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Abstract— In this paper, stable adaptive neural network (NN)
control, a combination of weighted one-step-ahead control and
adaptive NN is developed for a class of multi-input-multi-
output (MIMO) nonaffine nonlinear discrete-time systems. The
weighted one-step-ahead control is designed to stabilize the
nominal linear system, while the adaptive NN compensator
is introduced to deal with the nonlinearities. Under the as-
sumption that the inverse control gain matrix has an either
positive definite or negative definite symmetric part, the obstacle
in NN weights tuning for the MIMO systems is transformed
to unknown control direction problem for single-input-single-
output (SISO) system. Discrete Nussbaum gain is introduced
into the NN weights adaptation law to overcome the unknown
control direction problem. It is proved that all signals of
the closed-loop system are bounded, while the tracking error
converges to a compact set. Simulation result illustrates the
effectiveness of the proposed control.

I. INTRODUCTION

In the last decades, adaptive NN control of nonlinear
systems has received an increasing attention. Many excellent
adaptive NN control approaches have been proposed for
discrete-time nonlinear systems [1], [2], [3], [4], [5], [6],
and references therein. In [1], a multi-layer NN was used in
control of a class of unknown feedback-linearizable discrete-
time system, where backpropagation learning algorithm has
been adopted to update NN weights and efficient off-line
training was required. In [2], NN control was studied for a
class of discrete-time nonlinear systems with relative degree
of one. The controller singularity problem was excellently
solved but not avoided completely. For a class of discrete-
time systems in strict feedback form, an effective back-
stepping design method was proposed in [3]. For nonaffine
systems in nonlinear auto regressive moving average with
eXogenous inputs (NARMAX) form, an NN based control
method was given in [4], but the stability analysis of the
closed-loop system was not given. Based on implicit function
theorem, NNs were used to emulate the “inverse controls” in
[5] where persistent excitation (PE) condition is needed to
guarantee the stability. The implicit function based adaptive
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NN control has been further developed in [6] where the
requirement of PE condition is removed.

The above mentioned results are limited to SISO nonlinear
discrete-time systems. For MIMO nonlinear discrete-time
systems, the control problem becomes very difficult due
to the difficulty in handling the coupling between different
inputs, and only a few results are available. In [7], multi-
layer NN was used to control a special class of MIMO
affine nonlinear discrete-time systems. Direct adaptive neural
network control was presented in [8] for a class of MIMO
NARMAX systems in affine form. In [9], multivariable
neuro-adaptive variable structure control was developed for a
very special class of MIMO nonlinear discrete-time systems,
in which the output signals were not included in the nonlinear
terms. For a class of MIMO nonlinear discrete-time systems
in strict feedback form, state and output feedback adaptive
NN controls were investigated in [10] and [11], respectively,
via backstepping design method. All the above methods
are designed for the nonlinear systems that are of affine
appearance of control inputs. For MIMO nonaffine nonlinear
discrete-time systems, an inverse NN control method was
designed in [12]. Since MIMO nonaffine nonlinear systems
represent a more general class of nonlinear systems, different
control approaches may also be pursued.

In this paper, we investigate MIMO nonaffine nonlinear
discrete-time systems described by NARMA model. Inspired
by the add-on control strategy of SISO nonlinear systems in
[13], add-on adaptive NN control was proposed for MIMO
nonaffine nonlinear discrete-time systems, where a linear
control was designed for the nominal linear system and an
adaptive NN term was employed to deal with nonlinearities.
As stated in [13], linear model can often catch dominant
dynamics of a nonlinear plant around its operating point and
provide good basis for control design. The nominal linear
model of systems are usually used in the control design
[13], [14]. The main contributions of this paper are listed
as follows:

(i) Combining weighted one-step-ahead control and adap-
tive NN, stable adaptive NN control is proposed for a
class of MIMO nonlinear discrete-time systems.

(ii) By introducing discrete Nussbaum gain into the NN
weight update law, the assumption on the control gain
matrix in previous work is relaxed. At the same time, all
signals of the closed-loop system are guaranteed to be
bounded, while the tracking error is made to converge
to a compact set.
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II. SYSTEM DESCRIPTION AND PRELIMINARIES

A. System Dynamics

Consider the following n-input and n-output nonaffine
nonlinear discrete-time system, which can be described by
the NARMA (nonlinear auto regressive moving average)
model as follows

y(k+1)=Ψ(y(k), · · · , y(k−ns+1), u(k), · · · , u(k−m)) (1)

where u(k) = [u1(k), · · · , un(k)]T ∈ Rn and y(k) =
[y1(k), · · · , yn(k)]T ∈ Rn are the system input and output,
respectively, Ψ(·) = [ψ1(·), · · · , ψn(·)]T ∈ Rn is a vector-
valued smooth nonlinear function, ns and m are the lengths
of system outputs and inputs, respectively.

The control objective is to design a control input u(k),
such that the system output y(k) follows a known and
bounded trajectory r(k) = [r1(k), · · · , rn(k)]T ∈ Rn, while
all signals in the closed-loop system remain bounded.

Assumption 2.1: The reference trajectory r(k) ∈ Ωr ⊂
Rn,∀k ≥ 0 is bounded and known.

Assumption 2.2: [15] The control gain matrix G (k) :=
∂Ψ(·)
∂u(k) , ∀k ≥ 0, is a full rank matrix, and its inverse G−1(k)
has an either positive definite or negative definite symmetric
part, i.e., GIS(k) = G−1(k)+G−T (k)

2 is either positive definite
or negative definite, with G−T (k) being the transpose of
G−1(k). In addition, the eigenvalues of GIS(k) is assumed
to be bounded.

Remark 2.1: It should be pointed that matrices G (k) and
G−1(k) are general real matrices and they are not required
to be symmetric. According to the definition of GIS(k),
given a vector e(k) ∈ Rn, we have eT (k)G−1(k)e(k) =
eT (k)GIS(k)e(k). When it is known that GIS(k) is posi-
tive or negative definite, the control design could be great
simplified.

Remark 2.2: Assumption 2.2 is quite looser than Assump-
tion 4 in [8], which requires the existence of an orthogonal
matrix multiplying the control gain matrix to guarantee the
eigenvalues of the product matrix are all positive. It is hard
to construct such an orthogonal matrix, especially when the
control gain matrix is totally unknown.

A large class of systems (1) can be described by a nominal
linear model as follows

y(k + 1) =−Ā(z−1)y(k) +B(z−1)u(k) (2)

where Ā(z−1) and B(z−1) are polynomial matrices in terms
of the unit back shift operator z−1 with Ā(z−1) being
diagonal. For convenience of analysis, denote A(z−1) :=
I + z−1Ā(z−1), where I is an identity matrix. The matrices
A(z−1) and B(z−1) can be expressed in the following format

A(z−1) = I +A1z
−1 + · · ·+Anaz

−na

B(z−1) =B0 +B1z
−1 + · · ·+Bnbz

−nb

where na ≤ (ns + 1) and nb ≤ m are orders of A(z−1) and
B(z−1) are na and nb, respectively. The modeling error is

∆f (y(k), · · · , y(k − ns + 1), u(k), · · · , u(k −m))
=Ψ(·)+Ā(z−1)y(k)−B(z−1)u(k):=∆f (ȳk, ūk−1, u(k)) (3)

where is a vector-valued unknown nonlinear function with
∆f (ȳk, ūk−1, u(k)) = [δf1(·), · · · , δfn(·)] ∈ Rn, ȳk =
[yT (k), · · · , yT (k − ns + 1)]T , and ūk−1 = [uT (k −
1), · · · , uT (k−m)]T . Using above notations, the system (1)
can be re-written into the following form

A(z−1)y(k + 1) = B(z−1)u(k) + ∆f (ȳk, ūk−1, u(k)) (4)

Assumption 2.3: The polynomial matrix B(z−1) is invert-
ible.

In this paper, our control is designed based on (4) which
is equivalent to the nonlinear system (1). It is assumed that
matrix A(z−1) and B(z−1) are known, but the modeling
error (3) is unknown. To deal with the effect of the modeling
error, an add on control with high order neural network is
introduced to deal with nonlinearity in (3), and the discrete
Nussbaum gain is employed in the NN adaptation law. To
proceed, some preliminaries are given in the next section
before control design.

B. Discrete Nussbaum Gain

From Assumption 2.2, we do not know whether GIS(k) is
positive definite or negative definite. It makes the control
problem much more difficult since we cannot decide the
direction along which the control operates. The following
discrete Nussbaum gain is utilized in this paper to deal with
this problem.

Definition 2.1: [16] Consider discrete nonlinear function
N(x(k)) ∈ R defined on the sequence x(k) ∈ R with
xs(k) := supσ≤k{x(σ)}. Define SN (x(k)) ∈ R as

SN (x(k)) =
∑k
δ=0N(x(δ))∆x(δ) (5)

with ∆x(k) = x(k + 1) − x(k). Function N(x(k)) is
a discrete Nussbaum gain if and only if it satisfies the
following two properties:
(i) If xs(k) increases without bound, then

supxs(k)≥c0
1

xs(k)SN (x(k)) = +∞
infxs(k)≥c0

1
xs(k)SN (x(k)) = −∞

(ii) If xs(k) ≤ c1, then |SN (x(k))| ≤ c2 with some positive
constants c1 and c2.

The discrete Nussbaum gain was first proposed in [17].
It is defined as follows. Let {x(k)} be a discrete sequence
with x(0) = 0, x(k) ≥ 0,∀k > 0 and

|∆x(k)| := |x(k + 1)− x(k)| ≤ c0 (6)

where c0 is a positive constant. Then, the discrete Nussbaum
gain is defined on the sequence x(k) as

N(x(k)) := xs(k)sN (x(k)) (7)

where sN (x(k)) is defined in the following manner. Let
sN (x(0)) = +1. At k = k1, there are two cases:
(i) If sN (x(k1)) = +1, then

sN (x(k1 + 1)) =

{
−1, SN (x(k1)) > x

3
2
s (k1)

+1, otherwise
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(ii) If sN (x(k1)) = −1, then

sN (x(k1 + 1)) =

{
+1, SN (x(k1)) < −x

3
2
s (k1)

−1, otherwise

where ±x
3
2
s (k) defines a pair of switching curves.

Lemma 2.1: [18] Let V (k), ∀k ≥ 0, be a positive definite
function, N(x(k)) be a discrete Nussbaum gain, and θ be a
nonzero constant. If the following inequality holds:

V (k)≤
∑

k
σ=k1(c1+θN(x(σ)))∆x(σ)+c2x(k)+c3; ∀k (8)

where c1, c2 and c3 are some constants, k1 is a positive
integer, then V (k) and x(k) must be bounded, ∀k.

Lemma 2.2: [16] Consider discrete Nussbaum gain
N(x(k)) defined in (7), and the discrete sequence
{x(k)}, x(0) = 0, x(k) ≥ 0,∀k > 0, which satisfies (6).
Given an arbitrary bounded function g(k) : R → R, which
takes values in the unknown closed intervals [g, ḡ], then
N ′(x(k)) = g(k)N(x(k)) is still a discrete Nussbaum gain.

III. ADAPTIVE NN CONTROL OF MIMO SYSTEMS

A. Stable Adaptive NN Control

Considering the nominal linear system (2), weighted one-
step-ahead control with decoupling design can be developed
for (2). To design the control, the following cost function is
introduced:

J=‖P (z−1)y(k+1)−R(z−1)r(k+1)+Q(z−1)ū(k)‖2 (9)

where P (z−1), R(z−1) and Q(z−1) are all n × n diagonal
weighting polynomial matrices, and ū(k) ∈ Rn is an
auxiliary input, which will be defined later. Considering that
P (z−1) and A(z−1) are diagonal and the nominal linear
system in (4) is of relative degree one, we have the following
Diophantine equation

P (z−1) = FA(z−1) + z−1G(z−1) (10)

where F is diagonal constant matrix and G(z−1) is diagonal
polynomial matrix which is of order ng = max{na−1, np−
1}.

Assumption 3.1: The choice of P (z−1) satisfies that the
constant matrix F is a full rank matrix.

The optimal control that minimizes (9) is

G(z−1)y(k)+FB(z−1)u(k)=R(z−1)r(k+1)−Q(z−1)ū(k) (11)

Denote H(z−1) = FB(z−1), and let

u(k) = adj{H(z−1)}ū(k) (12)

where adj{H(z−1)} denotes the adjoint matrix of H(z−1).
Substituting (12) into (11), and using the fact that
H(z−1)adj{H(z−1)} = adj{H(z−1)}H(z−1) = det{H(z−1)}I ,
we can present the weighted one-step-ahead control with
decoupling design as the following form

[det{H(z−1)}I+Q(z−1)]ū(k)=R(z−1)r(k+1)−G(z−1)y(k) (13)

where det{H(z−1)} is the determinant of matrix H(z−1).

To deal with the modeling error, an additional control v(k)
can be introduced into (13)such that the overall control is
given as (4) can be given as

[det{H(z−1)}I+Q(z−1)]ū(k)=R(z−1)r(k+1)−G(z−1)y(k)
+[det{H(z−1)}I+Q(z−1)](adj{H(z−1)})−1v(k) (14)

where v(k) will be designed later in (21). Left-multiplying
(4) by [det{H(z−1)}I + Q(z−1)]F , and considering (12)
and (14), we can obtain the closed-loop dynamics of the
nonlinear system as follows

[det{H(z−1)}P(z−1)+Q(z−1)FA(z−1)]y(k+1)
=det{H(z−1)}R(z−1)r(k+1)
+[det{H(z−1)}I+Q(z−1)]F∆F (ȳk, ūk−1, r̄k+1,v(k)) (15)

where

∆F (ȳk, ūk−1, r̄k+1, v(k))
= B(z−1)v(k) +F∆f (ȳk, ūk−1, u(k))
=B(z−1)v(k)+F∆f(ȳk, ūk−1,v(k)+adj{H(z−1)} ×

[det{H(z−1)}I+Q(z−1)]−1[R(z−1)r(k+1)−G(z−1)y(k)]) (16)

with r̄k+1 = [rT (k+1), · · · , rT (k+1−nr)]T , and nr being
the order of the polynomial matrix R(z−1). If the weighting
matrices P (z−1), Q(z−1) and R(z−1) are chosen as

det{det{H(z−1)}P(z−1)+Q(z−1)FA(z−1)}6=0, |z|≥1 (17)
det{H(1)}P (1)+Q(1)FA(1)=det{H(1)}R(1) (18)

and if the additional control term v(k) is designed such that
the last term of the right hand side of (15) is zero, then
the nonlinear effects can be canceled, while the closed-loop
system is stable and the system output tracks the desired
trajectory.

In the following, we will first investigate the existence of
v∗(k), which assures that ∆F (ȳk, ūk−1, r̄k+1, v

∗(k)) = 0.
From (16), it can be seen that ∂∆F (·)

∂v(k) = B0 + ∂∆f (·)
∂u(k)

∂u(k)
∂v(k) .

Left-multiplying (14) by det{H(z−1)}, and considering
(12), we obtain

[det{H(z−1)}I+Q(z−1)]H(z−1)u(k)=R(z−1)r(k+1)
−G(z−1)y(k)+[det{H(z−1)}I+Q(z−1)]H(z−1)v(k) (19)

which implies that ∂u(k)
∂v(k) = I . Therefore, it can be obtained

that ∂∆F (·)
∂v(k) = B0+ ∂∆f (·)

∂u(k) = ∂Ψ(·)
∂u(k) . From Assumption 2.2,

we know that ∂∆F (·)
∂v(k) is a full rank matrix, which im-

plies ∂∆F (·)
∂v(k) 6= 0. According to implicit function theorem,

there exists an ideal smooth and unique v∗(k) such that
∆F (ȳk, ūk−1, r̄k+1, v

∗(k)) = 0. Consider using HONN to
approximate v∗(k) as follows

v∗(k) = W ∗TS(z̄(k)) + εz, W
∗∈Rl×n

S(z̄(k)) = [s1(z̄(k)), s2(z̄(k)), ..., sl(z̄(k))]T∈Rl
si(z̄(k)) =

∏
j∈Ii [s(zj(k))]µj(i), i = 1, 2, ..., l

z̄(k) = [z1, z2, · · · , zq]T
= [rT(k+1), · · · , rT(k+1−nr), yT(k), · · · ,
yT(k−ns+1), uT(k−1),· · ·, uT(k−m)]T∈Ωz̄⊂Rq

(20)
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where positive integer l denotes the neural network node
number, εz = [εz1, · · · , εzn]T ∈ Rn is the bounded NN
approximation error vector satisfying ‖εz‖ ≤ ε0 on the
compact set, {I1, I2,...,Il} is a collection of l not-ordered
subsets of {1, 2, ..., q} and µj(i) are non-negative integers,
s(zj) is chosen as hyperbolic tangent function s(zj) =
(ezj − e−zj )/(ezj + e−zj ), and q = n(nr + ns + m + 1)
with nr being the order of polynomial matrix R(z−1). Then
the adaptive NN control term v(k) can be constructed as

v(k) = ŴT (k)S(z̄(k)) (21)

where Ŵ (k) ∈ Rl×n. For convenience of analysis, denote
e(k + 1) := ∆F (ȳk, ūk−1, r̄k+1, v(k)), where e(k) is used
to update the neural network weights. From Assumption 2.2,
it is unknown whether the control gain matrix is positive
definite or negative definite , thus the discrete Nussbaum
gain is introduced into the NN weights adaptation law as
follows:

Ŵ (k)=Ŵ(k−1)−γN(x(k))S(z̄(k−1))a(k)eT(k)/D(k) (22)
∆x(k)=x(k+1)−x(k)=a(k)eT (k)e(k)/D(k), x(0)=0 (23)
D(k)=(1+|N(x(k))|2)(1+‖S(z̄(k−1))‖2+eT (k)e(k)) (24)

a(k)=

{
1, if γ‖e(k)‖

(1+|N(x(k))|) > λ

0, otherwise
(25)

where γ > 0 and λ > 0 can be any positive constants. They
can be regarded as the tuning rate and the threshold value
of dead zone.

It should be noted that at the k-th step, e(k) can be
calculated from the following procedure. Define an extended
tracking error ε(k) as

ε(k)=[det{H(z−1)}P(z−1)+Q(z−1)FA(z−1)]y(k)
−det{H(z−1)}R(z−1)r(k) (26)

Considering (15) and (26), we have

e(k) = F−1[det{H(z−1)}I +Q(z−1)]−1ε(k) (27)

B. Stability Analysis

First, let us consider the boundedness of e(k), Ŵ (k),
N(x(k)), x(k) and v(k) with NN weights adaptation law
(22)-(25).

Theorem 3.1: Consider the adaptive neural network con-
trol (21) and the corresponding neural network weights
adaptation law (22)-(25). Under Assumption 2.2, the sig-
nal e(k), the neural network weights Ŵ (k), and the dis-
crete Nussbaum gain N(x(k)) and x(k) are all uniformly
bounded, and e(k) satisfies limk→∞ ‖e(k)‖ < Cλ/γ, with
C = limk→∞(1 + |N(x(k))|).

Proof: Using mean value theorem and considering (20)
and (21), we have

e(k+1)=∆F (ȳk, ūk−1, r̄k+1, v(k))
=∆F (ȳk, ūk−1, r̄k+1, v

∗(k))+∂∆F

∂v

∣∣∣
vξ(k)

[v(k)−v∗(k)]

= Gξ(k)[W̃T (k)S(z̄(k))− εz]
(28)

where W̃ (k) = Ŵ (k)−W ∗, Gξ(k) = ∂∆F

∂v

∣∣∣
vξ(k)

, vξ(k) is a

point of L(v(k), v∗(k)), and L(v(k), v∗(k)) denotes the line
segment joining two points v(k) and v∗(k), i.e.,

L(v(k), v∗(k)) = {ξ | ξ = θv(k)+(1−θ)v∗(k), 0 ≤ θ ≤ 1}

From (28), it can be obtained that

W̃T (k − 1)S(z̄(k − 1)) = G−1
ξ (k − 1)e(k) + εz (29)

Choose the Lyapunov candidate as follows:

V (k) = tr{W̃T (k − 1)W̃ (k − 1)} (30)

The difference of V (k) along (29) is

∆V (k) = V (k + 1)− V (k)
= tr{W̃T (k)W̃ (k)− W̃T (k − 1)W̃ (k − 1)}
= tr{[W̃ (k)− W̃ (k − 1)]T [W̃ (k)− W̃ (k − 1)]

+ 2W̃T (k − 1)[W̃ (k)− W̃ (k − 1)]}
= a(k)γ2N2(x(k))S

T (z̄(k−1))S(z̄(k−1))eT (k)e(k)
D2(k)

− tr{2a(k)γN(x(k)) W̃
T (k−1)S(z̄(k−1))eT (k)

D(k) }
= a(k)γ2N2(x(k))S

T (z̄(k−1))S(z̄(k−1))eT (k)e(k)
D2(k)

− 2a(k)γN(x(k)) e
T (k)W̃T (k−1)S(z̄(k−1)

D(k)

= a(k)γ2N2(x(k))S
T (z̄(k−1))S(z̄(k−1))eT (k)e(k)

D2(k)

−2a(k)γN(x(k))
eT(k)G−1

ξ
(k−1)e(k)

D(k) −2a(k)γN(x(k))e
T(k)εz
D(k)

(31)

According to Assumption 2.2, there always exist two positive
constants g and ḡ such that

gI≤G−1
ξ (k)+G−Tξ (k)≤ḡI or −ḡI≤G−1

ξ (k)+G−Tξ (k)≤−gI

where I is the identity matrix. This implies that there always
exists a scalar sequence g(k) satisfying g/2 ≤ |g(k)| ≤ ḡ/2
such that

eT (k)G−1
ξ (k−1)e(k)=eT (k)

G−1
ξ

(k−1)+G−T
ξ

(k−1)

2 e(k)
= g(k)eT (k)e(k)

(32)

Substituting (32) into (31), we obtain

∆V (k)=a(k)γ2N2(x(k))S
T(z̄(k−1))S(z̄(k−1))eT(k)e(k)

D2(k)

−2g(k)N(x(k))γa(k)eT (k)e(k)
D(k) −2a(k)γN(x(k))eT (k)εz

D(k)

(33)

From (25), we know that a(k)‖εz‖ ≤ a(k) γ‖e(k)‖
(1+|N(x(k))|)λε0,

which implies that

|a(k)N(x(k))eT (k)εz| ≤ a(k)
γε0
λ
eT (k)e(k) (34)

Considering (34) and using the fact that N2(x(k))ST (z̄(k−
1))S(z̄(k − 1)) ≤ D(k), we have

∆V (k)≤%0
a(k)eT (k)e(k)

D(k) −2N ′(x(k))a(k)eT (k)e(k)
D(k)

(35)

where %0 = γ2(1 + 2ε0
λ ) and N ′(x(k)) = γg(k)N(x(k)).

Since γ > 0 and 0 < g/2 ≤ |g(k)| ≤ ḡ/2, N ′(x(k))
is still a discrete Nussbaum gain according to Lemma 2.2.
Considering (23) and (35), we have

∆V (k) ≤ %0∆x(k)− 2N ′(x(k))∆x(k) (36)
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Applying Lemma 2.1 and 2.2 to (36), the boundedness
of V (k), N(x(k)) and x(k) can be concluded. It further
implies the boundedness of Ŵ (k). Define a time interval
Z1 = {k|a(k) = 1} and suppose Z1 is an infinite set. Then,
from the boundedness of nondecreasing sequence x(k), we
have

lim
k→∞,k∈Z1

eT (k)e(k)
(1+|N(x(k))|2)(1+‖S(z̄(k−1))‖2+eT (k)e(k))

=0

which leads to limk→∞ ‖e(k)‖ = 0 according to the Key
Technical Lemma [19]. It conflicts with a(k) = 1 on Z1

and therefore we have limk→ a(k) = 0 because Z1 must be
a finite set. Then, we see that N(x(k)) must converge to a
constant and let us denote C = limk→∞(1 + |N(x(k))|).
Consequently, we have limk→∞ ‖e(k)‖ < Cλ/γ. This
completes the proof.

Next, let us analyze the stability of the closed-loop system.
Theorem 3.2: Consider the process (4), the add-on control

(14) with (12), and the adaptive NN control (21) with weights
adaptation law satisfies (22)-(25). Under Assumptions 2.1,
2.2, 2.3, and 3.1, and the parameters in (14) chosen according
to (17) and (18), then all the closed-loop signals are bounded,
and the tracking error satisfies

limk→∞ ‖y(k)− r(k)‖ ≤ %

where % is a positive constant which is adjustable.
Proof: Using the definition of e(k + 1), the closed-loop

dynamics (15) can be written to read

[det{H(z−1)}P(z−1)+Q(z−1)FA(z−1)]y(k)
=det{H(z−1)}R(z−1)r(k)+[det{H(z−1)}I+Q(z−1)]Fe(k)

Considering (17) and the boundedness of r(k), and using
Lemma 3.2 in [19], there exist positive constants C1 and C2

such that

|yi(k)| ≤ C1+C2 max
0≤η≤k,1≤j≤n

|ej(η)|, i = 1, · · · , n (37)

Since the boundedness of e(k),∀k ≥ 0, is guaranteed by
Theorem 3.1, it can be concluded from (37) that y(k) is
bounded, ∀k ≥ 0.

Left-multiplying (14) by FA(z−1), left-multiplying (4) by
G(z−1)F , combining them and using (12), we obtain

[det{H(z−1)}P(z−1)+Q(z−1)FA(z−1)]ū(k)
=FA(z−1)R(z−1)r(k+1)−z−1G(z−1)F∆f(̄yk,ūk−1,u(k))

+FA(z−1)[det{H(z−1)}I+Q(z−1)](adj{H(z−1)})−1v(k) (38)

From the definition of e(k) and (16), we have

∆f (ȳk, ūk−1, u(k))=e(k+1)−B(z−1)v(k) (39)

Left-multiplying det{H(z−1)} on both sides of (38), substi-
tuting (39) into (38), considering the equation (12) and using
the fact that det{H(z−1)}I=H(z−1)adj{H(z−1)}, we obtain

[det{H(z−1)}P(z−1)+Q(z−1)FA(z−1)]H(z−1)u(k)
=det{H(z−1)}FA(z−1)R(z−1)r(k+1)−det{H(z−1)}G(z−1)e(k)
+[det{H(z−1)}P(z−1)+Q(z−1)FA(z−1)]H(z−1)v(k) (40)

From the properties of matrix determinant, we know that

det{[det{H(z−1)}P(z−1)+Q(z−1)FA(z−1)]H(z−1)}
=det{det{H(z−1)}P(z−1)+Q(z−1)FA(z−1)} det{H(z−1)}
=det{det{H(z−1)}P(z−1)+Q(z−1)FA(z−1)} det{F} det{B(z−1)}

From Assumption 2.3, we know that det{B(z−1)} = c 6= 0,
where c is an arbitrary constant. Therefor, from Assumption
3.1, (17) and above equation, we have

det{[det{H(z−1)}P(z−1)+Q(z−1)FA(z−1)]H(z−1)}6=0, |z|≥1 (41)

Considering (41) and the boundedness of r(k), there exist
positive constants C3, C4 and C5 such that

|ui(k)|≤C3+{C4 max
0≤η≤k,1≤j≤n

|ej(η)|

+C5 max
0≤η≤k,1≤j≤n

|vj(η)|}, i = 1, · · · , n (42)

From Theorem 3.1, we know e(k) and Ŵ (k) are bounded,
thus v(k) is bounded from the boundedness of Ŵ (k). As
a consequence, the boundedness of u(k) can be concluded
from (42). Therefore, it can be concluded that all signals of
the closed-loop system are bounded.

From (37), the extended tracking error is

lim
k→∞

sup‖ε(k)‖ =‖[det{H(1)}+Q(1)]F‖· lim
k→∞

sup‖e(k)‖≤%1 (43)

where %1 = ‖[det{H(1)} + Q(1)]F‖ · Cλ/γ, λ and γ
are adjustable design parameters. According to (18) and the
definition of ε(k) in (26), (43) implies that limk→∞ ‖y(k)−
r(k)‖ ≤ % with % = %1/‖ det{H(1)}R(1)‖.

IV. SIMULATION

To illustrate the effectiveness of the proposed control, we
apply it to the following MIMO nonlinear system.

y1(k+1)=0.9y1(k)−0.3y1(k−1)/[1+y2
2(k−1)]+0.7u1(k)

+0.1y2
1(k−1)y2

2(k)+0.3 sin(u1(k−1))−0.7u2(k)+0.6u2(k−1)
y2(k+1)=−0.1y2(k−1)+0.3y1(k−1)y2(k)+0.8 sin(u1(k))

+0.1u1(k−1)+0.9u2(k)+0.2u2(k−1)+0.1u2
2(k−1)

The control objective is to make the outputs y1(k) and y2(k)
track the trajectories r1(k) = 0.6sign(cos(πk/200)) + 0.4
and r2(k) = 0.5sign(sin(πk/200)), respectively.

The control gain matrix of the system can be obtained as

G (k) =
[

0.7 −0.7
0.8 cos(u1(k)) 0.9

]
Obviously, G (k) is always positive definite. In addition, it
can be seen that the origin is an equilibrium point of the
system. Around the origin, the linearized model for controller
design can be obtained by Taylor’s expansion, which is
described by

A(z−1) =
[

1− 0.9z−1 + 0.3z−2 0
0 1 + 0.1z−2

]
B(z−1) =

[
0.7 + 0.3z−1 −0.7 + 0.6z−1

0.8 + 0.1z−1 0.9 + 0.2z−1

]
Selecting P (z−1)=I and solving the Diophantine equation
(10), we obtain G(z−1)=diag{0.9−0.3z−1,−0.1z−1} and F=
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I . While matrices Q(z−1)=(1−z−1) · diag{0.6242, 0.2202}
and R(z−1) = I , which satisfy the conditions (17) and (18).
The initial system states are y1(i) = 0, y2(i) = 0, u1(i) =
0, u2(i) = 0, e1(i) = 0, e2(i) = 0, i = −2,−1, 0, and
the initial NN weights are Ŵ (0) = 0 and S(0) = 0. The
number of neurons used is l = 118. The tuning factor and
the threshold value are chosen as γ = 0.8 and λ = 0.0001.
The simulation results are shown in Figs. 1-3. Fig. 1 shows
the outputs track their desired trajectories. The control inputs
u1(k) and u2(k) are shown as solid lines in Fig. 2, while the
norm of the NN weights, ‖Ŵ (k)‖, the discrete Nussbaum
gain N(x(k)) and its argument x(k) are demonstrated in
Fig. 3. From Figs. 1-3, it can be seen that the system outputs
can track their desired trajectories well under the proposed
control, while Ŵ (k), N(x(k)) and x(k) are all bounded.

For comparison, the results obtained by only using the
weighted one-step-ahead control are displayed as dash-dotted
lines in Figs. 1 and 2. Obviously, the system outputs can not
track their desired trajectories under the weighted one-step-
ahead control without NNs. Therefore, it can be concluded
that the tracking performance is greatly improved by using
add-on adaptive NN.

V. CONCLUSION

In this paper, stable adaptive NN control has been de-
veloped for a class of MIMO nonaffine nonlinear discrete-
time systems. Based on the nominal linear model of the
system, weighted one-step-ahead control has been designed.
Then, adaptive NN control term has been introduced to
deal with the nonlinearities. All the closed-loop signals are
guaranteed to be bounded, and the tracking errors are made
to converge to a compact set. Simulation result has shown
the effectiveness of the proposed control.
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[10] S. S. Ge, J. Zhang, and T. H. Lee, “Adaptive neural networks control
for a class of MIMO nonlinear systems with disturbances in discrete-
time,” IEEE Transactions on System, Man and Cybernetics, Part B:
Cybernetics, vol. 34, no. 4, pp. 1630–1645, 2004.

[11] J. Zhang, S. S. Ge, and T. H. Lee, “Output feedback control of a
class of discrete MIMO nonlinear systems with triangular form inputs,”
IEEE Transactions on Neural Networks, vol. 16, no. 6, pp. 1491–1503,
2005.

[12] H. Deng and H. X. Li, “A novel neural approximate inverse control for
unknown nonlinear discrete dynamical systems,” IEEE Transactions
on Systems, Man and Cybernetics, Part B: Cybernetics, vol. 35, no. 1,
pp. 115–123, 2005.

[13] Q. M. Zhu and L. Z. Guo, “Stable adaptive neurocontrol for nonlin-
ear discrete-time systems,” IEEE Transactions on Neural Networks,
vol. 15, no. 3, pp. 653–662, 2004.

[14] N. Hovakimyan, B. J. Yang, and A. J. Calise, “Adaptive output feed-
back control methodology applicable to non-minimum phase nonlinear
systems,” Automatica, vol. 42, no. 4, pp. 513–522, 2006.

[15] L. F. Zhai, C. G. Yang, S. S. Ge, T. Y. Chai, and T. H. Lee, “Direct
adaptive NN control of MIMO nonlinear discrete-time systems using
discrete nussbaum gain,” Proceedings of 17th IFAC World Congress,
pp. 6508–6512, July 6-11, 2008.

[16] C. G. Yang, S. S. Ge, C. Xiang, T. Y. Chai, and T. H. Lee, “Output
feedback NN control for two classes of discrete-time systems with
unknown control directions in a unified approach,” to appear in IEEE
Transactions on Neural Network, 2008.

[17] T. H. Lee and K. Narendra, “Stable discrete adaptive control with
unknown high-frequency gain,” IEEE Transactions on Automatic Con-
trol, vol. 31, no. 5, pp. 477–479, 1986.

[18] S. S. Ge, C. G. Yang, and T. H. Lee, “Adaptive Robust Control
of a Class of Nonlinear Strict-feedback Discrete-time Systems with
Unknown Control Directions,” appear online in Systems & Control
Letters, no. doi:10.1016/j.sysconle.2008.04.006, 2008.

[19] G. C. Goodwin, P. J. Ramadge, and P. E. Caines, “Discrete-time mul-
tivariable adaptive control,” IEEE Transactions on Automatic Control,
vol. AC-25, no. 3, pp. 449–456, 1980.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeC15.3

3651


