M : (map(N,map(P, R+)),map(N,Ω)) → map(N,P)
(2.21)

be given by
[

k 7→ (p 7→ rp[k]), (k 7→ Pi(k))
]

7→
[

k 7→ qf (k)
]

(2.22)

where

qf (k) = argmin
p∈Pi(k)

rp[k], (2.23)

and we assume that argminp∈Pi(k)
, i(k) ∈ N returns the

parameter pj corresponding to the smallest index j ∈ N if

there exist multiple minimal rp[k], p ∈ Pi. Hence qf (k)
represents the plant which the estimator is determining to be

the best candidate at time k ∈ N. Since we want to utilise this

sequence later for controller selection at time k, and since

overly fast switching even between stabilising controllers

can lead to instability [9], the EMMSAC algorithm does not

switch between controllers determined by qf , but rather by

a ‘slowed’ version of qf , denoted by q ∈ map(N,P) which

we introduce next.

Given a ‘transition delay’ function ∆ : P → N define the

delay operator

D : map(N,P) → map(N,P) (2.24)

by

[k 7→ qf (k)] 7→ [k 7→ q(k)] (2.25)

where

q(k) =

{

qf (k) if k − ks(k) ≥ ∆(q(ks(k)))
q(ks(k)) else

(2.26)

and where ks : N → N is given by:

ks(k) = argmax
0≤i≤k

q(i) 6= q(i − 1).

The purpose of D is to delay the free switching signal

qf (k) long enough that the stabilising effect of a correspond-

ing plant and controller pair leads to a local finite horizon

closed loop gain α < 1. This local contraction is later used

to show the stability of the overall algorithm.

For x, y, c ∈ R define

⌊c⌋ := max{n ∈ Z | n ≤ c} and

(

x
y

)

:=
x!

y!(x − y)!

where J : N → N is defined by

J(ξ) = ξ

(

ξ
⌊ξ/2⌋

)

.

Let

σ = max{σ(p), σ(K(p))}, p ∈ P∗

and let K : P → C and the attenuation function l : P∗ →
[0, 1) be given. Choose the delay ∆ such that

J(r)αr(p,K(p),∆(p)−σ, σ) ≤ l(p) < 1, ∀p ∈ P∗ (2.27)

if 1 ≤ r < ∞ and

α(p,K(p),∆(p) − σ, σ) ≤ l(p) < 1, ∀p ∈ P∗ (2.28)
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if r = ∞.

In practice one would choose a stabilising design procedure

K and some l : P∗ → [0, 1) and then compute for all p ∈ P∗

a corresponding ∆(p) such that inequality (2.27) for lr, 1 ≤
r < ∞ or inequality (2.28) for l∞ hold, hence we note that

there always exists such a ∆.

K,∆ and l are design choices with individual tradeoffs. For

example if we choose l(p), p ∈ P∗ to be small for a given

K(p), then ∆(p) must be large to meet the given inequalities

hence slowing the switching rate.

Finally define the switching operator

S : We → map(N,Ω) : w2 7→ q

S = DM(NE,G).

and the switching controller

C : Ye → Ue : y2 7→ u2

for all k ∈ N by

u2(k) = CK(q(k))(y2 − Tks(k)−1y2)(k) (2.29)

where recall that ks(k) is the last time i ∈ N, i ≤ k s.t.

q(i) 6= q(i − 1).
Equation (2.29) therefore ensures a zero initial condition for

the atomic controller CK(q(k)) when it is switched into closed

loop at time ks(k), k ∈ N.

3. STABILITY OF THE CLOSED LOOP SYSTEM

Our first objective is to establish a lr, 1 ≤ r ≤ ∞
bounds on the observation w2 ∈ We in terms of the external

disturbances w0 ∈ W for time varying plant sets.

We define

k∗ =







min{k ∈ N |
p∗ ∈ G(w2)(k)}

if ∃k s.t. p∗ ∈ G(w2)(k)

∞ if not
(3.30)

i.e. the time at which the parameter p∗, corresponding to the

unknown true plant P = Pp∗ belongs to the time varying

set of available parameters for the first time. Note that in

the classical setup e.g. of [6], [4], [8], [10], [11] we have

p∗ ∈ G(w2)(k) = P∗, ∀k ∈ N so k∗ = 0.

We now come to our first intermediate result establishing

gain bounds for MIMO minimal LTI systems and time

varying plant sets.

Let the interval length of consistency we require from each

estimator be given by

λ = max
p∈P∗

(2∆(p) + σ). (3.31)

Theorem 3.1: Let 1 ≤ r ≤ ∞. Let p∗ ∈ P∗ ⊂ P ,

P := Pp∗ . Let K satisfy Assumptions 2.4(1)-(2). Let

S = DM(NE,G) be given by equations (2.9)-(2.12),(2.18)-

(2.26). Let l : P∗ → [0, 1) be a given attenuation function

and suppose that K,∆, l satisfy inequality (2.27) for lr, 1 ≤
r < ∞, or inequality (2.28) for r = ∞. Suppose E fullfills

Assumptions 2.1(1)-(4) with λ from equation (3.31). Let

C be given by equation (2.29). Suppose (w0, w1, w2) ∈

W ×We ×We satisfy the closed loop equations (2.1),(2.2)

and let k∗ be given by equation (3.30). Then:

‖Tkw2‖r ≤ γ(G(w2)(k))(‖Tk∗−1w2‖r + ‖w0‖r)

where for Q ⊆ Ω:

σ = max
p1,p2∈P∗

max{σ(p1), σ(K(p2))}

ξ =

{

r if 1 ≤ r < ∞
1 if r = ∞

γ1(p) = 1 + sup
∆(p)≤x≤2∆(p)

α(p∗,K(p), 0, x)

γ2(p) = sup
∆(p)≤x≤2∆(p)

β(p∗,K(p), 0, x)

αOP (Q) = max
p∈Q

l(p)

βOP (Q) = J(ξ) sup
p∈Q

sup
∆(p)≤x≤2∆(p)

βξ(p,K(p), x − σ, σ)

αOS(Q) = J(ξ) sup
p∈Q

sup
∆(p)≤x≤2∆(p)

αξ(p,K(p), 0, x − σ)

βOS(Q) = J(ξ) sup
p∈Q

sup
∆(p)≤x≤2∆(p)

βξ(p,K(p), 0, x − σ)

γ4(Q) =























(

(1+α
1/r
OS (Q))αOP (Q)

1−αOP (Q)

)1/r

+ α
1/r
OS (Q)

if 1 ≤ r < ∞
max{1, αOS(Q))}αOP (Q) + αOS(Q)

if r = ∞

γ5(Q) =



























(

(1+α
1/r
OS (Q))βOP (Q)

1−αOP (Q)

)1/r

if 1 ≤ r < ∞

max{1, αOS(Q)}) βOP (Q)
1−αOP (Q)

if r = ∞

γ6(Q) =

{

β
1/r
OS (Q) if 1 ≤ r < ∞

βOS(Q) if r = ∞

γ7(Q) = 1 + γ4(Q)

γ8(Q) = 21/rµ|Q|1/r
(

γ5(Q) + γ6(Q)
)

γ(Q) = γ
|Q|
7 (Q)

∏

p∈Q

γ1(p)

·



1 +
(

2|Q|γ8(Q) +
∑

p∈Q

γ2(p)
)





Proof The (lengthy) proof is omitted, see [1]. 2

This bound from the external disturbances to the internal

signals is the direct generalisation of Theorem 4.1 in [2] from

the class of dead beat stabilisable SISO systems to the class

of MIMO minimal LTI systems. We now give two explicit

constructions for the operator G to give constructive gain

and gain function bounds independent of the time k∗ ∈ N.

A. Gain bounds for bounded candidate plant sets

We first give a version of the result for the classical setup

where G is a constant map: G(w2)(k) = P∗, ∀k ∈ N and

p∗ ∈ P∗. Let γ be the gain given in Theorem 3.1. It is

important to remark that the proof is constructive: an explicit

expression for γ was given above.
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Theorem 3.2: Under the conditions of Theorem 3.1 with

p∗ ∈ G(w2)(k) = P∗, ∀k ∈ N we have:

‖Tkw2‖r ≤ γ(P∗)‖w0‖r.
Proof Since p∗ ∈ G(w2)(k) = P∗, ∀k ∈ N it follows that

k∗ = 0 hence ‖Tk∗−1w2‖ = 0. Hence the result follows

from Theorem 3.1. 2

For this gain bound the robustness theory of [7] applies

directly, hence the given algorithm will stabilise all plants

within the gap ball of size γ−1(P∗) around the physical

plant Pp∗ .

B. Gain function bounds for unbounded candidate plant sets

In [2] the plant

Pa : y1(k + 1) = ay1(k) + u1(k) (3.32)

with an unbounded parametric uncertainty, i.e. a ∈ Z was

considered. It was shown that with a MMSAC design C
based on atomic dead-beat controllers for a candidate plant

set P = Z, the gain w0 7→ w2 is infinite for any closed loop

[Pa, C], a ∈ Z. As previously discussed, this observation

motivated the introduction of a time varying G in [2] and

the relaxation of gain stability to gain function stability. For

the special choice of G given by

G : We → map(N,Ω),

G(w2)(k) = Pi(k) (3.33)

where for v > 2

i(k) =







max{a ∈ N
∣

∣

γv(Pa) − γv(P1) ≤ ‖Tkw2‖} if k < ∞
∞ if k = ∞







(3.34)

we were then able in [2] to establish a quadratic gain function

bound for the choice

Pi = {−i,−i + 1, · · · , 0, · · · , i − 1, i}.

The general result for MIMO minimal LTI systems is estab-

lished next.

Theorem 3.3: Under the conditions of Theorem 3.1 with

G as in equations (3.33),(3.34) we have:

‖w2‖r ≤ γmod(‖w0‖r)

where γmod : R+ → R+ is with v > 2 given by

γmod(c) = β1 + β2c + β3c
2

β1 = γv+2(PN ) + γ(PN )γv(P1)

β2 = 2γ2(PN ) + γ1−v(PN )γv(P1)

β3 = γ2−v(PN )

and N := min{i ≥ 1 | p∗ ∈ Pi}.
Proof The proof follows from Theorem 3.1 similarly to the

proof of [2, Theorem 4.2]. Details are omitted. 2

Note that the given bound does not impose finiteness of Pi

and only depends on PN where N is finite for any fixed

p∗ ∈ P∗ and is a-priori determined.

4. CONCLUSION

We have established a gain analysis in lp, p ∈ [1,∞],
for a class of multiple model adaptive controllers (known

as EMMSAC) and for the class of MIMO minimal LTI

systems. EMMSAC differs from classical MMSAC since the

switching process is determined by a result of an estimation

procedure, rather than the selection on the basis of observer

errors. For particular choices of the plant generating operator

G, we established a linear gain bound and a quadratic gain

function bound on the map from the external disturbances

to the internal signals. The latter result holds for any nested

parameter set {Pi}i≥1 ⊆ P which allows us to deal with

unbounded uncertainties in the plant. Whilst the focus of

the paper is in the linear setting, generalisation of the result

to nonlinear plants and controllers was discussed. We have

noted that much of the presented analysis is directly appli-

cable to classes of nonlinear plants, and that generalisations

to wider classes appear promising.
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