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Abstract— Exponential stability analysis and L2-gain anal-
ysis are developed for uncertain distributed parameter sys-
tems. Scalar heat processes and distributed mechanical oscil-
lators, governed by semilinear partial differential equations
of parabolic and, respectively, hyperbolic types, are chosen
for treatment. Sufficient exponential stability conditions with
a given decay rate are derived in the form of Linear Matrix
Inequalities (LMIs) for an uncertain heat conduction equation
and for an uncertain wave equation. These conditions are
then utilized to synthesize H∞ static output-feedback boundary
controllers of the systems in question.
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I. INTRODUCTION

Many important plants, such as flexible manipulators and

heat transfer processes are governed by partial differential

equations and are often described by models with a signif-

icant degree of uncertainties. The existing results [2], [4],

[5], [7] on robust control of distributed parameter systems,

operating under uncertainty conditions, extend the state space

or the frequency domain H∞ approach and are confined to

the linear case. It is thus of interest to develop consistent

methods that are capable of utilizing nonlinear distributed

parameter models and of providing the desired system per-

formance in spite of significant model uncertainties. The

LMI approach [3] is definitely among such methods and its

extension to uncertain distributed parameter systems is the

primary concern of the present paper.

In our recent papers [6], [11] we have introduced LMI

approach to the stability analysis of linear heat and wave

equations with the Dirichlet boundary conditions. In the

present paper we extend the LMI approach to the Neumann

boundary control stabilization and H∞ control of uncertain

systems. The paper is organized as follows. Exponential

stability analysis and L2-gain analysis are developed side

by side in Sections 2 and 3 for scalar heat processes and,

respectively, for distributed mechanical oscillators, governed

by semilinear partial differential equations of parabolic and

of hyperbolic types. Sufficient exponential stability condi-

tions with a given decay rate are derived in the form of LMIs

for these systems. Capabilities of the LMI approach are then

tested for designing H∞ static output-feedback boundary

controllers of the systems in question.
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A. Notation and Preliminaries

The notation used throughout is fairly standard. The su-

perscript ‘T ’ stands for matrix transposition, Rn denotes the

n dimensional Euclidean space with the norm | · |, R
n×m is

the set of all n×m real matrices, and the notation P >0, for

P ∈ R
n×n means that P is symmetric and positive definite.

The symmetric elements of the symmetric matrix will be

denoted by ∗.

Functions, continuous in all arguments and, respectively,

continuously differentiable in all arguments, are referred to

as of class C and of class C1.

L2(a, b) is the Hilbert space of square integrable func-

tions z(ξ), ξ ∈ [a, b] with the corresponding norm.

L2(0,∞;L2(0, 1)) is the Hilbert space of square integrable

functions w(·, t) ∈ L2(0,∞) with values w(ξ, ·) ∈ L2(a, b)
and with the corresponding norm.

For later use, we recall the following.

Lemma 1: [12]. Let z ∈ W 1,2([a, b], R) be a scalar

function with z(a) = 0. Then
∫ b

a

z2(ξ)dξ ≤
(b− a)2

2

∫ b

a

(z′(ξ))2dξ. (1)

II. BOUNDARY STABILIZATION OF A SEMILINEAR HEAT

EQUATION

A. Exponential Stability

Consider the heat equation

zt(ξ, t) = ∂
∂ξ

[a(ξ, t, z(ξ, t))zξ(ξ, t)] + r0(ξ, t, z(ξ, t))z(ξ, t)

+r1(ξ, t, z(ξ, t))z(1, t), t ≥ t0, 0 ≤ ξ ≤ 1
(2)

where t0 ∈ R is an initial time instant, a(ξ, t, z) and

ri(ξ, t, z), i = 0, 1 are functions of class C1, which may

be unknown and which satisfy the inequalities

|ri| ≤ βi, a ≥ a1 > 0 (3)

for all (ξ, t, z) ∈ [0, 1] × R2 and for some constants

β0 ≥ 0, β1 ≥ 0, a1 > 0, known a priori. Hereinafter, the

dependence on time t and spatial variable ξ is suppressed

whenever possible and the functions a and ri will be written

without arguments.

Equation (2) describes the nonlinear propagation of heat in

a one-dimensional rod. Due to the presence of the boundary-

value term z(1, t) in the state equation, the above model

particularly captures significant features of thermal instability

in solid propellant rockets [1].

Let the above equation be coupled to the mixed boundary

condition

z(0, t) = 0, zξ(1, t) = −kz(1, t), t ≥ t0 (4)

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

TuB07.4

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 853



with a parameter k ≥ 0 and to the initial condition

z(ξ, t0) = φ(ξ) ∈ L2(0, 1). (5)

Since the nonlinear terms in (2) locally meet the Lipshitz

condition, a unique strong solution of the boundary-value

problem (2)–(5) turns out to locally exist [9]. Throughout,

only strong solutions are under study.

It is well-known [1] that the linear system (2), (4) with

k = 0 and with constant coefficients r0 = 0, a = 1 and

r1 > 2 is unstable. We are looking for exponential stability

conditions for uncertain nonlinear system (2), (4) with k ≥ 0.

Consider the following Lyapunov-Krasovskii functional

V (z(·, t)) =
∫ 1

0
z2(ξ, t)dξ. (6)

We aim to find conditions guaranteeing that along the solu-

tions z(ξ, t) of (2), (4) the inequality

d

dt
V (z(·, t)) + 2δV (z(·, t)) ≤ 0 (7)

holds. Then by the comparison principle argument (Khalil,

1992), it would follow
∫ 1

0
z2(ξ, t)dξ = V (z(·, t)) ≤ V (z(·, t0))e

−2δ(t−t0)

= e−2δ(t−t0)
∫ 1

0
φ2(ξ)dξ.

Therefore, solutions of the boundary value problem (2), (4)

would be globally continuable to the right and would satisfy

the inequality
∫ 1

0
z2(ξ, t)dξ ≤ e−2δ(t−t0)

∫ 1

0
φ2(ξ)dξ, ∀t ≥ t0. (8)

The heat process (2), (4) would thus be exponentially stable

in L2(0, 1) with the decay rate δ.

Differentiating V along (2), integrating by parts and taking

into account (4), we find that

d
dt
V + 2δV = 2

∫ 1

0
z(ξ, t)zt(ξ, t)dξ + 2δ

∫ 1

0
z2(ξ, t)dξ

= 2
∫ 1

0
z(ξ, t)[ ∂

∂ξ
[azξ(ξ, t)] + r0z(ξ, t) + r1z(1, t)]dξ

+2δ
∫ 1

0
z2(ξ, t)dξ = −2kaz2(1, t) − 2

∫ 1

0
az2
ξ (ξ, t)dξ

+2
∫ 1

0
(δ + r0)z

2(ξ, t)dξ + 2r1
∫ 1

0
z(ξ, t)z(1, t)dξ

≤ −2ka1z
2(1, t) − 2

∫ 1

0
a1z

2
ξ (ξ, t)dξ

+2(δ + β0)
∫ 1

0
z2(ξ, t)dξ + 2r1

∫ 1

0
z(ξ, t)z(1, t)dξ.

(9)

Applying inequality (1), we have

−2a1

∫ 1

0

z2
ξdξ ≤ −4a1

∫ 1

0

z2(ξ, t)dξ.

We thus derive that

d

dt
V + 2δV ≤

∫ 1

0

[z(ξ, t) z(1, t)]Ψ[z(ξ, t) z(1, t)]T dξ ≤ 0

provided that the following LMI

Ψ
∆
=

[

−4a1 + 2(δ + β0) r1
r1 −2ka1

]

≤ 0 (10)

is feasible. Since LMI (10) is affine in r1 and r1 ∈ [−β1, β1],
the latter LMI is feasible if the following LMI

[

−4a1 + 2(δ + β0) β1

β1 −2ka1

]

≤ 0 (11)

is feasible.

We note that the condition β0 < 2a1 is necessary for

the feasibility of (11). For β1 = 0 the system (2)–(5) is

exponentially stable for all k ≥ 0 and the resulting δ is

given by

δ = 2a1 − β0. (12)

For β1 > 0 (2)–(5) is exponentially stable with the decay

rate 0 < δ < 2a1 − β0 for large enough k > 0 that can be

found from the inequality

−4a1 + 2(δ + β0) +
β2

1

2ka1
≤ 0. (13)

Summarizing, the following result is concluded.

Theorem 1: Consider the boundary-value problem (2)–(5)

with the assumptions above and with β0 < 2a1. Given

δ ∈ (0, 2a1 − β0], let there exist k such that LMI (11)

is feasible. Then a unique solution of (2)–(5) is globally

continuable to the right and it satisfies (8).

B. H∞ Boundary Control

Let us, along with the homogeneous heat process (2),

consider its perturbed version

zt(ξ, t) = ∂
∂ξ

[azξ(ξ, t)] + r0z(ξ, t) + r1z(1, t) + bw(ξ, t),

t ≥ t0, 0 ≤ ξ ≤ 1
(14)

where w(ξ, t) ∈ L2(0,∞;L2(0, 1)) is an external distur-

bance; b = b(ξ, t, z) is a function of class C1, which is

assumed to be uniformly bounded, i.e., |b(ξ, t, z)| ≤ b1 for

all (ξ, t, z) ∈ [0, 1] ×R2 and some b1 > 0.

While internally stabilizing the heat process, the in-

fluence of the admissible external disturbance w(ξ, t) ∈
L2(0,∞;L2(0, 1)) on the controlled output

z̄(ξ, t) = [α(ξ, t, z(ξ, t))z(ξ, t) d(t, z(1, t))u(t)]T ,
(15)

is to be attenuated through the actuation at the right-hand

end

z(0, t) = 0, zξ(1, t) = u(t), t ≥ t0. (16)

Hereinafter, u(t) is the control input, d and α are continuous

functions, which are uniformly bounded

|α(ξ, t, z)| ≤ α1, |d(t, z)| ≤ d1, (17)

for all (ξ, t, z) ∈ [0, 1] × R2, where α1 ≥ 0 and d1 ≥ 0
are some constants. Collocated sensing y(t) = z(1, t) at the

boundary ξ = 1 is the only available information on the

process.

The following H∞ – control problem is thus under study.

Given γ > 0, it is required to find a linear static output

feedback

u(t) = −kz(1, t), (18)

that exponentially stabilizes the unperturbed process (4), (14)

and leads to a negative performance index

J =

∫ ∞

t0

∫ 1

0

[z̄T (ξ, t)z̄(ξ, t) − γ2w2(ξ, t)]dξdt < 0, (19)
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for all 0 6= w(ξ, t) ∈ L2(0,∞;L2(0, 1)) and for all solutions

of (14), (16), being initialized with zero data z(ξ, t0) = 0
and being globally continuable to the right.

In order to solve the problem we carry out conditions that

guarantee the following:

W (t)
∆
= p

d

dt
V +

∫ 1

0

[z̄T (ξ, t)z̄(ξ, t) − γ2w2(ξ, t)]dξ < 0,

(20)

where p > 0, V is given by (6) and the temporal derivative

is computed along the trajectories of closed-loop system (4),

(14). Then integrating (9) in t from t0 to ∞ and taking into

account that V ≥ 0 and V (0) = 0 would yield (19).

It is worth noticing that

∫ 1

0
z̄T (ξ, t)z̄(ξ, t)dξ =

∫ 1

0
α2z2(ξ, t)dξ + d2k2z2(1, t).

Then similar to the previous section, we obtain

W =
∫ 1

0
[2pz(ξ, t)zt(ξ, t)+z̄

T (ξ, t)z̄(ξ, t)−γ2w2(ξ, t)]dξ

=
∫ 1

0

[

2pz(ξ, t)[ ∂
∂ξ

[azξ(ξ, t)] + r0z(ξ, t) + r1z(1, t)

+bw(ξ, t)] + z̄T (ξ, t)z̄(ξ, t) − γ2w2(ξ, t)
]

dξ

≤ (−2ka1p+ d2
1k

2)z2(1, t) − 2p
∫ 1

0
a1z

2
ξ (ξ, t)dξ

+2β0p
∫ 1

0
z2(ξ, t)dξ +

∫ 1

0

[

2pz(ξ, t)[r1z(1, t)

+bw(ξ, t)] + α2
1z

2(ξ, t) − γ2w2(ξ, t)
]

dξ.

(21)

Furthermore, applying inequality (1) and setting ζT =
[z(ξ, t) z(1, t) w(ξ, t)], we find that

W ≤
∫ 1

0
ζTΨγζdξ < 0

if

Ψγ
∆
=





−4a1p+ 2β0p+ α2
1 r1p bp

∗ −2kap+ d2
1k

2 0
∗ ∗ −γ2





< 0
(22)

is feasible. By Schur complements, the latter inequality holds

if








−4a1p+ 2β0p+ α2
1 r1p bp 0

∗ −2ka1p 0 d1k

∗ ∗ −γ2 0
∗ ∗ ∗ −1









< 0.

(23)

Multiplying (23) by diag{p−1, p−1, 1, 1} from the right

and from the left, we denote q = p−1 and g = p−1k. By

Schur complements formula we arrive at












−4a1q + 2β0q r1 b 0 qα2
1

∗ −2ga1 0 d1g 0
∗ ∗ −γ2 0 0
∗ ∗ ∗ −1 0
∗ ∗ ∗ ∗ −α2

1













< 0.

(24)

LMI (24) is affine in r1 and b and it is therefore feasible

for all r1 ∈ [−β1, β1, b ∈ [−b1, b1] if it is feasible for

r1 = ±β1 and b = ±b1, thereby yielding 4 LMIs. It is easy

to see that these 4 LMIs are equivalent to the following LMI













−4a1q + 2β0q β1 b1 0 qα2
1

∗ −2ga1 0 d1g 0
∗ ∗ −γ2 0 0
∗ ∗ ∗ −1 0
∗ ∗ ∗ ∗ −α2

1













< 0.

(25)

Thus, we proved the following.

Theorem 2: Consider the perturbed input-output system

(14)–(16) with the assumptions above and with β0 < 2a1.

Given γ > 0, let there exist q > 0 and g such that the LMI

(25) is satisfied. Then the static output feedback (18) with

k = q−1g internally exponentially stabilizes the boundary-

value problem (14), (16) and attenuates the admissible per-

turbations w(ξ, t) ∈ L2(0,∞;L2(0, 1)) in the sense of (19).

C. Example

Consider (14)–(17) with

a1 = 1, b1 = 1, β0 = 1, β1 = 3, d1 = 0.1, α1 = 1.

In this example β0 < 2a1 and β1 > 0. Therefore, by

Theorem 1 the static output feedback (18) with large enough

k > 0 internally exponentially stabilizes the system which

appears to be unstable for k = 0 (since β1 > 2a1 cf. [1]).

By using LMI toolbox of Matlab to verify the feasibility

of LMI (25), we find that the static output feedback (18)

with k = 10.1744 internally exponentially stabilizes the

system and leads to the disturbance attenuation level γ = 3.

Substituting the resulting k into (13), we find that this gain

exponentially stabilizes the system with δ = 0.7789.
A lower L2-gain γ = 1.1 is achieved by a higher gain

k = 106.01. The decay rate by the latter gain is found to be

δ = 0.9788.

III. BOUNDARY STABILIZATION OF A SEMILINEAR WAVE

EQUATION

A. Exponential Stability

Consider the wave equation

ztt(ξ, t) = ∂
∂ξ

[azξ(ξ, t)] + r0zt(ξ, t) + r1zt(1, t)

+r2zξ(ξ, t),
t ≥ t0, 0 ≤ ξ ≤ 1

(26)

where a = a(ξ) and ri = ri(ξ, t, z, zt), i = 0, 1, 2 are

functions of class C1. Equation (26) describes nonlinear

oscillations of a string. As in the heat equation (2), the

functions a and ri, i = 0, 1, 2 are admitted to be unknown

subject to inequalities (3) that hold for all (ξ, t, z, zt) ∈
[0, 1]×R3 with a priori known constants βi ≥ 0, i = 0, 1, 2
and a1 > 0 whereas due to technical reasons, a(ξ) does not

depend of t, z, zt anymore.

To facilitate exposition, we have ignored restoring stiffness

of the string, implicitly assuming that the corresponding

terms (such as r(ξ, t, z, zt)z(ξ, t) and r(ξ, t, z, zt)z(1, t)) are

negligible. Since the above simplified model captures all the

essential features of the general treatment, the extension to

a wave model with a nontrivial stiffness is indeed possible.

For the sake of generality, we included the boundary-value
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term r1zt(1, t), similar to that of the parabolic equation (2).

However, in contrast to the parabolic case, the stabilization

problem still persists even without this term, because the

wave equation (26) subject to the boundary condition (27),

given below, may present instabilities under r1 ≡ 0.

Let equation (26) be coupled to the mixed boundary

condition
z(0, t) = 0,
zξ(1, t) = −kzt(1, t), t ≥ 0,

(27)

with a parameter k > 0 and to the initial condition

z(ξ, t0) = φ(ξ) ∈ L2(0, 1), zt(ξ, t0) = φ1(ξ) ∈ L2(0, 1).
(28)

As the nonlinear terms in (26) locally meet the Lipshitz

condition, a unique strong solution of the boundary-value

problem (26)–(28) turns out to locally exist [9]. As in the

heat equation case, only strong solutions of the boundary-

value problem (26)–(28) are under study.

It should be pointed out that the linear system (26), (27),

specified with k = 0, a = 1, and ri = 0, i = 0, 1, 2, gen-

erates oscillating solutions and it is therefore asymptotically

unstable. As in the case of heat equation, we are looking

for exponential stability conditions for uncertain nonlinear

system (26), (27) with k > 0.

On solutions of (26)–(28), consider the Lyapunov-

Krasovskii functional

V (zξ(·,t),zt(·, t)) = p
∫ 1

0
az2
ξ (ξ, t)dξ + p

∫ 1

0
z2
t (ξ, t)dξ

+2χ
∫ 1

0
ξzξ(ξ, t)zt(ξ, t)dξ

(29)

proposed in [10] with some constants p > 0 and χ such that

V (zξ(·,t),zt(·, t)) ≥
∫ 1

0
[zξ zt]

[

a1p χξ

χξ p

]

[zξ zt]
T dξ

> ε
∫ 1

0
[z2
ξ (ξ, t) + z2

t (ξ, t)]dξ
(30)

for some ε > 0. The latter inequality holds if
[

a1p χξ

χξ p

]

> 0, ∀ξ ∈ [0, 1],

i.e., if
[

a1p χ

χ p

]

> 0. (31)

Our aim is to find conditions that would guarantee that

along (26) the inequality d
dt
V + 2δV ≤ 0 holds. Then by

the comparison principle argument (Khalil, 1992), it would

follow that

ε
∫ 1

0
[z2
ξ (ξ, t) + z2

t (ξ, t)]dξ = V (zξ(·,t),zt(·, t))

≤ V (zξ(·,t0),zt(·, t0))e
−2δ(t−t0)

≤Me−2δ(t−t0)
∫ 1

0
[φ2
ξ(ξ) + φ2

1(ξ)]dξ

(32)

for some M > 0. Therefore, the solutions of the boundary

value problem (26), (27) would be globally continuable to

the right and would satisfy the inequality
∫ 1

0
[z2
ξ (ξ, t) + z2

t (ξ, t)]dξ≤
M
ε
e−2δ(t−t0)

∫ 1

0
[φ2
ξ(ξ)+φ

2
1(ξ)]dξ,

(33)

for all t ≥ t0. The boundary value problem (26), (27) would

thus be exponentially stable with the decay rate δ.

For later use, we derive that

d
dt

(

2
∫ 1

0
ξztzξdξ

)

= 2
∫ 1

0
ξzttzξdξ + 2

∫ 1

0
ξztzξtdξ

= 2
∫ 1

0
ξ ∂
∂ξ

[azξ(ξ, t)]zξdξ + 2
∫ 1

0
ξztzξtdξ

+2
∫ 1

0
ξ[r0zt(ξ, t) + r1zt(1, t) + r2zξ(ξ, t)]zξdξ

=
∫ 1

0
1
a
ξ ∂
∂ξ

(azξ)
2dξ + 2

∫ 1

0
ξztzξtdξ

+2
∫ 1

0
ξ[r0zt(ξ, t) + r1zt(1, t) + r2zξ(ξ, t)]zξdξ

= −
∫ 1

0
az2
ξdξ + a|ξ=1z

2
ξ (1, t) + 2

∫ 1

0
ξzt(ξ, t)zξtdξ

+2
∫ 1

0
ξ[r0zt(ξ, t) + r1zt(1, t) + r2zξ(ξ, t)]zξdξ.

After integrating by parts, we obtain

2

∫ 1

0

ξztzξtdξ = −2

∫ 1

0

ξzξtztdξ − 2

∫ 1

0

z2
t dξ + 2z2

t (1, t).

Therefore,

2

∫ 1

0

ξztzξtdξ = −

∫ 1

0

z2
t dξ + z2

t (1, t),

which yields

d
dt

(

2
∫ 1

0
ξztzξdξ

)

= −
∫ 1

0
(z2
t + az2

ξ )dξ + z2
t (1, t)

+a|ξ=1z
2
ξ (1, t) + 2

∫ 1

0
ξ[r0zt(ξ, t) + r1zt(1, t)

+r2zξ(ξ, t)]zξdξ.

Thus, differentiating V along (26), we obtain

d
dt
V + 2δV ≤ 2p

∫ 1

0
azξ(ξ, t)ztξ(ξ, t)dξ

+2p
∫ 1

0
zt(ξ, t)ztt(ξ, t)dξ + d

dt

(

2χ
∫ 1

0
ξztzξdξ

)

+
∫ 1

0
2δ[apz2

ξ (ξ, t) + 2χξzξ(ξ, t)z
2
t (ξ, t) + pz2

t (ξ, t)]dξ

= 2p
∫ 1

0
[azξ(ξ, t)ztξ(ξ, t) + zt(ξ, t)

∂
∂ξ

[azξ(ξ, t)]]dξ

+2p
∫ 1

0
zt(ξ, t)[r0zt(ξ, t) + r1zt(1, t) + r2zξ(ξ, t)]dξ

+χ
[

−
∫ 1

0
(z2
t + az2

ξ )dξ + z2
t (1, t) + a|ξ=1k

2z2
t (1, t)

+2
∫ 1

0
ξ[r0zt(ξ, t) + r1zt(1, t) + r2zξ(ξ, t)]zξdξ

]

+
∫ 1

0
2δ[az2

ξ (ξ, t) + 2χξzξ(ξ, t)zt(ξ, t) + z2
t (ξ, t)]dξ.

Now integrating by parts and taking into account (26) and

(27) yield

d
dt
V + 2δV ≤ −2a|ξ=1kpz

2
t (1, t)

+2p
∫ 1

0
zt(ξ, t)[r0zt(ξ, t) + r1zt(1, t) + r2zξ(ξ, t)]dξ

+χ
[

−
∫ 1

0
(z2
t + az2

ξ )dξ + (1 + a|ξ=1k
2)z2

t (1, t)

+2
∫ 1

0
ξ[r0zt(ξ, t) + r1zt(1, t) + r2zξ(ξ, t)]zξdξ

]

+
∫ 1

0
2δ[apz2

ξ (ξ, t) + 2χξzξ(ξ, t)zt(ξ, t) + pz2
t (ξ, t)]dξ.

(34)

Since

2
∫ 1

0
χξ[r0zt(ξ, t) + r1zt(1, t) + r2zξ(ξ, t)]zξ(ξ, t)dξ

≤
∫ 1

0

[

β2
0

s0
z2
t (ξ, t) +

β2
1

s1
z2
t (1, t) + (s0 + s1

+2χξβ2)z
2
ξ (ξ, t)

]

dξ

for some s0 > 0 and s1 > 0, by setting ζT (ξ, t) =
[zt(1, t) zξ(ξ, t) zt(ξ, t)] and by taking into account that

a ≥ a1, we conclude that

d
dt
V + 2δV ≤

∫ 1

0
ζT (ξ, t)Ψζ(ξ, t)dξ < 0,
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if

Ψ =





ψ1 +
β2
1

s1
0 pr1

∗ ψ2 2χδξ + pr2

∗ ∗ ψ3 +
β2
0

s0



 < 0 (35)

where

ψ1 = −2a1kp+ (1 + a1k
2)χ,

ψ2 = −a1χ+ 2δa1p+ s0 + s1 + 2χξβ2,

ψ3 = −χ+ 2pβ0 + 2δp.
(36)

By Schur complements (35) holds if






ψ1 0 pr1 β1 0
∗ ψ2 2χδξ + pr2 0 0
∗ ∗ ψ3 0 β0

∗ ∗ ∗ −s1 0
∗ ∗ ∗ ∗ −s0






< 0. (37)

It is worth noticing that given k, (37) is LMI which is

affine in ξ ∈ [0, 1], ri ∈ [−βi, βi], i = 1, 2. Therefore, LMI

(37) is feasible if the following LMIs in the eight vertices

are feasible:






ψ1 0 pr
(i)
1 β1 0

∗ ψ
(j)
2 2χδξ(j) + pr

(l)
2 0 0

∗ ∗ ψ3 0 β0

∗ ∗ ∗ −s1 0
∗ ∗ ∗ ∗ −s0






< 0,

ψ
(j)
2 = −a1χ+ 2δa1p+ s0 + s1 + 2χξ(j)β2,

i = 1, 2; j = 1, 2; l = 1, 2;

r
(1)
m = βm, r

(2)
m = −βm, m = 1, 2; ξ(1) = 0, ξ(2) = 1.

(38)

Since LMIs (38) for r
(i)
1 = ±β1 are equivalent, it is

sufficient to check the feasibility of the four LMIs (38),

where r
(i)
1 = β1 and j = 1, 2, l = 1, 2. We note that for the

stability analysis p can be chosen to be 1. Summarizing, the

following result is obtained.

Theorem 3: Given k > 0 and δ > 0, let the LMIs (31)

and (38) with notations (36) and p = 1 hold for some

χ, s0 and s1. Then the boundary-value problem (26), (27)

is exponentially stable with the decay rate δ.

B. H∞ Boundary Control

In addition to the wave equation (26), let us now consider

its perturbed version

ztt(ξ, t) = ∂
∂ξ

[azξ] + r0zt(ξ, t) + r1zt(1, t)

+r2zξ(ξ, t) + bw(ξ, t),
t ≥ 0, 0 ≤ ξ ≤ 1

(39)

where w(ξ, t) ∈ L2(0,∞;L2(0, 1)) is an external distur-

bance; b = b(ξ, t, z) is a function of class C1, which is

assumed to be uniformly bounded, i.e., |b(ξ, t, z)| ≤ b1 for

all (ξ, t, z) ∈ [0, 1] ×R2 and some b1 > 0. While internally

stabilizing the wave process, the influence of the admissible

external disturbance on the controlled output

z̄(ξ, t) = [αz(ξ, t) ᾱzt(ξ, t) d(t, zt(1, t))u(t)]
T , (40)

is to be attenuated through the actuation at the right-hand

end

z(0, t) = 0, zξ(1, t) = u(t), t ≥ t0. (41)

Hereinafter, u(t) is the control input, d and α =
α(ξ, t, z), ᾱ = ᾱ(ξ, t, z) are continuous functions, which

are uniformly bounded

|α(ξ, t, z, zt)| ≤ α0, |ᾱ(ξ, t, z, zt)| ≤ α1, |d(t, z)| ≤ d1,

for all (ξ, t, z, zt) ∈ [0, 1] × R3, where αi ≥ 0, i =
0, 1 and d1 ≥ 0 are some constants. Collocated sensing

y(t) = zt(1, t) at the boundary ξ = 1 is the only available

information on the process.

The H∞ –control problem of interest is stated as follows.

Given γ > 0, it is required to find a linear static output

feedback

u(t) = −kzt(1, t), (42)

that exponentially stabilizes the unperturbed system (26),

(27) and leads to a negative performance index

J =

∫ ∞

t0

∫ 1

0

[z̄T (ξ, t)z̄(ξ, t) − γ2w2(ξ, t)]dξdt < 0 (43)

for all 0 6= w(ξ, t) ∈ L2(0,∞;L2(0, 1)) and for all solutions

of (39), (41), being initialized with zero data z(ξ, t0) =
zt(ξ, t0) = 0 and being globally continuable to the right.

For solving the stated problem, let us find conditions that

guarantee the following:

W (t)
∆
=

d

dt
V +

∫ 1

0

[z̄T (ξ, t)z̄(ξ, t) − γ2w2(ξ, t)]dξ < 0,

(44)

where V is given by (29), and the temporal derivative is

computed along the closed-loop system (39), (41). We have

∫ 1

0
z̄T (ξ, t)z̄(ξ, t)dξ ≤

∫ 1

0

[

α2
0z

2(ξ, t) + α2
1z

2
t (ξ, t)

+d2
1k

2z2
t (1, t)

]

dξ ≤
∫ 1

0

[

1
2α

2
0z

2
ξ (ξ, t) + α2

1z
2
t (ξ, t)

+d2
1k

2z2
t (1, t)

]

dξ,

where inequality (1) has been used. In analogy to (34), we

have

d
dt
V ≤ −2a|ξ=1kpz

2
t (1, t)

+2p
∫ 1

0
zt(ξ, t)[r0zt(ξ, t) + r1zt(1, t) + r2zξ(ξ, t) + bw]dξ

+χ
[

−
∫ 1

0
(z2
t + az2

ξ )dξ + (1 + a|ξ=1k
2)z2

t (1, t)

+2
∫ 1

0
ξ[r0zt(ξ, t) + r1zt(1, t) + r2zξ(ξ, t) + bw]zξdξ

]

.

Since

2
∫ 1

0
χξ[r0zt(ξ, t) + r1zt(1, t) + r2zξ(ξ, t) + bw]zξ(ξ, t)dξ

≤
∫ 1

0

[

β2
0

s0
z2
t (ξ, t) +

β2
1

s1
z2
t (1, t) +

b21
s2
w2

+(s0 + s1 + s2 + 2χβ2)z
2
ξ (ξ, t)

]

dξ

for some s0 > 0 and s1 > 0. By taking into account that

a ≥ a1, we conclude that

W =
d

dt
V +

∫ 1

0

[z̄T z̄ − γ2w2]dξ ≤ ζ̄TΨγ ζ̄,
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where

ζ̄T = [zt(1, t) zξ(ξ, t) zt(ξ, t) w(ξ, t)],

Ψγ =









ψ1 + d21k
2 +

β2
1

s1
0 pr1 0

∗ ψ2γ pr2 0

∗ ∗ ψ3γ +
β2
0

s0
pb

∗ ∗ ∗ −γ2 +
b2
1

s2









,

and

ψ1 = −2a1kp+ (1 + a1k
2)χ,

ψ2γ = −a1χ+
∑2
i=0 si + 1

2α
2
0 + 2χβ2,

ψ3γ = −χ+ 2pβ0 + α2
1.

(45)

Therefore W < 0 if Ψγ < 0, i.e. by Schur complements, if











ψ1 + d21k
2 0 pr1 0 β1 0 0

∗ ψ2γ pr2 0 0 0 0
∗ ∗ ψ3γ pb 0 β0 0
∗ ∗ ∗ −γ2 0 0 b1
∗ ∗ ∗ ∗ −s1 0 0
∗ ∗ ∗ ∗ ∗ −s0 0
∗ ∗ ∗ ∗ ∗ ∗ −s2











< 0.

(46)

LMI (46) is affine in ri ∈ [−βi, βi], i = 1, 2 and b ∈
[−b1, b1]. Therefore, it is feasible if it holds in the vertices

ri = ±βi and b = ±b1. It is easy to see that the eight LMIs

in the vertices are equivalent to the following one











ψ1 + d21k
2 0 pβ1 0 β1 0 0

∗ ψ2γ pβ2 0 0 0 0
∗ ∗ ψ3γ pb1 0 β0 0
∗ ∗ ∗ −γ2 0 0 b1
∗ ∗ ∗ ∗ −s1 0 0
∗ ∗ ∗ ∗ ∗ −s0 0
∗ ∗ ∗ ∗ ∗ ∗ −s2











< 0.

(47)

We note that if (47) is feasible, then the LMIs (38) for

exponential stability hold with small enough δ > 0. We thus

proved the following.

Theorem 4: Consider the perturbed input-output system

(39)–(41) with the assumptions above. Given γ > 0 and k >

0, let there exist p > 0, χ, s0, s1 and s2 such that the LMIs

(31) and (47) are satisfied with the notations given by (45).

Then the static output feedback (42) internally exponentially

stabilizes the boundary value problem (39), (41) and atten-

uates the external disturbances w(ξ, t) ∈ L2(0,∞;L2(0, 1))
in the sense of (43).

C. Example

Consider (39)–(41) with

a1 = 2, β0 = β1 = 0.3, β2 = 0.4,
α0 = α1 = 1, d1 = 0.1.

As mentioned above, the open-loop system is unstable. By

using LMI toolbox of Matlab to verify LMIs (31) and (47),

we find that the static output feedback (42) with k = 1
internally exponentially stabilizes the system and attenuates

the external disturbances with γ = 8.9. By verifying (38)

in the four vertices, we find that the resulting closed-loop

system is internally exponentially stable with the decay rate

δ = 0.06.

IV. CONCLUSIONS

In the present paper an LMI approach is extended to

H∞ boundary control of uncertain semilinear heat equa-

tions and wave equations. The uncertainties are admitted to

be time-, space- and state-dependent with a priori known

upper/lower bounds. Sufficient conditions for static output

feedback stabilization are given in terms of LMIs. Numerical

examples illustrate the efficiency of the method.

The proposed method seems to be extendible to dy-

namic output feedback H∞ control and to other classes

of distributed parameter systems. LMIs are thus expected

to provide effective tools for robust control of distributed

parameter systems.
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