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Abstract— We present a novel observer design for a class
of single-output nonlinear systems with Markov jumps. The
Markov jump process interferes with a deterministic nonlinear
dynamics at random times and retains its state for a certain
amount of time (dwell time). The estimation process is reset at
these random times, depending on the reset values of the state
process, and then evolves as a deterministic estimate of the state
process itself. The novelty is given by the reset mechanism
adopted for the estimation process itself, depending on the
reset values of the state process. We prove that, as long as the
mathematical expectation of the dwell times has a positive lower
bound and the transition rate of the jump process at the first
exit time out of any point is bounded, the state estimation error
of the switching dynamics asymptotically converges to zero with
probability one. The state estimate over each dwell time is
designed using the novel technique of “output immersion”.

Index Terms— Stochastic systems, state reset, observer de-
sign.

I. INTRODUCTION

In this paper we investigate the observer design problem
for the class of stochastic systems

x+(t) = Ax(t) + f(x(t), r(t)),
µ(t) = (Cx(t), r(t)), ζk ≤ t < ζk+1, k = 0, 1, . . . ,∞,

x(ζk) = q(ζk) := g(x(ζ−k ), q(ζ−k )), (1)

where ζ0 = 0, (C,A) is an observable pair, x(t) is the state
process, x+(t) denotes the right-hand derivative of x(t) and
x(t−) the left-hand limit of x(t), µ(t) is the measured output
process, y(t) = (r(t), q(t)) is the interfering process and
f(x, r) and g(x, q) are for each fixed (r, q) real-valued lo-
cally Lipschitz continuous functions. We will assume without
loss of generality that (C,A) is in the observability form. The
interfering process y(t) is a jump Markov process defined
on some probability space {Y ,L,Py}, where
• Y = R × Q, R ⊂ Rs and Q ⊂ Rn are finite sets

endowed with the discrete topology (i.e. induced by the
metric ρ(v, w) = 1 if v 6= w and ρ(v, w) = 0 else)

• L is a σ-algebra which contains all the singletons in Y ,
i.e. the sets consisting of a single element in Y

• Py is a conditional probability given y defined on L
• the components yi(t) of y(t) are right-continuous tra-

jectories with Markov times 0 = ζ0 < ζ1 < · · · < ζn <
· · ·, ζn ↑ ∞ such that yi(t) = yik for t ∈ [ζk, ζk+1)
(here ↑ means “tends monotonically increasing”; for a
definition of Markov times see 1.4 of [3]). The random
time ζk represents the time at which each yi(t) changes
its state yik into yi,k+1 and ζk+1 − ζk is the time for
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which the jump process y(t) retains its state (dwell
time).

The jump process y(t) interferes with the process x(t)
through the maps f(x(t), r(t)) and the state reset x(ζk) =
g(x(ζ−k ), q(ζ−k )), i = 1, . . . , n. The process (x(t), y(t)) is
described by Px,y its conditional probability given (x, y).
This probability, defined according to (25), depends on
the conditional probabilities P(y)

x given x, associated to
each value y of y(t), and defines on turn the transition
probabilities Px,y(u, w) of the process (x(t), y(t)) from the
state (x, y) into (u, w). As it will be seen in the statement of
our main result, we will assume that instantaneous transition
rates ∂Px,y(u, w) of the process (x(t), y(t)) from (x, y) into
(u, w) are well defined and bounded.

Our study

• is limited to a deterministic evolution of the continuous
state for each fixed value y(t) = y ∈ Y (the frozen
system)

• it does not allow transitions triggered by conditions on
the state (guards)

• assumes that the process r(t) (together with the first
component of the state process Cx(t) = x1(t)) can be
measured.

The first restriction is assumed only for simplicity and in
the appendix it is shown how to generalize our study to the
case of continuous evolution driven by stochastic differential
equations. The second restriction allows to exclude Zeno
phenomena and it will be relaxed in a future work. The
third restriction is also assumed for simplicity and more
generally we can assume to measure only x1(t). In this
case an observer should be designed also for estimating r(t).
Our model is similar to the one considered in [4] (see also
numerous references therein).

Observers for linear systems (1) with no state reset were
proposed in [2] and for feedback linearizable nonlinear
systems in [1]. In [4] the infinitesimal generator of the
process (x(t), y(t)) is calculated and used for the analisys
of TCP flows. In this paper, we propose an observer for (1)
as a result of observers designed for each frozen system.
We assume that the state process of (1) evolves in some
compact set. Our contribution does not introduce any new
observability notion, rather it gives a new design tool for
observers with state reset. As to the observer design for each
frozen system we introduce a novel framework based on the
notion of output immersion of a system, which consists of
immersing its output space into some larger space in such a
way to increase the number of its outputs up to as many as
the number of the states. This immersion has as a result the
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peculiarity of decoupling the original n-dimensional system
into n one-dimensional systems, each with its own state and
output and for which a one-dimensional observer can be
easily designed. Stepping back in the immersion process,
one obtains an observer for the system before immersion
as a result of the n one-dimensional observers. This mainly
determines a “chained” structure for the observer. Moreover,
following [7], on account of the nonlinear nature of the
dynamics we saturate the estimation process over the same
compact set in which the state process is assumed to evolve.
However, we establish more general conditions (see (2)-(3)
and remark 2.2) under which an observer can be designed.

We define a probability space for the process z(t) =
(x(t), ξ(t), y(t)) where ξ(t) is the estimation process. In
particular, one of our contributions with respect to [4] is
to define a transition probability for this process, using the
conditional probability P(y)

x,ξ given (x, ξ) for the process
(x(t), ξ(t), y), and to calculate the characteristic operator
of z(t). This transition probability chains in a natural way
the conditional probabilities P(y)

x,ξ given (x, ξ) so that from
the properties of the state estimation error for each process
(x(t), ξ(t), y) it is easy to obtain asymptotic properties of
the state estimation error for the switching process z(t).
In particular, we prove that, as long as the mathematical
expectation of the dwell times has a positive lower bound
and the transition rate of the jump process at the first exit
time out of any point is bounded, the state estimation error
of the switching dynamics asymptotically converges to zero
with probability one.

A. Notations

• R+ (resp. R≥) denotes the set of real positive (resp.
nonnegative) numbers. Rn is the vector space of (col-
umn) vectors with n elements. For any vector x ∈ Rn

we denote by xi the i-th element of x. Also for any
vector function f(·) we will denote by fi(·) its i-th
component.

• ‖v‖ denotes the euclidean norm of a vector v ∈ Rn.
• For any functions hj : D → R≥, j = 1, 2, we write

h1 � h2 (resp. h1 � h2) if there exists a ≥ 1 such that
h1(s) ≤ ah2(s) (resp. h1(s) ≥ ah2(s)) for all s ∈ D .

• x+(t) denotes the right-hand derivative of x(t) while
x(t−) the left-hand limit of x(t).

• ↑ means “tends monotonically increasing”, while ↓
means “tends monotonically decreasing”.

II. ASSUMPTIONS AND MAIN RESULT

In this section we discuss the main assumptions and we
state the main result of this paper. Our first assumption (H1)
is on the state trajectory x(t) we want to estimate:
(H1)The state process x(t) has a compact phase space X =
{x ∈ Rn : |xi| ≤ cδi}, with c > 1 and δi ∈ R≥, i = 1, . . . , n.

Remark 2.1: Each state trajectory x(t) is assumed to stay
for all times with probability one in some compact set X .
For our convenience, the compact set X has the form above.

Let δn+1 ∈ R≥ and θil ∈ [−∞,∞), i, l = 1, . . . , n, be
numbers such that

θil <


2
∑ n−1

h=l (3h−l − 1)(δh − δh+1)
+(1 + 3n−l)δn+1 if i = n
2
∑ n−1

h=l (3h−l − 1)(δh − δh+1)
−2
∑ n−1

h=i+1(3
h−i−1 − 1)(δh − δh+1)

+(3n−l − 3n−i−1)δn+1 if i = 1, . . . , n− 1,

(2)

with

δn+1 ≥ δi − δi−1, i = 2, . . . , n. (3)

Our assumption (H2) is the following:
(H2)For each i = 1, . . . , n there exist ail : X ×X → R≥,
l = 1, . . . , n, such that

[fi(x, r)− fi(w, r)]2 ≤
n∑

l=1

(xl − wl)2ail(x,w), (4)

ail(x, w) � cθil , (5)

for all c > 1, x,w ∈ X and r ∈ R.
Remark 2.2: Condition (4) requires that the “incremental

rate” of each function fi(x, r) with increment xl − wl,
l = 1, . . . , n, are bounded uniformly in r by some func-
tion ail(x, w): this condition is always satisfied by locally
Lipschitz functions fi(x, r), r ∈ R a finite set. Therefore, in
(5) we are restricting the “incremental rates” of each function
fi(x, r) over a given compact set. Note that if ail(x, w) ≡ 0
for all l > i and i = 1, . . . , n ([7]) then (5) can be always
satisfied for any given δi ∈ R≥, i = 1, . . . , n, i.e. for any
given X , by choosing any c > 1 and a sufficiently large
δn+1.

Assumption (H2) have the following physical interpreta-
tion. As it will be shown in the proof of our main result, the
numbers δh − δh+1, h = 1, . . . , n− 1, and δn+1 determine
the gains ∆l, l = 1, . . . , n − 1, and, respectively, ∆n of
the observer which estimates the state trajectory x(t). On
the other hand, the numbers δh − δh+1, h = 1, . . . , n − 1,
and δn+1 determine a bound for the numbers θil in (2) and,
therefore, for the incremental rates anl(x, w), l = 1, . . . , n,
over X ×X in (5). On account of (2) is possible to increase
this upper bound by increasing either δn+1 or δh − δh+1,
h = l, . . . , n − 1, i.e. either ∆n or ∆l. This is exactly the
interpretation of conditions (2) for i = n.

We end with few comments on the conditions (5) for
i = 1, . . . , n − 1. If l − 1 < i it is possible to increase the
upper bound for ail(x,w) in (5) over X ×X by decreasing
δn+1 or increasing δl − δl+1, . . . , δi − δi+1, i.e. increasing
∆l −∆i+1. If i < l − 1 it is possible to increase this upper
bound by decreasing either δn or δi+1−δi+2, . . . , δl−1−δl,
i.e. increasing ∆l − ∆i+1 or, by (3), ∆n+1. Therefore, a
trade-off should be sought in the selection of ∆1, . . . ,∆n

for increasing as much as possible the upper bounds for all
ail(x,w), l = 1, . . . , n, over X × X . Farther is the map
f(x, r) from having a “triangular” structure, more difficult
is the achievement of this trade-off. This is exactly the
interpretation of conditions (2) for i = 1, . . . , n− 1.
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Also, let θ′il ∈ [−∞,∞), i, l = 1, . . . , n, be numbers such
that

θ′il <


2
∑ n−1

h=l (3h−l − 1)(δh − δh+1)
+3n−lδn+1 if i = n
2
∑ n−1

h=l (3h−l − 1)(δh − δh+1)
−4
∑ n−1

h=i+1(3
h−i−1 − 1)(δh − δh+1)

+(3n−l − 3n−i−12)δn+1 if i = 1, . . . , n− 1.

Conditions similar to (2) are imposed on the reset maps
g(x, q) in (1):
(H3)there exist bil : X ×X → R≥, l = 1, . . . , n, such that
for some

[gi(x, q)− gi(w, q)]2 ≤
n∑

l=1

(xl − wl)2bil(x,w), (6)

bil(x, w) � cθ′il , (7)

for all c > 1, x, w ∈ X and q ∈ Q.
Our last assumption (H4) is on the existence of a minimum

dwell-time. Let Px,y be the conditional probability given
(x, y) defined according to (25) for the process (x(t), y(t))
and let Ex,y the corresponding mathematical expectation.
(H4)for all x ∈ X and y ∈ Y

0 < inf
k

Ex,y{ζk+1 − ζk}. (8)

Remark 2.3: A positive minimum expected dwell time is
required. This avoids a number of infinite switching in every
finite time interval and has a clear physical meaning.

Before stating the main result of this paper we need few
more notations and objects. Let

αi(s) =


φi

[
− 1 + 2

3
2 β

(
s

φi

)]
if s ≥ φi

r if − φi ≤ s ≤ φi

φi

[
1 + 2

3
2 β

(
s

φi

)]
if s ≤ −φi

(9)

where β(s) =
s√

1 + s2
and φi ∈ R+, i = 1, . . . , n.

The function αi : R → (−2φi, 2φi) is a continuously
differentiable bounded odd function and its main proper-
ties, extensively used in this paper, are: for all r, s ∈ R
[αi(s) − αi(s − r)]2 � α2

i (r), α2
i (s + r) � α2

i (s) + α2
i (r),

α2
i (s) ≤ 4φ2

i . Any other (even simpler) function α′i with the
same properties as αi can be used as well in the foregoing
results.

Define α(s) = (α1(s1), . . . ,αn(sn)) with s =
(s1, . . . , sn) and g(s) = (g(s1), . . . , g(sn)) and for each
∆i > 0, i = 1, . . . , n, let V ⊂ Rn be the finite set defined
as follows: for each q ∈ Q the points ξ such that

ξ1 = q1,

ξi = qi + ∆i[αi−1(ξi−1)− qi−1], i = 2, . . . , n, (10)

are in V . The set V will be endowed with the discrete
topology.

Theorem 2.1: Assume (H1)-(H4). There exist c > 1 and
∆i,φi > 0, i = 1, . . . , n, such that if
(L1) the process ξ(t) = (ξ1(t), . . . , ξn(t)) satisfies

ξ+
1 (t) = α2(ξ2(t)) + f1(α(ξ(t)), r(t)) + ∆1[x1(t)− ξ1(t)],

ξ+
2 (t) = α3(ξ3(t)) + f2(α(ξ(t)), r(t))

+∆2[α+
1 (ξ1(t))− ξ2(t)− f1(α(ξ(t)), r(t))],

... =
...

ξ+
n (t) = fn(α(ξ(t)), r(t))

+∆n[α+
n−1(ξn−1(t))− ξn(t)− fn−1(α(ξ(t)), r(t))],

ξ1(ζk) = g1(α(ξ(ζ−k )), q(ζ−k )),
ξi(ζk) = gi(α(ξ(ζ−k )), q(ζ−k )) + ∆i[αi−1(ξi−1(ζk))
−gi−1(α(ξ(ζ−k )), q(ζ−k ))], i = 2, . . . , n, (11)

(L2) for each x ∈ X , u ∈ Q, ξ ∈ Rn, v ∈ V , and y, w ∈ Y
the limits

∂Px,ξ,y(u, v, w) = lim
ε↓0

1
ε
Px,ξ,y{(x(τ), ξ(τ), y(τ))

= (u, v, w), τ < ε},
(u, v, w) 6= (x, ξ, y),

∂Px,ξ,y(x, ξ, y) = lim
ε↓0

1
ε
[Px,ξ,y{(x(τ), ξ(τ), y(τ))

= (x, ξ, y), τ < ε} − 1] (12)

exist bounded uniformly on ξ ∈ Rn and v ∈ V , where Px,ξ,y

is the conditional probability given (x, ξ, y) defined according
to (25) for the process (x(t), ξ(t), y(t)),

we have

Px,ξ,y{ lim t→∞‖x(t)− ξ(t)‖ = 0} = 1. (13)

for all x, ξ ∈ X and y ∈ Y .
Remark 2.4: Here ∂Px,ξ,y(u, v, w) for (x, ξ, y) 6=

(u, v, w) can be interpreted as the instantaneous transi-
tion rate of the process (x(t), ξ(t), y(t)) into (u, v, w)
at the first exit time τ out of (x, ξ, y) 6= (u, v, w).
Also, −∂Px,ξ,y(x, ξ, y) can be interpreted as the in-
stantaneous transition rate of the process (x(t), ξ(t), y(t))
at the first exit time τ from (x, ξ, y) into some other
state (u, v, w) 6= (x, ξ, y). It can be shown that∑

u∈Q,y,w∈Y ∂Px,ξ,y(u, v, w) = 0, which corresponds to
what is commonly known as a locally regular jump process
([3]). By definition of Px,ξ,y (see (25)) we have that

Px,ξ,y{(x(τ), ξ(τ), y(τ)) = (u, v, w), τ < ε}
= P(y)

x,ξ{(x(τ), ξ(τ)) = (u, v), τ < ε} (14)

Therefore, (L2) is a condition on the instantaneous transition
rate of the process (x(t), ξ(t)) for fixed values of y(t) (i.e.
the frozen process).

Remark 2.5: Note the “chained” structure of (11), in
which the derivative α+

i−1(ξi−1(t)) is chained to ξ+
i (t), and

the use of α(ξ(t)) as a “saturated” estimate of x(t). This
“saturated” estimate was used in [7]. The novelty in our paper
is to use “saturated” estimates also to determine the reset
maps and to reset the estimates as well at switching times.
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While at each switching time the state xi is reset to the value
qi, the estimate ξi is reset to the value q̂i +∆i(αi−1(ξi−1)−
q̂i−1), where q̂i, q̂i−1 are estimated values of qi and qi−1.

A. A motivating example

Before going further, we want to give an example for
which our observer design can be applied. Spontaneous
synchronization is fundamental for convergence of synchrony
in pulsed-coupled oscillators. When coupled to others an
oscillator is receptive to the pulses of its neighbours. Cou-
pling between nodes is assumed instanteneous and at some
(random) times an oscillator reset its phase and all nodes
in the neighbourhood adjust their phase. As model of one
oscillator we consider the Van der Pol oscillator (see [5])

x+
1 (t) = x2(t),

x+
2 (t) = −x1(t) + x2(t)(1− x2

1(t)), (15)

Assume that the measured output process is µ(t) = x1(t)
and that the phase x1(t) is reset at random times 0 = ζ0 <
ζ1 < · · · < ζn < · · · ζn ↑ ∞. At these times the oscillator is
said to “fire” and resets itself and the other oscillators in its
neighbourhood. The phase of the i-th oscillator is reset either
to 0 or x1(ζk) = −α

β according if the i-th or the j-th (j 6= i)
oscillator in its neighbourhood fires. Here α = exp bν, where
b is the dissipation factor and ν the amplitude increment, and
β = exp bν−1

exp b−1 . The numbers α and β determine the coupling
between oscillators.

Assume that the random times ζ1 < · · · < ζn < · · · are
distributed as in a Markov chain and that the expectation of
the period between two consecutive times is never below
a certain positive number. The state trajectories x(t) of
(15) are well defined and bounded for all times, therefore
(H1) is satisfied. Also assumption (H2) is satisfied (see
remark 2.2). Let Q = {(0, 0), (−α

β , 0)} and denote by q(t)
the jump Markov process with values in Q and such that
x(ζk) = q(ζk) = g(x(ζ−k ), q(ζ−k )). Therefore, assumption
(H3) is satisfied.

Let the estimation process ξ(t) = (ξ1(t), ξ2(t)) be defined
according to (L1) as follows

ξ+
1 (t) = α2(ξ2(t)) + ∆1[x1(t)− ξ1(t)]

ξ+
2 (t) = −α1(ξ1(t)) + α2(ξ2(t))[1− α2

1(ξ2(t))]
+∆2(α+

1 (ξ1(t))− ξ2(t)),
ξ1(ζk) = g1(α(ξ(ζ−k )), q(ζ−k )),
ξ2(ζk) = g2(α(ξ(ζ−k )), q(ζ−k )) + ∆2[α1(ξ1(ζk))
−g1(α(ξ(ζ−k )), q(ζ−k ))], (16)

where ∆i,φi > 0, i = 1, 2. Here, we select φj = cδj ,

j = 1, 2, ∆1 = ∆3
2

(
Φ1
Φ2

)2

and ∆2 = c2δ3 , with any δj ,
j = 1, 2, 3, satisfying (H2)-(H3), and sufficiently large c > 1.

Let V be the set defined as follows: for each q ∈ Q the
point ξ such that

ξ1 = q1,

ξ2 = q2 + ∆2[α1(q1)− q1] (17)

is also in V . With each q ∈ Q we can associate a
process {F̂ , N̂ ,P(q)

x,ξ} on some phase space {X̂ , B̂} with
conditional probability given (x, ξ) equal to P(q)

x,ξ . This
process describes (x(t), ξ(t)) for fixed values of q(t). We
assume that the following transition probabilities are given
for each ε > 0, u ∈ Q and v ∈ V

P(q)
x,ξ{(x(τ), ξ(τ)) = (u, v), τ < ε}, (u, v) 6= (x, ξ),

where τ represents the first exit time from the point (x, ξ)
into the point (u, v), and

1−P(q)
x,ξ{(x(τ), ξ(τ)) = (x, ξ), τ < ε}.

Also, we assume that their right-hand derivative with respect
to ε (i.e. their instanteneous rates) exist bounded uniformly
on ξ ∈ Rn and v ∈ V . Therefore, also assumption (L2) is
satisfied and theorem 2.1 yields the convergence to zero a.s.
of the estimation error for (15)-(16).

III. OUTLINE OF THE PROOF OF THEOREM 2.1

The proof of theorem 2.1 is the result of the following
observations. We consider the system (1)-(11) as the result
of the switching among the members of a family of systems
with given y(s−) = (r−, q−) ∈ Y and y(t) = (r, q) for
all t ≥ s . We will see that, given y(s−) = (r−, q−) ∈ Y
and y(t) = (r, q) for all t ≥ s, (11) is an observer for (1).
By switching among the members of the family of observers
(11) with given y(s−) = (r−, q−) ∈ Y and y(t) = (r, q)
for all t ≥ s we prove the claimed asymptotic property
(13). For proving that given y(s−) = (r−, q−) ∈ Y and
y(t) = (r, q) for all t ≥ s (11) is an observer for (1)
we introduce a novel framework for observer design. This
framework is based on the notion of output immersion. This
notion does not correspond to any new observability notion,
rather it establishes a symplifying tool for observer design.

Definition 3.1: A system Σ(x, ξ, µ) : x+ = f(x), ξ+ =
g(ξ, µ), µ = h(x), x ∈ X ⊂ Rn, ξ ∈ W ⊂ Rn,
µ ∈ M ⊂ Rp is said to be output immersed into Σ̂(x̂, ξ̂, µ̂) :
x̂+ = f̂(x̂), ξ̂+ = ĝ(x̂, ξ̂, µ̂), x̂ ∈ X̂ ⊂ Rn, ξ̂ ∈ Ŵ ⊂ Rn,
µ̂ ∈ M̂ ⊂ Rp̂, if there exist a continuous mapping N : X ×
W ×M → M̂ and a diffeomorphism X : X ×W → X̂ ×Ŵ
such that (x̂, x̂) = X(x, x), x ∈ X , x̂ ∈ X̂ , and

∂X(x, ξ)
∂x

f(x) +
∂X(x, ξ)

∂ξ
g(ξ, µ)

= ĝ(x, X(x, ξ), N(x, ξ, µ)) (18)

for all x ∈ X , ξ ∈ W and µ ∈ M .
Roughly speaking, a system Σ is output immersed into Σ̂

if the outputs of Σ are mapped into the outputs of Σ̂ under
some state transformation X . One important consequence of
the condition (x̂, x̂) = X(x, x), x ∈ X , x̂ ∈ X̂ , is that
if the immersed dynamics ξ̂+ = ĝ(x̂, ξ̂, µ̂) is an asympotic
observer for the immersed dynamics x̂+ = f̂(x̂) then ξ+ =
ĝ(ξ, µ) is an asympotic observer for x+ = f(x). This fact
is important as far as the observer design for x̂+ = f̂(x̂) is
easier than that for x+ = f(x), as it will be seen in the next
sections.
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The following result states that, given y(s−) = (r−, q−) ∈
Y , x(s−) = x ∈ X , ξ(s−) = ξ ∈ W and y(t) = (r, q) for
all t ≥ s, (1)–(11) can be immersed into a system, which
can be splitted into n one-dimensional decoupled dynamics,
each with its own one-dimensional observer. For any vector
w we denote by wi the i-th component of w.

Theorem 3.1: The system (1)-(11), given y(s−) =
(r−, q−) ∈ Y , x(s−) = x ∈ X , ξ(s−) = ξ ∈ W and
y(t) = (r, q) for all t ≥ s, can be output immersed into the
system

x+
i (t) = f̂i(x(t), r), i = 1, . . . , n,

µ̂i(t) = xi(t) + ĥi(x(t), ξ̂(t), r), i = 1, . . . , n,

xi(s) = gi(x−, q−), t ≥ s,

ξ̂+
i (t) = f̂i(α(ξ̂(t)), r) + ∆i(µ̂i(t)− ξ̂i(t)), i = 1, . . . , n,

ξ̂i(s) = gi(α(ξ̂−), q−) + k̂i(x−, ξ̂−, q−), t ≥ s, (19)

where

f̂i(x, r) = xi+1 + fi(x, r), i = 1, . . . , n− 1,

f̂n(x, r) = fn(x, r),

ĥ1(x, ξ̂, r) =
f̂1(α(Γ (x, ξ̂))), r)− f̂1(α(ξ̂), r)

∆1
,

ĥi(x, ξ̂, r) := fi−1(x, r)− fi−1(α(Γ (x, ξ̂)), r)
+∆i(xi−1 − αi−1(Γi−1(x, ξ̂1, . . . , ξ̂i−1)))

+
f̂i(α(Γ (x, ξ̂)), r)− f̂i(α(ξ̂), r)

∆i
, i = 2, . . . , n,(20)

k̂1(x, ξ̂, q) := g1(α(Γ (x, ξ̂)), q)− g1(α(ξ̂), q),
k̂i(x, ξ̂, q) := gi(α(Γ (x, ξ̂)), q)− gi(α(ξ̂), q)
+∆i[gi−1(x, q)− gi−1(α(Γ (x, ξ̂)), q)], i = 2, . . . , n,

and Γ (x, ξ̂) is defined recursively as

Γ1(x, ξ̂1) = ξ̂1, Γi(x, ξ̂1, . . . , ξ̂i) = ξ̂i −∆i(xi−1

−αi−1(Γi−1(x, ξ̂1, . . . , ξ̂i−1))), i = 2, . . . , n,

Γ (x, ξ̂) = (Γ1(x, ξ̂1), . . . ,Γn(x, ξ̂1, . . . , ξ̂n)).
The peculiarity of this output immersion is that (19) can

be split into n pairs of one-dimensional systems

x+
i (t) = f̂i(x(t), r), xi(s) = gi(x−, y−),

µ̂i(t) = xi(t) + ĥi(x(t), ξ̂(t), r) (21)

ξ̂+
i (t) = f̂i(α(ξ̂(t)), r) + ∆i(µ̂i(t)− ξ̂i(t)),

ξ̂i(s) = gi(α(ξ̂−), q−) + k̂i(x−, ξ̂−, q−) (22)

for t ≥ s. Therefore an observer for (19) can be designed
by selecting only the parameters ∆i and φi, i = 1, . . . , n,
for each (21)-(22) on account of the fact that (22) has by
construction the form of an observer for (21).

In conclusion the proof of theorem 2.1 is structured
according the following steps:
• (Output Immersion). For each fixed value y ∈ Y of

y(t) perform the claimed output immersion of (1)-(11)
into (19).

• (Splitting). Split (19) into n systems (21)-(22). Also,
calculate the value of AyWi(xi, ξ̂i), where Ay is the

generating operator of the process (x(t), ξ̂(t), y(t)) for
fixed y(t) = y and Wi(xi, ξ̂i) is some at least twice
continuously differentiable function, positive definite
around x = ξ̂.

• (Parameter selection). Select the parameters ∆1, . . . ,∆n

and φ1, . . . ,φn in such a way that the value of
U[
∑n

i=1 Wi(xi, ξ̂i)] is negative definite around x =
ξ̂, where U is the generating operator of the process
(x(t), ξ̂(t), y(t)). This determines by the immersion
process the values of ∆1, . . . ,∆n and φ1, . . . ,φn in
(19).

• (Probability chaining). Chain over consecutive dwell
times the stochastic properties of (1)-(11), obtained
from U[

∑n
i=1 Wi(xi, ξ̂i)] via the Dynkin’s formula over

a single dwell time by using the transition probability of
the process (x(t), ξ̂(t), y(t)) defined according to (25).

IV. THE PROBABILISTIC SETTING

In this section we introduce a theoretical framework in
which processes (z(t), y(t)) as those defined in (1)-(11)
can be rigourously described and studied. Also, by com-
bining stochastic kernels associated to each ’frozen’ process
(z(t), y) a probability measure Px,y(A) is defined on the
cylindrical sets A generated by the values of (z(t), y(t))
and determines by extension a transition probability on the
probability space. Finally, the characteristic operator for
(z(t), y(t)) will be calculated.

1) A transition probability for the process (z(t), y(t)):
Let y(t) be a piecewise constant Markov process given on
some probability space {Y ,L,Py}, where {Y ,L} is its
phase space and Py its conditional probability given y. The
process y(t) has right-continuous trajectories with Markov
times 0 = ζ0 < ζ1 < · · · < ζn < · · ·, ζn ↑ ∞ such
that y(t) = yk if ζk ≤ t < ζk+1. The random time ζj

represents the time at which y(t) changes its state yk into
yk+1. The measurable space {Y ,L} is endowed with the
discrete topology and L contains all the singletons.

Also, let a strong (homogeneous) Markov process
{F ,N ,P(y)

x } be associated on some phase space {X ,B}
with each y ∈ Y , with P(y)

x its conditional probability
given x. We may assume that Y ⊂ X . The space of
trajectories F and the σ-algebra N are the same for all
y ∈ Y . The trajectories of the process {F ,N ,P(y)

x } are
assumed to be continuous and will be denoted by x(t, y). By
z(t) = x(t, y(t)) we denote the trajectories of the process
which results from the “interference” of y(t) with x(t, y),
y ∈ Y .

Let F ∗ be the set of functions x∗(t) defined on sums
of intervals

⋃
[tk, tk+1), 0 = t0 < t1 < · · · < tn < · · ·,

tn →∞ such that for all k there exists a function x∗k(t) ∈ F
which satisfies x∗(t + tk) = xk(t) for 0 ≤ t < tk+1 − tk
and N ∗ is the σ-algebra generated by the cylinders on F ∗.
Also, let FY be the set of piecewise constant functions y(t)
with values in Y . Let y(t) = yk if ζk ≤ t < ζk+1, 0 =
ζ0 < ζ1 < · · · < ζn < · · ·, ζn ↑ ∞.

We define a probability measure on N ∗ × L, i.e. a
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probability measure for (z(t), y(t)), as follows. If

A =
⋂n

k=0θζk
Crk0,...,rkhk

(Ak)
⋂n+1

k=1θζk
C0(Bk) (23)

where θtA is the image of the set A under the mapping
θt, Ct(Bk) = {x∗(·) : x(t) ∈ Bk} and Crk0,...,rk,hk

(Ak)
is a cylindrical set on F ∗ generated by the values of x∗(t)
on 0 ≤ t < ζk+1 − ζk, i.e. Crk0,...,rkhk

(Ak) = {x∗(·) :
(x∗(rk0), . . . , x∗(rkhk

)) ∈ Ak}, with 0 ≤ rk0 < rk1 <
· · · < rk,hk

< ζk+1 − ζk, then

P(y(·))
x (A) =

∫
B1P

(y0)
x {Cr00,...,r0h0

(A0) ∩ Cζ1(dx1)} × · · ·
×
∫
B2P

(y1)
x1

{Cr10,...,r1h0
(A1) ∩ Cζ2−ζ1(dx2)} × · · ·

×
∫
Bn

P(yn−1)
xn−1

{Crn−1,n−1,...,rn−1,hn−1
(An−1)

∩Cζn−ζn−1(dxn)} × · · ·
×P(yn)

xn
{Crnn,...,rnhn

(An) ∩ Cζn+1−ζn(Bn+1)} (24)

Some measurability properties of the P(y(·))
x (A) may be

easily proved.
Lemma 4.1: P(y(·))

x (A) is for each A ∈ N ∗ × L a
B×N Y -measurable function with respect to the arguments
(x, y(·)), where N Y is the σ-algebra generated by the cylin-
ders in FY .

Next, we define

Px,y(A) = EyP(y(·))
x (A) (25)

where Ey is the expectation calculated with probability Py ,
which corresponds to the process y(t), and EyP

(y(·))
x (A)

makes sense since P(y(·))
x (A) is (B×N Y )-measurable with

respect to the arguments (x, y(·)) on account of lemma 4.1.
Therefore, also Px,y(A) is (B×Y )-measurable with respect
to (x, y).

Since Px,y(A) defines by virtue of (25) a probability
measure on the cylindrical sets generated by the values of
(z(t), y(t)), with z(t) = x(t, yk) whenever y(t) = yk for
ζk ≤ t < ζk+1, therefore by standard arguments it can be
uniquely extended to a probability measure on (N ∗ × L),
i.e. a probability measure for the process (z(t), y(t)). It
can be shown that the process (z(t), y(t)) has a transition
probability

P{(z(t + s), y(t + s)) ∈ B × C |z(t), y(t)}
= Ey(t)P

(y(·))
z(t) {Cs(B)} (26)

This can be accomplished by checking that (26) satisfies the
Chapman-Kolmogorov equation.

2) Characteristic operator of the process (z(t), y(t)): We
restrict here to the case of compact phase space X and finite
set Y . Let DU,(z,y) be the set of bounded Borel functions
V (z, y), (z, y) ∈ X × Y , such that the limit

UV (z, y) = lim
n→∞

Ez,yV (z(τn), y(τn))− V (z, y)
Ez,yτn

(27)

exists where τn is the instant of the first exit from Un, {Un}
being an arbitrary sequence of neighborhoods of the point
(z, y), Un ↓ (z, y). The quantity UV (z, y) is the value on
the function f at (z, y). The set DU =

⋂
(z,y)∈X×Y DU,(z,y)

is the domain of definition of the operator U and for f ∈ DU

the function DUV (z, y) is defined by (27). On the other hand,
let DA be the set of bounded Borel functions such that the
limit

AV (z, y) = lim
h↓0

Ez,yV (z(h), y(h))− V (z, y)
h

(28)

It can be shown that DA ⊂ DU and A = U on DA.
Moreover, U and A are the characteristic operator and, re-
spectively, the generating operator of the process (z(t), y(t))
([3]).

By definition τn is the instant of the first exit from Un,
{Un} being an arbitrary sequence of neighborhoods of the
point (z, y), Un ↓ (z, y) and note that in our setting Un =
U ′

n×{y}, U ′
n being a neighborhood of x in X and {y} the

singleton in Y containing y. Therefore, τn = min{τn
′, τ},

where τn
′ is the exit moment of the process z(t) from the

neighborhood U ′
n × Y and τ is the moment of first exit of

y(t) out of the point y(0). We are going to calculate the
value of the characteristic operator UV (z, y) of the process
(z(t), y(t)) for all bounded and at least twice continuously
differentiable functions V (z, y) (in [4] only the value of the
generating operator of (z(t), y(t)) has been calculated).

Lemma 4.2: If the limits

∂Pz,y(u, w) = lim
ε↓0

1
ε
Pz,y{(z(τ), y(τ))

= (u, w), τ < ε}, (u, w) 6= (z, y),

∂Pz,y(z, y) = lim
ε↓0

1
ε
[Pz,y{(z(τ), y(τ))

= (z, y), τ < ε} − 1] (29)

exist finite for all u, w ∈ Y ,

UV (z, y) = AyV (z, y) +
∑

u,w∈Y V (u, w)∂Pz,y(u, w).
In the case of (1)

AyV (z, y) =
∂V

∂z
(z, y)(Az + f(z, r) (30)

with y = (r, q).
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