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Abstract— In this paper we investigate the problem of input-

to-state stability (ISS) of nonlinear delayed impulsive systems.

Both the continuous dynamics and the discrete dynamics of

nonlinear impulsive systems are subjected to external input.

By virtue of the Razumikhin technique in combination with

Lyapunov functions, we obtain some Razumikhin-type theorems

that warrant input-to-state stability of nonlinear impulsive

systems with time-delays. The Razumikhin-type input-to-state

stability theorems cover the cases where the delayed continuous

dynamics are input-to-state stable or destabilizing and the

discrete dynamics are input-to-state stable or destabilizing, such

that nonlinear delayed impulsive systems are able to retain

input-to-state stability under certain conditions. The applica-

bility of the derived Razumikhin-type theorems is illustrated

by numerical results.

I. INTRODUCTION

In 1989 in his seminal paper [1], Sontag first introduced

the concept of input-to-state stability (ISS). It is now widely

accepted that the input-to-state stability property provides a

natural framework for formulating notions of stability with

respect to input perturbations, that is, for characterizing the

continuity of state trajectories on the initial states and the

external inputs. Roughly speaking, the input-to-state stability

property means that no matter what the initial state is, if the

external input is small, then the state must be eventually

small. Input-to-state stability has been proven useful in the

analysis and design of nonlinear control systems (see, e.g.,

[2]-[6]). Input-to-state stability was originally defined for

continuous-time systems. Various extensions of the input-

to-state stability property have since been made for different

types of dynamical systems, for instance, discrete-time sys-

tems [7], switched systems [8], time-delay systems [9]-[10],

stochastic systems [11], etc.

In practical situations, many processes are subjected to

short temporary perturbations, called impulses, which are

negligible compared to the process duration. Impulsive sys-

tems provide a natural description of observed processes

with impulse effect. For example, networked control systems

with the Return Routability (RR) or try-once-discard (TOD)

dynamic protocol can be modeled by impulsive systems [12]-

[13]; in the analysis of switched systems using multiple

Lyapunov functions, the evolution of multiple Lyapunov

functions along the state trajectories can be also described by

impulsive systems; and when applying an impulsive control

law to stabilize unstable continuous systems, the resulting

control system is an impulsive system. An impulsive system

can be viewed as a hybrid one that consists of continuous

dynamics, discrete dynamics, and a criteria for determining

when the states of the system are to be reset. The stability

of impulsive systems has been extensively studied in the

literature (we refer to [16]-[17] and the references therein).

H∞ control problems for three types of linear delay-free

impulsive systems were studied in [19]. Recently, the concept

of input-to-state stability for nonlinear delay-free impulsive

systems has been introduced in [20], and a set of Lyapunov-

based sufficient conditions for these properties have been
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established. The results in [20] have shown that when one

of the continuous dynamics and the discrete dynamics that

govern the impulses are input-to-state stable but the other are

not, the impulsive system can maintain input-to-state stability

under some constraint conditions on impulsive interval.

In real systems such as engineering, biological, and eco-

nomical systems, very often there exist input delays. How-

ever, due to the presence of an input delay, the performance

of the system is frequently adversely affected. In [9] and

[10], Razumikhin technique and Lyapunov functional method

were applied to study the input-to-state stability property for

nonlinear time-delay systems. However, it seems that there

have been no available results that consider the effect of

both impulses and time-delay on input-to-state stability for

nonlinear systems, which still remains an important and open

problem.

This paper is devoted to the investigation of the input-

to-state stability property for nonlinear delayed impulsive

systems with external input affecting both the continuous

dynamics and the discrete dynamics. The primary objective

is to derive Razumikhin-type theorems for guaranteeing the

input-to-state stability property. It is shown that when the

delayed continuous dynamics are input-to-state stable and

the discrete dynamics are destabilizing, the input-to-state

stability property of the original impulsive systems can be

maintained if the length of impulsive interval is large enough.

Conversely, when the discrete dynamics are input-to-state

stable but the delayed continuous dynamics are not, the

impulsive system can attain input-to-state stability if the sum

of the length of impulsive interval and the time-delay is small

enough.

II. SYSTEM DESCRIPTION

In the sequel, if not explicitly stated, matrices are as-

sumed to have compatible dimensions. The notation M >

(≥, <, ≤) 0 is used to denote a symmetric positive-definite

(positive-semidefinite, negative, negative-semidefinite) ma-

trix. λmin(·) and λmax(·) represent the minimum and maxi-

mum eigenvalues of the corresponding matrix, respectively.

| · | denotes the Euclidean norm for vectors or the spectral

norm for matrices. For τ > 0, let PC([−τ, 0],Rn) denote

the set of piecewise right continuous function

φ : [−τ, 0] → R
n

with the norm defined by

‖φ‖τ = sup
−τ≤θ≤0

‖φ(θ)‖.

If

x ∈ PC([t0 − τ,+∞),Rn),

then for each t ≥ t0, we define

xt ∈ PC([−τ, 0],Rn)

by

xt(s) = x(t+ s)

for −τ ≤ s ≤ 0. Let N denote the set of positive integers,

i.e.,

N = {1, 2, . . .}.

Consider the nonlinear delayed impulsive systems of the

form:

ẋ(t) = f(xt, wc(t)), t > t0, t 6= tk,

x(t) = g(x(t−), wd(t
−)), t = tk, (1)

xt0 = φ,

where x(t) ∈ R
n is the system state, wc(t) ∈ R

m1 is a

locally bounded external input, wd(t) ∈ R
m2 is the impulsive

disturbance input, and φ ∈ PC([−τ, 0],Rn) is the initial

condition of the state.

f : PC([−τ, 0] ×Rm1 → R
n

and

g : R
n × R

m2 → R
n

satisfy

f(0, 0) = g(0, 0) = 0.
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{tk} is a strictly increasing sequence of impulse times in

(t0,+∞) and satisfies

lim
k→+∞

tk = +∞.

We assume the following hypotheses throughout our paper:

(A1) f̃(t, ψ) = f(ψ,wc(t)) is composite-PC, i.e., for each

t0 ∈ R
+ and σ > 0, if

x ∈ PC([t0 − τ, t0 + σ],Rn)

and x is continuous at each t 6= tk in (t0, t0 + σ], then the

composite function h defined by

h(t) = f̃(t, xt)

is an element of the function class PC([t0, t0 + σ],Rn).

(A2) f̃(t, ψ) is quasi-bounded, i.e., for each t0 ∈ R
+ and

σ > 0, and for each compact set F ∈ R
n, there exists some

M > 0 such that

|f̃(t, ψ)| ≤M

for all

(t, ψ) ∈ [t0, t0 + σ] × PC([−τ, 0], F ).

(A3) For each fixed t ∈ R
+, f̃(t, ψ) is a continuous

function of ψ on PC([−τ, 0],Rn).

It is shown in [18] that under Assumptions (A1)-(A3), the

initial value problem (1) admits a solution x(t, t0, φ) that

exists in a maximal interval I . In addition, if f̃(t, ψ) is locally

Lipschitz in ψ, then the solution is unique.

We define the following function classes. A function

α : R
+ → R

+ is of class K, if α is continuous, strictly

increasing, and α(0) = 0. If α is also unbounded, then we

say that it is of class K∞. A function

̟ : R
+ × R

+ → R
+

is of class KL, if ̟(·, t) is of class K in the first argument

for each fixed t ≥ 0 and ̟(s, t) decreases to 0 as t→ +∞

for each fixed s ≥ 0.

Definition 1: Suppose that a sequence {tk} is given. Sys-

tem (1) is said to be input-to-state stable (ISS) if there exist

functions ̟ ∈ KL and γc, γd ∈ K∞ such that for every

initial condition and every pair of input (wc, wd), the solution

of system (1) exists globally and satisfies

|x(t)| ≤ ̟(‖φ‖τ , t− t0) + γc(‖wc‖[t0,t])

+γd

(

max
tk∈[t0,t]

{

|wd(t
−
k )|

}

)

, t ≥ t0,

where ‖ · ‖I denotes the supremum norm on an interval I .

The above definition is parallel to the ones given for

nonlinear delay-free impulsive systems in [20] and the ones

given for nonlinear impulse-free time-delay systems in [10].

Let S denote a class of admissible impulsive time se-

quence. We say that system (1) is input-to-state stable over S

if for any impulsive time sequence in S, system (1) is input-

to-state stable; we say that system (1) is uniformly input-

to-state stable over S if for any impulsive time sequence in

S, the input-to-state stability property holds with functions

α,̟, γc, γd that are independent of the choice of the se-

quence. Inspired by the works in [21] and [22], we denote

by Smin(β) the class of impulsive time sequences that satisfy

inf
k
{tk − tk−1} ≥ β,

which corresponds to the set of impulse signals with dwell

time β; we denote by Smax(β) the class of impulsive time

sequences that satisfy

sup
k

{tk − tk−1} ≤ β,

which corresponds to the set of impulse signals with reverse-

dwell time β.

III. INPUT-TO-STATE STABILITY CRITERIA

In this section, we will establish two theorems which

provide sufficient conditions for input-to-state stability of

system (1) when one of the delayed impulsive dynamics and

the discrete dynamics are input-to-state stable.

Theorem 1: Assume that there exist a function

V : R
n → R

+

which is locally Lipschitz, and functions α1, α2, χ1, χ2 ∈

K∞ such that

(H1) α1(|x|) ≤ V (x) ≤ α2(|x|);
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(H2) There exist scalars p > 1 and c > 0 such that

∇V (ψ(0))f(ψ,wc) ≤ −cV (ψ(0)) + χ1(|wc|)

for all

ψ ∈ PC([−τ, 0],Rn)

whenever

pV (ψ(0)) ≥ V (ψ(θ))

for θ ∈ [−τ, 0];

(H3) There exists µ ∈ [1, p) such that

V (g(x,wd)) ≤ µV (x) + χ2(|wd|).

Then for any given β > 0 satisfying

µe−cβ < 1,

system (1) is uniformly input-to-state stable over Smin(β). In

particular, when µ = 1, system (1) is uniformly input-to-state

stable over any impulsive time sequence.

Remark 1: By the results of [9], condition (H2) im-

plies that the delayed continuous dynamics are input-to-

state stable. But condition (H3) implies that the discrete

dynamics governing the impulses may be unstable, i.e., the

impulses may be destabilizing. So to maintain the input-to-

state stability property of the original system, the impulsive

interval is required to be large enough to reduce the effect

of the impulses. When µ = 1, the discrete dynamics are

stable for the zero input. In this case, the input-to-state

stability property of the original system is not affected by

the impulses.

The next theorem provides input-to-state stability condi-

tions for the case when the discrete dynamics are input-to-

state stable but the delayed continuous dynamics are not. For

this purpose, we need to replace the pair of assumptions (H2)

and (H3) with the following pair of assumptions:

(H4) There exist scalars p > 1 and c ≥ 0 such that

∇V (ψ(0))f(ψ,wc) ≤ cV (ψ(0)) + χ1(|wc|)

for all ψ ∈ PC([−τ, 0],Rn) whenever

pV (ψ(0)) ≥ V (ψ(θ))

for θ ∈ [−τ, 0];

(H5) There exists µ ∈ (1/p, 1) such that

V (g(x,wd)) ≤ µV (x) + χ2(|wd|).

Theorem 2: Assume that there exist a function

V : R
n → R

+

which is locally Lipschitz, and functions α1, α2, χ1, χ2 ∈

K∞ such that (H1), (H4) and (H5) hold. Then for any given

β > 0 satisfying

µec(β+τ) < 1,

system (1) is input-to-state stable over Smax(β). Moreover,

for the above β, system (1) is uniformly input-to-state stable

over Smax(β)
⋂

Smin(β0) for any β0 ∈ (0, β). In particular,

when c = 0, system (1) is input-to-state stable for any

impulsive time sequence.

Remark 2: By the results of [7], condition (H3) implies

that the discrete dynamics governing the impulses are input-

to-state stable, i.e., the impulses are stabilizing. But condition

(H3) also implies that the delayed continuous dynamics may

be unstable. So to make the impulsive system be input-to-

state stable, the sum of the length of impulsive interval and

the time-delay is required to be small enough. When c =

0, the delayed continuous dynamics are stable for the zero

input by Razumikhin Theorem [15]. In this case, the input-to-

state stability property of the original system can be achieved

without any restriction on the delay and the frequency of the

impulses.

IV. NUMERICAL RESULTS AND CONCLUSIONS

Consider the state-delayed networked control system of

the following form:

ẋ(t) =Ax(t) + f(xt) +Bw(t),

y(t) = x(t) + ν(t),

˙̂x(t) =Ax̂(t) + f̂(x̂t), t 6= tk, (2)

x̂i(t) =

{

yik
(t−), i = ik,

x̂i(t
−), i 6= ik,

t = tk, i = 1, 2, . . . , n,
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where x(t) ∈ R
n is the system state, w(t) ∈ R

m is the

input disturbance, y(t) ∈ R
n is the measurement of the

state, ν(t) ∈ R
n is the measurement noise, x̂(t) ∈ R

n is the

remote estimate of x(t), f(xt) and f̂(x̂t) are the unknown

nonlinear delayed perturbation of the state and its estimate,

respectively, and {tk} is a monotonically increasing trans-

mission time sequence satisfying tk → +∞ as k → +∞.

When t ∈ (tk, tk+1), the estimate x̂(t) evolves according to

the third equation of (2); and when t = tk, a measurement

yik(t) is sent to the remote estimator and this causes the

estimate x̂ik(t) to undergo a “jump”.

Let

e(t) = x̂i(t) − xi(t)

be the estimation error, which can be described by the

following delayed impulsive system

ė(t) =Ae(t) + f̂(x̂t) − f(xt) − Bw(t), t 6= tk,

êi(t) =

{

νik
(t−), i = ik,

ei(t
−), i 6= ik,

t = tk, i = 1, 2, . . . , n. (3)

We assume that

|f(xt) − f̂(x̂t)| ≤ b sup
θ∈[−τ,0]

|x(t+ θ) − x̂(t+ θ)|.

As in [20], we consider a TOD-like protocol [14] to deter-

mine the index ik of the measurement y(t) at each transmis-

sion time t = tk. That is, ik is the index corresponding to

the largest

|x̂i(t
−
k ) − yi(t

−
k )| = |ei(t

−
k ) − νi(t

−
k )|.

Define Lyapunov function

V (e) = |e|2.

By the results of [20], for every constant

d ∈ (0, ln(n/(n− 1)))

one can find a function χ ∈ K∞ such that

V (e(tk)) ≤ e−dV (e(t−k )) + χ(|ν(t−k )|).

It follows that system (3) satisfies (H3) of Theorem 2 with

µ = e−d.

On the other hand, for some p > 1, when

pV (e(t)) ≥ V (e(t+ θ)), θ ∈ [−τ, 0],

for any ε > 0, we have

D+V (e(t))≤ eT (t)(A+AT )e(t)

+2b|e(t)||e(t− τ)| − 2eT (t)Bw(t)

≤ 2(µ(A) + bp+ ε)V (e(t))

+
|BTB|

2ε
|w(t)|2. (4)

There are two possible cases to be considered.

Case 1: µ(A)+ b < 0. In this case, we can choose p > 1

and ε > 0 such that

µ(A) + bp+ ε < 0.

It follows from (4) that system (3) satisfies (H2) with c = 0.

Therefore, according to Theorem 2, system (2) is input-to-

state stable for any transmission time sequence.

Case 2: µ(A) + b ≥ 0. In this case, by Theorem 2, the

input-to-state stability property of system (2) will depend on

the size of the delay τ . We assume that for some given

d ∈ (0, ln(n/(n− 1)),

it holds that

τ <
d

2(µ(A) + b)
. (5)

Choose β > 0 satisfying

−d+ 2(µ(A) + b)(β + τ) < 0,

i.e.,

β + τ <
d

2(µ(A) + b)
.

Then there exist p > 1 and ε > 0 such that

−d+ 2(µ(A) + bp+ ε) < 0.

According to Theorem 2, system (2) is input-to-state stable

over Smax(β).

To sum up, the primary theoretical findings of this paper

are that Razumikhin-type theorems have been established for

input-to-state stability of nonlinear impulsive systems with
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time-delay. The numerical results have verified the usefulness

of these Razumikhin-type theorems.
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