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Abstract— Given an unforced nonlinear system and two
nested closed and invariant sets Γ ⊂ O, we present reduction
principles allowing one to extrapolate the properties of stability,
attractivity, and asymptotic stability of Γ from analogous
properties of the system restricted to O. As a corollary to our
reduction principles, we present a stability criterion for cascade-
connected systems which generalizes well-known results in the
literature. Using the reduction principles, in Part II of this
paper we present a comprehensive theory for passivity-based
stabilization of closed sets.

I. INTRODUCTION

In this paper we investigate the reduction problem for

finite dimensional dynamical systems described by Lipschitz

continuous ODEs, ẋ = f(x). Suppose we are given two

closed sets, Γ and O, with Γ ⊂ O, that are invariant for the

system. Consider the restriction of the system dynamics to

the invariant set O, and suppose that Γ is stable, attractive,

or asymptotically stable for such restriction to O. When is

it that Γ is stable, attractive, or asymptotically stable with

respect to the whole state space?

The above reduction problem, originally formulated by

Seibert and Florio in 1970 [1], [2] and investigated in

more depth in [3] (see also the related work in [4]), is

fundamentally important in control theory, as it often arises

whenever one wants to infer stability properties of a control

system based on its properties on a subset of the state

space. A particularly important application of this kind is

the problem of stabilizing closed sets for passive systems.

Given a passive system with input u, output function h(x),
and storage function V (x), suppose that Γ is a closed and

open-loop invariant set such that Γ ⊂ V −1(0). Consider a

passivity-based feedback, that is, a feedback u = −ϕ(y),
with ϕ(0) = 0 and y⊤ϕ(y) > 0 for all y 6= 0. When

is it that Γ is stable, attractive, or asymptotically stable

for the closed-loop system? The answer to this question

is known in two cases: when Γ is an equilibrium point

and V is positive definite (so that Γ = V −1(0)), see [5];

and when Γ is a compact set and Γ = V −1(0), see [6].

In [7], we initiated the investigation of the more general case

when Γ ⊂ V −1(0) and Γ is not necessarily compact. Later,

in [8], we presented a theorem (without proof) extending

some of the theory in [7] and presented applications of

the theory to two maneuvering problems for the kinematic
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unicycle. It turns out that the foregoing question concerning

the passivity-based stabilization of Γ is precisely a special

instance of the first question, the reduction problem; this is

shown in Part II of this work.

In this paper, we review Seibert and Florio’s reduction

principles in [1], [2], [3] dealing with stability and asymptotic

stability in the case of compact Γ. We then present a

novel reduction principle for attractivity, and an extension

of Seibert and Florio’s reduction principles for stability and

asymptotic stability to the case of closed but not necessarily

compact Γ. As a corollary to our result, we give a novel set

stability criterion for cascade-connected systems. In Part II of

this work we apply the reduction principles presented in this

paper to the solution of the passivity-based set stabilization

problem.

II. PRELIMINARIES AND PROBLEM STATEMENT

In this paper we consider the dynamical system

Σ : ẋ = f(x) (1)

with state space X ⊂ R
n and f a smooth vector field. We

assume that X is either an open subset of R
n or a smooth

submanifold thereof. In both cases, the restriction of a metric

‖ · ‖ : R
n → [0, +∞) to X gives a metric on X .

A. Notation

Let R
+ denote the positive real line [0, +∞). We denote

by φ(t, x0) the unique solution of (1) with initial condition

x0. Given an interval I of the real line and a set S ∈ X ,

we denote by φ(I, S) the set φ(I, S) := {φ(t, x0) : t ∈
I, x0 ∈ S}. Given a closed nonempty set S ⊂ X and a

point x ∈ X , the point-to-set distance ‖x‖S is defined as

‖x‖S := inf{‖x − y‖ : y ∈ S}. Given two subsets S1 and

S2 of X , the maximum distance of S1 to S2, d(S1, S2), is

defined as d(S1, S2) := sup{‖x‖S2
: x ∈ S1}. For a constant

α > 0, a point x ∈ X , and a set S ⊂ X , define the open

sets Bα(x) = {y ∈ X : ‖y − x‖ < α} and Bα(S) = {y ∈
X : ‖y‖S < α}. We denote by cl(S) the closure of the set

S, and by N (S) a generic open neighbourhood of S, that

is, an open subset of X containing S.

B. Set stability and attractivity

Here, we present the basic notions of set stability and

attractivity used in this paper. Let Γ ⊂ X be a closed

positively invariant set for Σ in (1).

Definition II.1 (Set stability and attractivity). (i) Γ
is stable for Σ if for all ε > 0 there exists a
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neighbourhood N (Γ) such that φ(R+,N (Γ)) ⊂
Bε(Γ).

(ii) Γ is uniformly stable for Σ if for all ε > 0 there exists

δ > 0 such that φ(R+, Bδ(Γ)) ⊂ Bε(Γ).
(iii) Γ is a semi-attractor for Σ if there exists a neigh-

bourhood N (Γ) such that, for all x0 ∈ N (Γ),
limt→∞ ‖φ(t, x0)‖Γ = 0.

(iv) Γ is an attractor for Σ if there exists δ > 0 such that,

for all x0 ∈ Bδ(Γ), limt→∞ ‖φ(t, x0)‖Γ = 0.

(v) Γ is a global attractor for Σ if it is an attractor with

δ = +∞ or a semi-attractor with N (Γ) = X .

(vi) Γ is a uniform semi-attractor for Σ if for all x ∈ Γ,

there exists λ > 0 such that, for all ε > 0, there exists

T > 0 yielding φ([T, +∞), Bλ(x)) ⊂ Bε(Γ).
(vii) Γ is a uniform attractor for Σ if there exists λ > 0

such that, for all ε > 0, there exists T > 0 yielding

φ([T, +∞), Bλ(Γ)) ⊂ Bε(Γ).
(viii) Γ is [globally] semi-asymptotically stable for Σ if it is

stable and semi-attractive [globally attractive] for Σ.

(ix) Γ is [globally] asymptotically stable for Σ if it is a

uniformly stable and [globally] attractive for Σ.

All definitions above, except that of a uniform semi-

attractor, are standard and can be found in [9].

Remark. If Γ is a compact positively invariant set, then

the concepts of stability, semi-attractivity, and uniform semi-

attractivity are respectively equivalent to those of uniform

stability, attractivity, and uniform attractivity. Moreover, a

compact positively invariant set Γ is a uniform attractor

if, and only if, it is asymptotically stable (see Theorems

V.1.15 and V.1.16 in [10]). In general, when Γ is closed but

unbounded, uniform attractivity of Γ implies stability, and

hence semi-asymptotic stability, of Γ (see Theorem 1.6.24

in [9]), but not vice versa.

Definition II.2 (Relative set stability and attractivity). Let

O ⊂ X be such that O ∩ Γ 6= ∅. We say that Γ is

stable relative to O for Σ if, for any ε > 0, there exists a

neighbourhood N (Γ) such that φ(R+,N (Γ)∩O) ⊂ Bε(Γ).
Similarly, one modifies all other notions in Definition II.1 by

restricting initial conditions to lie in O.

Definition II.3 (Local stability and attractivity near a set).

Let Γ and O, Γ ⊂ O ⊂ X , be positively invariant sets. The

set O is locally stable near Γ if for all x ∈ Γ, for all c > 0,

and all ε > 0, there exists δ > 0 such that for all x0 ∈ Bδ(Γ)
and all t > 0, whenever φ([0, t], x0) ⊂ Bc(x) one has that

φ([0, t], x0) ⊂ Bε(O). The set O is locally (semi-) attractive

near Γ if there exists a neighbourhood N (Γ) such that, for

all x0 ∈ N (Γ), φ(t, x0) → O at t → +∞.

The property of local stability can be rephrased as follows.

Given an arbitrary ball Bc(x) centered at a point x in Γ,

trajectories originating in Bc(x) sufficiently close to Γ cannot

travel far away from O before first exiting Bc(x). It is not

difficult to see that if Γ is stable, then O is locally stable

near Γ.

Finally, we present the following definition used in the

sequel.

Definition II.4 (Local uniform boundedness). The system Σ
is locally uniformly bounded near Γ if for each x ∈ Γ there

exist positive scalars λ and m such that φ(R+, Bλ(x)) ⊂
Bm(x).

Remark. If Γ is a stable compact set, then Σ is locally

uniformly bounded near Γ. For, the stability of Γ implies

the existence of a compact neighbourhood S of Γ which

is positively invariant for Σ. Let λ > 0 and m > 0 be

such that, for all x ∈ Γ, Bλ(x) ⊂ S ⊂ Bm(x) (λ and

m exist by compactness). Then, for any x ∈ Γ, the ball

Bλ(x) is contained in S, and thus by positive invariance,

φ(R+, Bλ(x)) ⊂ S ⊂ Bm(x).

The next lemma, proved in Appendix I, clarifies the

relationship between uniform semi-attractivity and semi-

asymptotic stability.

Lemma II.5. Let Γ be a closed set which is positively

invariant for Σ in (1) and let U ⊃ Γ be a closed set.

If Γ is a uniform semi-attractor [relative to U], then it is

semi-asymptotically stable [relative to U]. Furthermore, if

Σ is locally uniformly bounded near Γ, then Γ is semi-

asymptotically stable [relative to U] if, and only if, it is

a uniform semi-attractor [relative to U].

C. Limit Sets

In order to characterize the asymptotic properties of

bounded solutions, we will use the well-known notion of

limit set, due to G. D. Birkhoff (see [11]), and that of

prolongational limit set, due to T. Ura (see [12]). Given a

point x0 ∈ X , the positive limit set (or ω-limit set) of the

solution φ(t, x0) is defined as

L+(x0) := {p ∈ X : (∃{tn} ⊂ R
+) tn → +∞,

φ(x0, tn) → p}.

The negative limit set (or α-limit set) L−(x0) of φ(t, x0)
is defined using time sequence diverging to −∞. We let

L+(S) :=
⋃

x0∈S L+(x0).
The prolongational limit set J+(x0) of a solution φ(t, x0)

is defined as

J+(x0) := {p ∈ X : (∃{(xn, tn)} ⊂ X × R
+), xn → x0,

tn → +∞, φ(xn, tn) → p}.

If U ⊂ X , the prolongational limit set of φ(t, x0) relative to

U is defined as

J+(x0, U) := {p ∈ X : (∃{(xn, tn)} ⊂ U × R
+), xn → x0,

tn → +∞, φ(xn, tn) → p}.

We let

J+(S) :=
⋃

x0∈S

J+(x0), J+(S, U) :=
⋃

x0∈S

J+(x0, U).

Obviously, L+(x0) ⊂ J+(x0). Moreover, if x0 ∈ U ,

L+(x0) ⊂ J+(x0, U) ⊂ J+(x0).
The following results, Propositions II.6 and II.7, present

useful relations for prolongational limit sets. These relations

will be used in the development of the main results in

Section III.
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Proposition II.6 (Theorem II.4.3 and Lemma V.1.10 in [10]).

Consider the dynamical system Σ in (1). For any x ∈ X ,

J+(x) is closed and invariant. Moreover, for any ω ∈
L+(x), J+(x) ⊂ J+(ω).

Remark. The results in Proposition II.6 still hold if one

replaces J+(x) by J+(x, U), with U ⊂ X .

While L+(x0) is used to characterize the asymptotic

convergence properties of φ(t, x0), J+(x0) is used to char-

acterize uniform convergence, as shown next.

Proposition II.7. Suppose that Σ in (1) is locally uniformly

bounded near a closed and positively invariant set Γ. Let

U ⊂ X be a closed set, Γ ⊂ U . Then, for each x in

some neighbourhood of Γ, J+(x) 6= ∅ [J+(x, U) 6= ∅].

Moreover, Γ is a uniform semi-attractor [relative to U] for

Σ if, and only if, there exists a neighbourhood N (Γ) such

that J+(N (Γ)) ⊂ Γ [J+(N (Γ), U) ⊂ Γ].

The proof of sufficiency can be found in Appendix II,

while that of necessity is omitted because it is not used in

the sequel.

D. Problem Statement

This paper addresses the following problem.

Reduction Problem ([1], [2]). Consider the dynamical

system Σ in (1). Let Γ and O be two closed positively

invariant sets such that Γ ⊂ O ⊂ X . Assume that Γ is,

respectively, stable, semi-attractive, and semi-asymptotically

stable relative to O. Find what additional conditions are

needed to guarantee that Γ is, respectively, stable, semi-

attractive, and semi-asymptotically stable for Σ. We also seek

to solve the global version of each of the problems above.

This problem was originally formulated by P. Seibert in

1969-1970. Seibert and Florio developed reduction principles

for stability and asymptotic stability (but not attractivity)

for dynamical systems on metric spaces assuming that Γ
is compact. Their conditions first appeared in [1] and [2],

while the proofs are found in [3] (see also the work in [4] for

related results). In the next section we first review the results

by Seibert and Florio. We then present the main results of

the paper. These are novel reduction principles for semi-

attractivity and, for the case of unbounded Γ, stability and

semi-asymptotic stability.

III. REDUCTION PRINCIPLES

In this section we address the Reduction Problem given

in Section II-D. Consider the dynamical system Σ given in

(1). Let Γ and O, Γ ⊂ O ⊂ X , be closed sets which are

positively invariant for system Σ.

A. Previous Results

First, we present Seibert and Florio’s reduction principles

for compact sets.

Theorem III.1 (Theorem 3.4 in [3]). Suppose that Γ is a

compact set. Then, Γ is uniformly stable if the following

conditions hold:

(i) Γ is asymptotically stable relative to O,

(ii) O is locally stable near Γ.

Theorem III.2 (Theorem 4.13 and Corollary 4.11 in [3]).

Assume that Γ is a compact set. If, and only if, the following

conditions hold:

(i) Γ is asymptotically stable relative to O,

(ii) O is locally stable near Γ,

(iii) O is locally attractive near Γ,

then Γ is asymptotically stable for Σ. Furthermore, if

(iv) all trajectories of Σ are bounded,

and conditions (i) and (iii) are replaced by

(i)’ Γ is globally asymptotically stable relative to O,

(iii)’ O is a global attractor for Σ,

then Γ is globally asymptotically stable for Σ.

Remark. The notion of local stability used by Seibert

and Florio in [3] for compact Γ is slightly different than

that in our Definition II.3. Specifically, if the conditions in

Definition II.3 hold, then O is locally stable near Γ in the

sense of Seibert and Florio. Since local stability of O near

Γ in the sense of Definition II.3 is a necessary condition for

stability of Γ, the assumptions in Theorems III.1 and III.2

are equivalent to the conditions in [3].

B. Main Results

In this section we present the main results of the paper. In

Theorems III.3, III.4, and III.7 we provide novel reduction

theorems for semi-attractivity, stability, and semi-asymptotic

stability of non-compact sets. We also present a number of

implications of these results.

Theorem III.3 (Reduction principle for semi-attractivity).

The closed set Γ is semi-attractive if the following conditions

hold:

(i) Γ is semi-asymptotically stable relative to O
(ii) O is locally semi-attractive near Γ,

(iii) there exists a neighbourhood N (Γ) such that, for all

initial conditions in N (Γ), the associated solutions are

bounded and such that the set cl(φ(R+,N (Γ)))∩O is

contained in the domain of attraction of Γ relative to

O.

The set Γ is globally attractive if:

(i)’ Γ is globally semi-asymptotically stable relative to O,

(ii)’ O is a global attractor,

(iii)’ all trajectories in X are bounded.

Proof: By assumption (ii), there exists a neighbour-

hood N1(Γ) of Γ such that all trajectories originating there

asymptotically approach O in positive time. Let N2(Γ) be

the neighbourhood in assumption (iii), and define N3(Γ) =
N1(Γ) ∩ N2(Γ). Clearly, N3(Γ) is a neighbourhood of Γ.

By construction, for all x0 ∈ N3(Γ), the solution is bounded

and approaches O. Therefore, the positive limit set L+(x0) is

non-empty, compact, invariant, and L+(x0) ⊂ O. Moreover,
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by definition of positive limit set, and by assumption (iii) we

have the following inclusion,

L+(x0) ⊂ cl(φ(R+, x0)) ∩ O ⊂

{domain of attraction of Γ rel. to O}.
(2)

We need to show that L+(x0) ⊂ Γ. Assume, by way of

contradiction, that there exists ω ∈ L+(x0) and ω /∈ Γ. By

the invariance of L+(x0), φ(R, ω) ⊂ L+(x0), and therefore

L−(ω) ⊂ L+(x0). By the inclusion in (2), all trajectories in

L−(ω) asymptotically approach Γ in positive time, and so

since L−(ω) is closed, L−(ω) ∩ Γ 6= ∅. Let p ∈ L−(ω) ∩
Γ. Pick ε > 0 such that ‖ω‖Γ > ε. By the stability of Γ
relative to O, there exists a neighbourhood N4(Γ) of Γ such

that φ(R+,N4(Γ) ∩ O) ⊂ Bε(Γ). Since p ∈ L−(ω), there

exists a sequence {tk} ⊂ R
+, with tk → +∞, such that

φ(−tk, ω) → p at k → +∞. Since p ∈ Γ, we can pick k⋆

large enough that φ(−tk⋆ , ω) ∈ N4(Γ). Let T = tk⋆ and

z = φ(−tk⋆ , ω). We have thus obtained that z ∈ N4(Γ), but

φ(T, z) = ω is not in Bε(Γ). This contradicts the stability of

Γ, and therefore, for all x0 ∈ N3(Γ), L+(x0) ⊂ Γ, proving

that Γ is a semi-attractor for Σ.

To prove global attractivity of Γ it is sufficient to notice

that by assumptions (ii)’ and (iii)’, for all x0 ∈ X , L+(x0)
is non-empty and L+(x0) ⊂ O. On O, by assumption (i)’

all trajectories approach Γ, so by the contradiction argument

above we conclude that L+(x0) ⊂ Γ.

Part of the previous proof was inspired by the stability

results using positive semidefinite Lyapunov functions pre-

sented in [13] and by the proof of Lemma 1 in [14]. Being

of a rather technical nature, Assumption (iii) is difficult to

check and of limited practical use. It has, however, theoret-

ical significance because it is used to prove the reduction

principle for semi-asymptotic stability stated in the sequel.

If condition (i) is replaced by the stronger (i)’, then one can

replace (iii) by the simpler requirement that trajectories in

some neighbourhood of Γ be bounded.

Theorem III.4 (Reduction principle for stability). The

closed set Γ is stable if the following conditions hold:

(i) Γ is semi-asymptotically stable relative to O,

(ii) O is locally stable near Γ,

(iii) If Γ is unbounded, then Σ is locally uniformly bounded

near Γ.

To prove the theorem we need the following lemma whose

proof is omitted due to space limitations.

Lemma III.5. Let Γ ⊂ X be a closed set which is positively

invariant set for Σ in (1). If Γ is unstable, then there exist

ε > 0, a bounded sequence {xi} ⊂ X , and a sequence

{ti} ⊂ R
+, such that xi → x̄ ∈ Γ, and ‖φ(ti, xi)‖Γ = ε.

Proof of Theorem III.4: By way of contradiction, sup-

pose that Γ is unstable. Then, by Lemma III.5, there exist

ε > 0, a bounded sequence {xi} ⊂ X , with xi → x̄ ∈ Γ,

and a sequence {ti} ⊂ R
+, such that ‖φ(ti, xi)‖Γ =

ε, and φ([0, ti), xi) ∈ Bε(Γ). By local uniform bounded-

ness of Σ near Γ, there exist two positive numbers λ and

m such that φ(R+, Bλ(x̄)) ⊂ Bm(x̄). We can assume

{xi} ⊂ Bλ(x̄). Take a decreasing sequence {εi} ⊂ R
+,

εi → 0. By assumption (ii), O is locally stable near Γ. Using

the definition of local stability with c = m and ε = εi,

there exists δi > 0 such that for all x0 ∈ Bδi
(x̄) and all

t > 0, if φ([0, t], x0) ⊂ Bm(x̄), then φ([0, t], x0) ⊂ Bεi
(O).

By taking δi ≤ λ we have (∀x0 ∈ Bδi
(x̄)) φ(R+, x0) ⊂

Bεi
(O). By passing, if needed, to a subsequence we can

assume without loss of generality that, for all i, xi ∈ Bδi
(x̄)

so that lim supi→∞ d(φ([0, ti], xk),O) = 0.
Using assumptions (i) and (iii) (if Γ is unbounded), by

Lemma II.5 it follows that Γ is a uniform semi-attractor

relative to O. Therefore,

(∀x ∈ Γ)(∃µ > 0)(∀ε′ > 0)(∃T > 0) s.t. φ([T, +∞),

Bµ(x) ∩ O) ⊂ Bε′(Γ).
(3)

Consider the set Γ′ = Γ∩ cl(B2m(x̄)). Since Γ′ is compact,

using (3) we infer the existence of µ > 0 such that

(∀x ∈ Γ′)(∀ε′ > 0)(∃T > 0) φ([T, +∞), Bµ(x)∩O) ⊂ Bε′(Γ).
(4)

By reducing, if necessary, ε in the instability definition, we

may assume that ε < µ. Now choose ε′ < ε/2. Using again

a compactness argument, by (4) one infers the following

condition

(∃T > 0)(∀x ∈ Γ′)φ([T, +∞), Bµ(x) ∩O) ⊂ Bε′(Γ). (5)

We claim that Bµ(Γ)∩Bm(x̄) ⊂ Bµ(Γ′). For, if µ ≥ m, then

Bµ(Γ)∩Bm(x̄) = Bm(x̄) ⊂ Bµ(x̄) ⊂ Bµ

(

Γ∩cl(B2m(x̄))
)

.

If µ < m, then x ∈ Bµ(Γ)∩Bm(x̄) if and only if ‖x‖Γ < µ
and ‖x − x̄‖ < m; in particular, there exists y ∈ Γ such

that ‖x − y‖ < µ. Since ‖y − x̄‖ ≤ ‖x − y‖ + ‖x − x̄‖ ≤
µ + m < 2m, we have that y ∈ Γ ∩ cl(B2m(x̄)), and thus

x ∈ Bµ(Γ ∩ cl(B2m(x̄))).
Using (5) and the claim we’ve just proved we obtain

(∀x ∈ Bµ(Γ) ∩Bm(x̄) ∩O) φ([T, +∞), x) ⊂ Bε′(Γ). (6)

Now, since {tk} is unbounded there exists K1 > 0 such

that tk > T for all k ≥ K1. Since φ([0, tk), xk) ⊂ Bε(Γ)
we have φ(tk − T, xk) ∈ Bε(Γ) for all k ≥ K1. Let

yk = φ(tk, xk), and zk = φ(tk − T, xk). Thus, yk =
φ(T, zk), ‖yk‖Γ = ε and zk ∈ Bε(Γ). By local uniform

boundedness, it also holds that zk ∈ Bm(x̄). Pick δ ∈
(0, µ − ε). Since zk ∈ φ([0, tk), xk) ⊂ Bm(x̄), and since

lim supk→∞ d(φ([0, tk], xk),O) = 0, then there exists K2 ≥
K1 such that, for all k ≥ K2, there exists z′k ∈ Bm(x̄) ∩ O
such that ‖zk − z′k‖ < δ. Since zk ∈ Bε(Γ), then

z′k ∈ Bε+δ(Γ) ∩ Bm(x̄) ∩ O ⊂ Bµ(Γ) ∩ Bm(x̄) ∩O

and, by (6), φ([T, +∞), z′k) ⊂ Bε′(Γ). By continuous

dependence on initial conditions, δ can be chosen small

enough that

(∀x ∈ Bm(x̄))(∀x0 ∈ Bδ(x)) ‖φ(T, x) − φ(T, x0)‖ < ε/2.

We have zk ∈ Bm(x̄) and ‖zk−z′k‖ < δ, hence ‖φ(T, zk)−
φ(T, z′k)‖ < ε/2, which implies

yk ∈ Bε/2(φ(T, z′k)) ⊂ Bε/2+ε′(Γ) ⊂ Bε(Γ),
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contradicting ‖yk‖Γ = ε.

Part of this proof was inspired by that of of Lemma 2.1

in [3]. As mentioned in Section II-B, the local stability

condition (ii) in Theorem III.4 is necessary. Condition (i)

cannot be relaxed by just requiring that Γ be stable relative

to O. This fact was already pointed out by Seibert and Florio

in [3] a simple counter-example.

By noting that if O is stable for Σ, then it is also locally

stable near Γ, we get the following useful corollary.

Corollary III.6. The closed set Γ is stable if conditions (i)

and (iii) in Theorem III.4 hold and condition (ii) is replaced

by the following one:

(ii)’ O is stable.

The stability of O in condition (ii)’ is not necessary for the

stability of Γ, as shown by Seibert and Florio in [3, Example

3].

By combining Theorems III.3 and III.4 we obtain a

reduction principle for semi-asymptotic stability.

Theorem III.7 (Reduction principle for semi-asymptotic

stability). The closed set Γ is [globally] semi-asymptotically

stable if the following conditions hold:

(i) Γ is [globally] semi-asymptotically stable relative to O,

(ii) O is locally stable near Γ,

(iii) O is locally semi-attractive near Γ [O is globally

attractive],

(iv) if Γ is unbounded, then Σ is locally uniformly bounded

near Γ,

(v) [all trajectories of Σ are bounded.]

Conditions (i), (ii), and (iii) in the theorem above are

necessary.

Proof: If Γ is compact, the theorem coincides with

Theorem III.2. Suppose that Γ is unbounded. That the

“global” assumptions imply global semi-asymptotic stability

is a direct consequence of Theorems III.3 and III.4. To prove

that the “local” assumptions imply semi-asymptotic stability

of Γ, we need to show that assumption (iii) in Theorem III.3

is satisfied.

Assumptions (i), (ii), and (iv) in imply that Γ is stable.

Moreover, by assumption (i), Γ is semi-attractive relative

to O. Let N ⊂ O denote the domain of attraction of

Γ relative to O. By assumption (iv), for each x ∈ Γ
there exist two positive numbers λ(x) and m(x) such that

φ(R+, Bλ(x)(x)) ⊂ Bm(x)(x). Fix x ∈ Γ, and let ε(x) > 0
be small enough that

cl
(

Bε(x)(Γ) ∩ Bm(x)(x)
)

∩ O ⊂ N.

The constant ε is guaranteed to exist because the set on left-

hand side of the inclusion is compact and can be made arbi-

trarily small. Since Γ is stable, there exists a neighbourhood

Nx(Γ) such that φ(R+,Nx(Γ)) ⊂ Bε(x)(Γ). Now define

U =
⋃

x∈Γ

Bλ(x)(x) ∩ Nx(Γ).

Clearly, U is a neighbourhood of Γ. By definition, for each

y ∈ U , there exists x ∈ Γ such that y ∈ Bλ(x)(x) ∩ Nx(Γ),
so that the solution originating in y is bounded and

φ(R+, y) ⊂ Bε(x)(Γ) ∩ Bm(x)(x).

Therefore, cl(φ(R+, y))∩O ⊂ cl
(

Bε(x)(Γ)∩Bm(x)(x)
)

∩

O ⊂ N .

By combining Theorem III.7 and Corollary III.6 we obtain

the following corollary.

Corollary III.8. The closed set Γ is [globally] semi-

asymptotically stable if conditions (i), (iii), (iv) [and (v)]

in Theorem III.7 hold, and condition (ii) is replaced by the

following one:

(ii)’ O is stable.

In Part II of this paper we use the reduction principles

introduced above to provide results for stabilizing closed sets

for passive systems. The usefulness of reduction principles

is not limited to the stabilization of closed sets. As a matter

of fact, stability theorems for cascade-connected systems of

the form

ẋ = f(x, y)

ẏ = g(y),
(7)

well-known in the control literature (see [15][Theorem 3.1],

[16][Corollary 5.2], [17][Corollaries 10.3.2, 10.3.3]), are

consequences of Seibert and Florio’s reduction theory, spe-

cialized to the case when Γ is the origin and O = {(x, y) :
y = 0}. Motivated by this observation, we present a straight-

forward application of Corollary III.8 which has independent

interest.

Corollary III.9. Consider system (7), with x ∈ R
n1 , y ∈

R
n2 , and let Γ ⊂ R

n1 be a positively invariant set for

system ẋ = f(x, 0). Suppose that g(0) = 0. Then, Γ̃ :=
{(x, y) : x ∈ Γ, y = 0} is [globally] semi-asymptotically

stable for (7) if the following conditions hold:

(i) Γ is [globally] semi-asymptotically stable for ẋ =
f(x, 0),

(ii) y = 0 is a [globally] asymptotically stable equilibrium

of ẏ = g(y),

(iii) if Γ is unbounded, then (7) is locally uniformly bounded

near Γ̃,

(iv) [all trajectories of (7) are bounded.]

IV. CONCLUSIONS

Novel reduction principles have been presented for semi-

attractivity, stability and semi-asymptotic asymptotic stability

of closed invariant sets for nonlinear systems. A corollary to

these principles is a stability criterion for cascade systems.

The reduction principles are used in Part II of this paper to

develop a theory for passivity-based stabilization of closed

sets.
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APPENDIX I

PROOF OF LEMMA II.5

We first show that if Γ is a uniform semi-attractor, then

it is semi-asymptotically stable. Suppose, by way of con-

tradiction, that Γ is unstable. This implies that there exists

ε > 0 and sequences {xi} ⊂ X and {ti} ⊂ R
+, with

‖xi‖Γ → 0 such that ‖φ(ti, xi)‖Γ = ε. By Lemma III.5, we

can assume, without loss of generality, that {xi} is bounded

and has a limit x̄ ∈ Γ. Using x̄ and ε in the definition

of uniform semi-attractivity, we get λ > 0 and T > 0
such that φ([T, +∞), Bλ(x̄)) ⊂ Bε(Γ). For sufficiently large

i, xi ∈ Bλ(x̄) and therefore, necessarily, 0 < ti < T .

Having established that {ti} is a bounded sequence, we can

assume that ti has a limit τ < ∞. Since Γ is positively

invariant, φ(τ, x̄) ∈ Γ. This gives a contradiction since

φ(ti, xi) → φ(τ, x̄) and, for all i, ‖φ(ti, xi)‖Γ = ε.

Next we show that if Σ is locally uniformly bounded

near Γ and Γ is semi-asymptotically stable, then Γ is a

uniform semi-attractor for Σ. By Proposition II.7, we need

to show that there exists a neighbourhood N (Γ) such that

J+(N (Γ)) ⊂ Γ. By local uniform boundedness, for all x
in a neighbourhood of Γ, J+(x) 6= ∅. Moreover, since Γ
is a semi-attractor, by Proposition II.6 we have J+(x) ⊂
J+(L+(x)) ⊂ J+(Γ). Therefore, to prove uniform semi-

attractivity it is enough to show that J+(Γ) ⊂ Γ. Consider

an arbitrary point x ∈ Γ, and let p ∈ J+(x). By local

uniform boundedness, there exist positive constants λ and

m such that φ(R+, Bλ(x)) ⊂ Bm(x). By the definition of

prolongational limit set, there exist sequences {xn} ⊂ X
and {tn} ⊂ R

+, with xn → x and tn → +∞, such

that φ(tn, xn) → p. Without loss of generality, we can

assume that {xn} ⊂ Bλ(x). Take a decreasing sequence

{εn} ⊂ R
+, with εn → 0. By the stability of Γ, there

exists a nested sequence of neighborhoods Nn+1(Γ) ⊂
Nn(Γ) such that φ(R+,Nn(Γ)) ⊂ Bεn

(Γ). Since Nn(Γ) ∩
Bλ(x) is a bounded set, for each n there exists δn > 0
such that Bδn

(Γ) ∩ Bλ(x) ⊂ Nn(Γ) ∩ Bλ(x). We thus

obtain a decreasing sequence {δn}, δn → 0, such that

φ(R+, Bδn
(x)) ⊂ Bm(x) ∩ Bεn

(Γ). Take subsequences

{xnk
} and {Bδn

k
(x)} such that, for each k, xnk

∈ Bδn
k
(x).

Since xn → x ∈ Γ, for each n there are infinitely many

xn’s in Bδn
(x), and therefore the subsequences just defined

have infinite elements. We have that φ(tnk
, xnk

) → p and,

by construction, φ(tnk
, xnk

) ∈ Bεn
k
(Γ). This implies that

p ∈ Γ, and so J+(x) ⊂ Γ.

The proofs of the statements involving relative stability

concepts are identical.

APPENDIX II

PROOF OF PROPOSITION II.7

We only prove sufficiency. Assume that there exists a

neighbourhood N (Γ) such that J+(N (Γ)) ⊂ Γ. By local

uniform boundedness, we can assume that all trajectories on

N (Γ) are bounded, and hence for each x ∈ N (Γ), L+(x) 6=
∅. Since L+(N (Γ)) ⊂ J+(N (Γ), U) ⊂ J+(N (Γ)), we

have that for each x ∈ N (Γ), J+(x) and J+(x, U) are

not empty. To prove that Γ is a uniform semi-attractor, we

need to show that, for all x ∈ Γ, (∃δ > 0)(∀ε > 0)(∃T >
0) s.t. φ([T, +∞), Bδ(x)) ⊂ Bε(Γ). Suppose, by way of

contradiction, that there exists x ∈ Γ such that

(∀δ > 0)(∃ε > 0) s.t. (∀T > 0)(∃x̄ ∈ Bδ(x), ∃t̄ ≥ T ) s.t.

‖φ(t̄, x̄)‖Γ ≥ ε.
(8)

By the local uniform boundedness assumption, there exist

positive λ and m such that φ(R+, Bλ(x)) ⊂ Bm(x). We

can take small enough δ that δ ≤ λ and cl(Bδ(x)) ⊂ N (Γ).
Let ε > 0 be as in (8). Take a sequence {Ti} ⊂ R

+, with

Ti → ∞. By (8), there exist sequences {x̄i} ⊂ Bδ(x) and

{t̄i} ⊂ R
+, with t̄i → ∞, such that ‖φ(t̄i, x̄i)‖Γ ≥ ε.

Since x̄i ∈ Bδ(x) ⊂ Bλ(x), then φ(x̄i, t̄i) ∈ Bm(x). By

boundedness of {x̄i} and {φ(t̄i, x̄i)}, we can assume that

x̄i → x⋆ ∈ cl(Bδ(x)), and φ(t̄i, x̄i) → p, with ‖p‖Γ ≥ ε.

We have thus obtained that there exists x⋆ ∈ cl(Bδ(x)) such

that J+(x⋆) 6⊂ Γ. However, cl(Bδ(x)) ⊂ N (Γ), and so

J+(cl(Bδ(x))) ⊂ Γ, a contradiction.

The proof that Γ is a uniform semi-attractor relative to U
if and only if there exists N (Γ) such that J+(N (Γ), U) ⊂ Γ
is identical.
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[10] N. P. Bathia and G. P. Szegö, Stability Theory of Dynamical Systems.

Berlin: Springer-Verlag, 1970.
[11] G. D. Birkhoff, Dynamical Systems. American Mathematical Society

Colloquium Publications, 1927.
[12] T. Ura, “Sur le courant exterieur à une region invariante,” Funkc.
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