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Abstract— This paper considers a decentralized robust state
estimation problem for uncertain systems via a data-rate con-
strained sensor network. The uncertainties of the systems satisfy
an integral quadratic constraint. The sensor network consists
of spatially distributed sensors that take the measurements of a
system, and a fusion center where the state estimation is carried
out. The communications from the sensors to the fusion center
are through data-rate constrained communication channels. We
propose an estimation scheme which involves coders and a
decoder-estimator, and their construction is based on the robust
Kalman filtering techniques.

I. INTRODUCTION

Recently, the use of sensor networks for state estimation

and control has been widely applied and its research has been

actively pursued [5]. There are a number of advantages of

using sensor networks or multisensor, e.g., more information

can be gathered through the use of sensor fusion techniques,

geographical constraints can be overcome by using a number

of spatially distributed sensors, reliability is improved from

some degree of redundancy of sensors, etc.. For instance,

sensor fusion has been widely applied to vehicle and missile

guidance, see e.g. [7], [12], [14].

The communications in a sensor network are often im-

plicitly assumed to be infinite precision or to have infinite

bit rate. Due to the enormous growth in communication

technology, it is becoming more common to employ data-

rate constrained communication networks for exchange of

information between system components. However, classical

estimation theory cannot be applied since the measurement

information is sent via data-rate constrained communication

channels, hence, the estimator only observes the transmitted

sequence of finite-valued symbols. There has been a signifi-

cant interest in the problems of state estimation and control

via data-rate constrained communication channels in recent

years (see, e.g., [1]–[4], [6], [8]–[11], [13], [16], [18]–[20]).

In terms of robust state estimation, the works of [8], [20]

provide algorithms that allow one to reliably estimate states

of an uncertain system through communication networks.

The algorithms were developed using the robust Kalman

filtering technique of [15]. Their proposed coding schemes

are based on a centralized approach requiring that all the

measurement information is available to a single centralized
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coder. The coder uses the information to obtain a state

estimate that is then encoded and sent to a decoder. However,

this scheme may not be practical in a sensor network or

multisensor setting since the sensors may be spatially dis-

tributed or geographically separated. The transmission of all

the measurement information to a centralized coder, and the

transmission of the full state estimate to a decoder, will take

up a significant amount of bandwidth, as bandwidth is always

a constraint in a communication network. Therefore, it is

more realistic to transmit each sensor’s measurement to the

decoder directly, rather than collecting all the measurements

from the sensors and processing them at a centralized coder

before transmission to a fusion center.

In this paper, we consider a decentralized robust state

estimation via a data-rate constrained sensor network. The

sensors in the network are spatially distributed. Instead of

transmitting all the measurements to a centralized coder as

in [8], [20], we employ a decentralized scheme and design a

coder for each individual sensor. Each encoded measurement

is sent to a remotely-located fusion center where a decoder

and a robust state estimator are embedded. The fusion center

combines all the received codewords from the remote sensors

and produces a set-valued state estimate that over-bounds the

true set of possible states of the uncertain system.

The improved feature of this decentralized scheme as

compared to the other schemes previously proposed in the

area of state estimation over communication networks (see,

e.g., [2], [3], [8], [16], [19], [20]) is that here we only require

a simple quantization at the coders within the sensors, and

the use of central processing unit (CPU) is not necessary

in the coders. We only need a CPU at the fusion center

to perform state estimation. In contrast, the coding schemes

in references [2], [3], [8], [16], [19], [20] and many other

papers require that the centralized coder is equipped with a

state estimator, and hence the use of a CPU in the coder

is necessary. Therefore, our proposed decentralized scheme

is more applicable than the previous scheme, since we only

need simple coders in the sensors.

The paper is organized as follows. In Section II, we

formulate the problem of decentralized robust state esti-

mation via a data-rate constrained sensor network. Some

useful preliminary results are presented in Section III. In

Section IV, a design of coders and a decoder-estimator

that solves the proposed problem is presented. Finally, an

example is included to demonstrate the effectiveness of the

proposed algorithms. Due to page constraint, we leave the

proofs of the results in the full version of this paper.
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II. PROBLEM STATEMENT

Consider the time-varying uncertain system defined over

the finite time interval [0, NT ]:

ẋ(t) = A(t)x(t) + B(t)w(t),

w(t) = φ(z(t)), z(t) = K(t)x(t)
(1)

where N > 0 is an integer, T > 0 is a given constant, x ∈ R
n

is the state, w(t) ∈ R
p is an uncertainty input, z(t) ∈ R

q is

the uncertainty output and A(·), B(·), and K(·) are bounded

piecewise continuous matrix functions defined on [0, NT ].
The decentralized estimation problem studied in this paper

is to robustly estimate the state of system (1) by a sensor

network consisting of l sensors, namely {Ω1, Ω2, . . . ,Ωl},

that are spatially distributed. For each sensor Ωi, the obser-

vation or measurement yi(·) ∈ R
mi is corrupted by a noise

vi(·) ∈ R
mi and it is given by

yi(t) = Ci(t)x(t) + vi(t), i = 1, 2, . . . , l, (2)

where the measurement matrix Ci(·) ∈ R
mi×n is bounded

and piecewise continuous over the time interval [0, NT ].
The information of the measurement yi(·) from each

sensor Ωi is passed on to a fusion center that is remotely

located from the sensors. The only way of communicating

information from the sensors to the fusion center is via digital

communication channels. In other words, each sensor Ωi not

only observes the measurement yi(·), but also converts it into

a finite-length codeword for transmitting the information to

the fusion center. In order to convert the measurement yi(·)
into a finite-length codeword, each sensor Ωi is equipped

with a coder Fi that takes the measurement yi(·) and encodes

this measurement into a codeword hi(·).
The channel connecting the sensor Ωi to the fusion center

carries one discrete-valued symbol hi(kT ) at time kT ,

selected from a coding alphabet Hi of size νi. Here T > 0 is

a given period and k = 0, 1, 2, . . . , N . This restricted number

νi of codewords hi(kT ) is determined by the transmission

data rate of the channel. We assume that the channel is a

perfect noiseless channel and there is no time delay. Using

this communication channel, the codeword hi(kT ) produced

by the coder Fi is transmitted to the fusion center.

A decoder and a robust state estimator are embedded in

the fusion center. The job of the fusion center is to combine

all the received codewords h1(kT ), h2(kT ), . . . , hl(kT )
from the remote sensors and to produce a set-valued state

estimate Xt, for all t ∈ [kT, (k + 1)T ), that overbounds the

true set of possible state x(t) of system (1) over the time

interval [kT, (k + 1)T ). The decoder and the state estimator

within the fusion center are called decoder-estimator G.

We define the total number of measurements from all

the sensors as m̄ := m1 + m2 + . . . + ml. Let h(·) =
[h1(·) h2(·) . . . hl(·)]′ ∈ R

m̄ be the vector of code-

words produced by the sensors. Then the coders and the

decoder-estimator are in the form: for k = 0, 1, 2, . . . , N ,

Coders (i = 1, 2, . . . , l): hi(kT ) = Fi

(

yi(·)|kT
0

)

; Decoder-

estimator: Xt = G (h(T ), h(2T ), ..., h(kT )), ∀t ∈ [kT, (k+
1)T ). A schematic of the proposed robust state estimation

Limited capacity

communication

channels

Fig. 1. Robust state estimation via a data-rate constrained sensor network

via a data-rate constrained sensor network is illustrated in

Figure 1.

Notation 2.1: Let x = [x1 x2 · · · xn]′ be a vector

from R
n. Then ‖x‖∞ := maxj=1,...,n |xj |. Furthermore,

‖ · ‖ denotes the standard Euclidean vector norm: ‖x‖ :=
√

∑n
j=1

x2

j .

Notation 2.2: The set F = {F1, F2, . . . ,Fl} denotes

the collection of coders of the sensors Ωi, i = 1, 2, . . . , l. The

vectors y = [y1 y2 . . . yl]
′ ∈ R

m̄ and v = [v1 v2 . . . vl]
′ ∈

R
m̄ denote the augmented measurement vector from all

the sensors and the augmented measurement noise vector,

respectively. The measurement matrix C(·) ∈ R
m̄×n is

defined as C(·) :=

[

C′
1
(·)

... C′
2
(·)

... . . .
... C′

l(·)
]′

.

To solve our proposed estimation problem, we make the

following assumption on the uncertain system (1) and the

measurement noise in (2).

Assumption 2.1: The uncertainty w(t) vector in sys-

tem (1) and the augmented measurement noise vector v(t)
satisfy the following integral quadratic constraint (IQC). Let

Y0 = Y ′
0

> 0 be a given matrix, x0 ∈ R
n be a given

vector, d > 0 be a given constant, and Q(·) = Q(·)′ and

R(·) = R(·)′ be given bounded piecewise continuous matrix

weighting functions satisfying the following condition. There

exists a constant δ > 0 such that Q(t) ≥ δI , R(t) ≥ δI for

all t. Then for a given time interval [0, s], s ≤ NT , we

will consider the uncertainty input w(·) and the measurement

noise v(·) and initial condition x(0) such that

(x(0) − x0)
′Y0(x(0) − x0) +

∫ s

0

(w(t)′Q(t)w(t)+

v(t)′R(t)v(t))dt ≤ d +

∫ s

0

‖z(t)‖2dt.

(3)

Notation 2.3: Let y(t) = y0(t) be a fixed measured

output of the uncertain system (1) and let the finite-

time interval [0, s] be given. Furthermore, let F and G
be given coders and decoder-estimator, respectively. Then,

Xs[x0, y0(·)|s0, d,F ,G] denotes the set produces by the

coders/decoder-estimator pair (F ,G) that captures all pos-

sible state x(s) at time s for the uncertain system (1) with

uncertainty input w(t) and measurement noise v(t) satisfying

the constraint (3).

The problem of decentralized robust state estimation via
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a sensor networks with data-rate constrained communication

channels considered in this paper is the problem of con-

structing the coders/decoder-estimator pair (F ,G) and the

set Xs[x0, y0(·)|s0, d,F ,G].

Definition 2.1: The coders/decoder-estimator pair (F ,G)
is said to detect the state of system (1) via a data-rate

constrained sensor network if for any vector x0 ∈ R
n, any

time s ∈ [0, NT ], any constant d > 0, and any sampling

period T > 0, and any fixed output y(t) = y0(t), the set

Xs[x0, y0(·)|s0, d,F ,G] is bounded.

III. PRELIMINARY RESULTS

This section presents two useful preliminary results that

are important for the development of the main results in this

paper. The first result concerns with robust prediction that

will be applied to determining the size of a quantization

region for the design of coders F and decoder-estimator

G. The second result concerns with the set-valued state

estimation of uncertain continuous systems with discrete

measurements.

A. Robustly Predictable Systems

We consider system (1) satisfying the following IQC

condition. Let d̂ > 0 be a given constant, S0 = S′
0 > 0

be a given matrix and Q(·) = Q(·)′ be given bounded

piecewise continuous matrix weighting function satisfying

the following condition. There exists a constant δ > 0 such

that Q(t) ≥ δI for all t. Then for a given time interval

[0, s], s ≤ NT , we will consider the uncertainty input w(·)
and initial condition x(0) such that

x(0)′S0x(0) +

∫ s

0

w(t)′Q(t)w(t) ≤ d̂ +

∫ s

0

‖z(t)‖2dt.

(4)

Next, consider the following Riccati differential equation:

−Ṡ(t) = S(t)A(t) + A(t)′S(t) − S(t)B(t)Q(t)−1B(t)′S(t)

− K(t)′K(t), S(0) = S0, t ∈ [0, NT ].
(5)

Definition 3.1: Uncertain system (1), (4) is said to be

robustly predictable on [0, NT ] if any time s ∈ [0, NT ] and

any constant d̂ > 0, the set Xs[d̂] is bounded where Xs[d̂]
denotes the set of all possible state x(s) at time s for the

uncertain system (1) with uncertainty input w(t) and initial

condition x(0) satisfying the constraint (4).

Theorem 3.1: Consider system (1). Let S0 = S′
0

> 0 be a

given matrix, and Q(·) = Q(·)′ > 0 be given matrix function

such that condition (4) holds over time interval [0, NT ].
Then, for a given constant d̂ > 0 and any time s ∈ [0, NT ],
the system (1), (4) is robustly predictable on [0, NT ] if and

only if the Riccati equation (5) has a solution over [0, NT ]
such that S(·) = S(·)′ > 0. Furthermore, the set Xs[d̂] is

given by Xs[d̂] = {xs ∈ R
n : x′

sS(s)xs ≤ d̂}.

Proof: The proof of Theorem 3.1 will be given in the

full version of the paper. �

Using Theorem 3.1, the following corollary can be ob-

tained immediately.

Corollary 3.1: Suppose that Assumption 2.1 holds and the

Riccati equation (5) has a solution S(·) = S(·)′ > 0 over

[0, NT ] with initial condition S(0) = Y0. Then system (1)

is robustly predictable on [0, NT ].

B. Robust State Estimation with Discrete Measurements

Again, we consider the continuous system (1), but assume

that the measurements of the system can only be observed

at discrete times by the remote sensors. In other words, the

augmented measurement equation is in the form:

ȳ(kT ) = C(kT )x(kT ) + v̄(kT ) (6)

where ȳ(·) = [ȳ1(·), ȳ2(·), . . . , ȳl(·)] ∈ R
m̄ is the measure-

ment vector, v̄(·) = [v̄1(·), v̄2(·), . . . , v̄l(·)] ∈ R
m̄ is some

measurement noise vector.

We also assume that the uncertainty w(·) and the measure-

ment noise v̄(·) satisfy a Sum Integral Quadratic Constraint

(SIQC) such that

(x(0) − x0)
′P−1

0
(x(0) − x0) +

∫ s

0

w(t)′Q̄(t)w(t)dt+

∑

kT≤s

v̄(kT )′R̄v̄(kT ) ≤ d̄ +

∫ s

0

‖z(t)‖2dt,
(7)

where P0, Q̄(·) and R̄(·) are given symmetric positive

definite weighting matrices of suitable dimensions, and d̄ > 0
is a given constant. Note that ȳ(·), v̄(·), Q̄(·), R̄(·) and d̄ can

be different from y(·), v(·), Q(·), R(·) and d in (2) and (3).

Notation 3.1: Let ȳ(kT ) = ȳ0(kT ) be a given fixed dis-

crete measurement of system (1). The set X̄s[x0, ȳ0(·)|s0, d̄]
denotes a set containing all the possible states of system (1)

at time s ∈ [0, NT ] with uncertainty and measurement noise

satisfying SIQC (7).

The following set-valued state estimation of an uncertain

continuous system with discrete measurements is a special

case of Theorem 6.3.1 in [15]. Before we state this result,

we introduce a notation: the term ν(t−) denotes the limit of

the function ν(·) at the point t from the left, i.e., ν(t−) :=
limǫ>0,ǫ→0 ν(t − ǫ).

Theorem 3.2: Let P0 = P ′
0

> 0 be a given matrix, Q̄(·) =
Q̄(·)′ > 0 and R̄(·) = R̄(·)′ > 0 be given matrix functions.

Consider uncertain system (1) and constraint (7) with discrete

measurement (6). Then, the set X̄s[x0, ȳ0(·)|s0, d̄] is bounded

over [0, NT ] if and only if the following jump Riccati

equation

Ṗ (t) = A(t)P (t) + P (t)A(t)′ + B(t)Q−1(t)B(t)′

+ P (t)K(t)′K(t)P (t), for t 6= kT

P (kT ) = [P−1(kT−) + C(kT )′R̄(kT )C(kT )]−1,

for k = 1, 2, . . . , N,

(8)

has a solution over [0, NT ] such that P (·) = P (·)′ > 0 and

P (0) = P0. Furthermore, the set X̄s[x0, ȳ0(·)|s0, d̄] = {xs ∈
R

n : (xs − x̂(s))′P (s)−1(xs − x̂(s)) ≤ d̄ + ρ̄(s)} for any
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s ∈ [0, NT ], where x̂(·) is the solution to the following jump

state equation:

˙̂x(t) = [A(t) + P (t)K(t)′K(t)]x̂(t), for t 6= kT

x̂(kT ) = x̂(kT−) − P (kT−)C(kT )′R̄(kT )C(kT )x̂(kT−)

+P (kT−)C(kT )′R̄(kT )ȳ(kT ), for k = 1, 2, . . . , N,
(9)

with initial condition x̂(0) = x0, and the func-

tion ρ̄(s) is defined as ρ̄(s) :=
∫ s

0
‖K(t)x̂(t)‖2dt −

∑

kT≤s ‖R̄(kT )1/2(C(kT )x̂(kT ) − ȳ0(kT ))‖2.

Proof: See Theorem 6.3.1 in [15]. �

IV. CODERS AND DECODER-ESTIMATOR

In this section, we design coders F = {F1,F2, . . . ,Fl}
and a decoder-estimator G to solve the proposed state estima-

tion problem via a sensor network with data-rate constrained

communication channels. For each sensor Ωi, its coder Fi

uses uniform quantization of the measurement yi(·) of the

uncertain system (1), (2). The coder Fi is static and does not

have any memory, and therefore, computations at the coders

can be kept at minimal. It measures yi(t) and converts it

into a finite-length codeword hi(kT ) through sampling and

quantization.

To construct each Fi, we first need to know the possible

range of yi(·) for quantization a priori. By using Theo-

rem 3.1(Robust predictability), if system (1) with uncertainty

w(·) and initial condition x(0) satisfying the IQC (4), and

the Riccati equation (5) has a solution over [0, NT ] such that

S(·) = S(·)′ > 0, then for all s ∈ [0, NT ],

‖x(s)‖∞ ≤ β
√

d̂, (10)

where the scalar β > 0 is defined as

β := max
k=0,1,2,...,N

(

max
j=1,2,...,n

√

[S(kT )−1]j,j

)

, (11)

where [S(kT )−1]j,j denotes the (j, j) element of the matrix

S(kT )−1.

Since each measurement matrix Ci(·) in (2) is a bounded

piecewise continuous matrix function, there exists a constant

γi > 0 such that

max
k=0,1,2,...,N

‖Ci(kT )‖∞ = γi, (12)

where ‖Ci(·)‖∞ denotes the maximum row sum ma-

trix norm of the matrix Ci(·), i.e., ‖Ci(·)‖∞ :=
maxi

∑n
j=1

|[Ci(·)]i,j |. To get a bound for yi(·), we impose

the following assumption on the measurement noise (2).

Assumption 4.1: The measurement noise vi(·) in (2) from

each sensor Ωi is bounded and there exists a known bound

αi > 0 such that

‖vi(s)‖ ≤ αi, for all s ≤ NT. (13)

Then using Eqns (2), (13), (10) and (12), a bound Li for

the measurement yi(·) over the time interval [0, NT ] can be

defined as follows:

Li := γiβ
√

d̂ + αi ≥ ‖yi(s)‖∞ (14)

for all s ∈ [0, NT ]. The bound Li (14) can be pre-computed

without the knowledge of the actual output yi(·). This bound

is then used to define a quantization region for the output

measurement yi(kT ), for k = 0, 1, 2, . . . , N .

In our proposed scheme, each coder Fi, i = 1, 2, . . . , l,
uses uniform quantization of the measurement yi(·). Let the

set BLi
:= {yi ∈ R

mi : ‖yi‖∞ ≤ Li} be the quantization

region. We quantize the measurement yi(·) by dividing

the quantization region BLi
uniformly into qmi

i hypercubes

where qi is a specified integer.

For each j ∈ {1, 2, . . . , mi}, we divide the corresponding

component of the vector yi = [yi,1 yi,2 . . . yi,mi
]′ into qi

intervals as follows:

Ij
1
(Li) :=

{

yi,j : yi,j ∈ [−Li, −Li +
2Li

qi
)

}

;

Ij
2
(Li) :=

{

yi,j : yi,j ∈ [−Li +
2Li

qi
, −Li +

4Li

qi
)

}

; · · ·

Ij
qi

(Li) :=

{

yi,j : yi,j ∈ [Li −
2Li

qi
, Li]

}

.

Then for any yi ∈ BLi
, yi belongs to one of the hy-

percubes in BLi
. In other words, there exist unique mi

integers θi,1, θi,2, . . . , θi,mi
∈ {1, 2, . . . , qi} such that yi ∈

I1

θi,1
(Li) × I2

θi,2
(Li) × . . . × Imi

θi,mi

(Li), where I1

θi,1
(Li) ×

I2

θi,2
(Li) × . . . × Imi

θi,mi

(Li) is one of the qmi

i hyper-

cubes containing yi. Also, corresponding to the integers

θi,1, θi,2, . . . , θi,mi
, we define the vector ηi as follows:

ηi(Θi) := −Li

+

[

Li(2θi,1 − 1)

qi

Li(2θi,2 − 1)

qi
· · · Li(2θi,mi

− 1)

qi

]′

.

where Θi := [θi,1 θi,2 . . . θi,mi
]′. The vector ηi(·) is the

center of the hypercube I1

θi,1
(Li)×I2

θi,2
(Li)×. . .×Imi

θi,mi

(Li)
containing the original point yi.

In our proposed coders/decoder-estimator, each one of the

hypercubes in the quantization region BLi
will be assigned

a codeword

hi(kT ) = Θi (15)

and the coder Fi will transmit the codeword hi(kT ) cor-

responding to the current measurement vector yi(kT ). By

defining ȳi(kT ) := ηi(Θi), for a given ǫ > 0, we can choose

qi > 0 such that

‖yi(kT ) − ȳi(kT )‖∞ ≤ Li/qi ≤ ǫ, (16)

for all k = 0, 1, 2, . . . , N . In other words, ǫ gives the

quantization error and it can be controlled by varying the

parameter qi. However, the allowable quantization param-

eter qi is limited by the capacity of the communication

channel between the sensor Ωi and the fusion center. If

qi is unbounded, it means the measurement yi(kT ) can be

transmitted with an infinite precision.

Now we are in position to introduce our proposed coders

and decoder-estimator:
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Coder Fi (i = 1, 2, . . . , l):

hi(kT ) = Θi, for k = 0, 1, 2, . . . , N

and yi ∈ I1

θi,1
(Li) × I2

θi,2
(Li) × . . . × Imi

θi,mi

(Li).
(17)

Decoder-estimator G:

Consists of jump state Eqn (9) and Riccati Eqn. (8) with

x̂(0) = x0, P (0) = Y −1

0
, and

ȳ(kT ) = [η1(Θ1) η2(Θ2) . . . ηl(Θl)]
′, for

h(kT ) = [Θ1 Θ2 . . . Θl]
′.

(18)

The main result of this paper is stated as follows:

Theorem 4.1: Consider the uncertain system (1), (2). Let

R̄ = diag{r−1

1
, r−1

2
, . . . , r−1

m̄ } be a given diagonal constant

matrix with ri > 0, and let T > 0 and ǫ > 0 be

given constants, and s ∈ (0, NT ] be given. Suppose that

Assumptions 2.1 and 4.1 hold and also that the solution S(·)
to the Riccati equation (5) with initial condition S(0) = Y0

and the solution P (·) to the jump Riccati equation (8) with

initial condition P (0) = Y −1

0
are both defined and positive-

definite on the interval [0, NT ]. Furthermore, suppose that

the quantization parameter qi satisfies

qi ≥ Li/ǫ, i = 1, 2, . . . , l, (19)

where Li is defined in (14). Then the coders/decoder-

estimator pair (F ,G) (17), (18) detects the state of sys-

tem (1), (2) via a data-rate constrained sensor network and

the set Xs[x0, y0(·)|s0, d,F ,G] is given by

Xs[x0, y0(·)|s0, d,F ,G] = {xs ∈ R
n

: (xs − x̂(s))′P (s)−1(xs − x̂(s)) ≤ d + ρ(s)} (20)

where ρ(s) :=
∫ s

0
‖K(t)x̂(t)‖2dt + N(‖α‖ + ǫ

√
m̄)2/r −

∑

kT≤s ‖R̄1/2(C(kT )x̂(kT ) − ȳ0(kT ))‖2, the state x̂(·) is

defined by (18) with initial condition x0, ȳ0(·) is the sampled

and quantized signal of the fixed measurement vector y0(·),
the vector α := [α1 α2 . . . αl]

′ and r := mini≤m̄{ri}.

Proof: The proof of Theorem 4.1 will be given in the

full version of the paper. �

V. ILLUSTRATIVE EXAMPLE

We consider a state estimation problem of an uncertain

two-mass-spring system via a data-rate constrained sensor

network. The system to be estimated is used in a well-

known benchmark example in robust control (see, e.g. [17]).

It consists of two masses connected by a spring as shown in

Fig. 2. The masses are assumed to be m1 = 1 and m2 = 1,

whereas the spring constant k of the spring is uncertain. The

spring constant k has a nominal value of k0 = 1.25, but

can vary up to 15% of its nominal value. Based on these

parameters, a model of the dynamics of the masss-spring

system can be obtained from [17] and is described by the

equation

ẋ(t) = Ax(t) + Bw(t), z(t) = Kx(t) (21)

Fusion center

Sensor 2

Sensor 1

Fig. 2. Estimation of a two-mass-spring system via a data-rate constrained
sensor network.

where x := [x1 x2 ẋ1 ẋ2]
′ ∈ R

4,

A =









0 0 1 0
0 0 0 1

−1.25 1.25 0 0
1.25 −1.25 0 0









, B =









0
0

−0.1875
0.1875









,

K =
[

1 −1 0 0
]

,

and the uncertain input w(t) is given by

w(t) = ∆(t)z(t), |∆(t)| ≤ 1. (22)

In this example, we employ a sensor network to estimate

the state of the system. The sensor network in this example

consists of two remote sensors as shown in Fig. 2. The first

sensor (Sensor 1) measures the position of the first mass,

whereas the second sensor (Sensor 2) measures the posi-

tion of the second mass. Both encoded measurements from

Sensors 1 and 2 are sent via a data-rate constrained commu-

nication network. The fusion center collects and decodes the

measurements, and then carries out state estimation using its

embedded state estimator. The sensors and the fusion center

are located far away, the only way of communication from

the sensors to the fusion center is through data-rate limited

communication channels. A schematic of the state estimation

of the uncertain mass-spring system via the two sensors is

shown in Fig. 2.

We let y1(t) and y2(t) be the measurements taken by Sen-

sors 1 and 2, respectively. Then the measurement equation

is given by
[

y1(t)
y2(t)

]

=

[

C1

C2

]

x(t) =

[

1 0 0 0
0 1 0 0

]

x(t). (23)

In this example, using Sensors 1 and 2, we are interested

in estimating the state of system (21) over the time interval

[0, 15] with a sampling period of T = 0.3 seconds in the

coders. Assuming that the initial condition of system (21) is

x(0) = [1 − 1 1 − 0.5]′ and there are no measurement

noises from the sensors, i.e. v1(·) ≡ v2(·) ≡ 0. Also, the

time-varying uncertain function ∆(t) in (22) is given as

∆(t) = sin 0.2πt.
We choose the vector x0 = [0 0 0 0]′ and the ma-

trices Y0, S0, R̄ and scaler Q as follows: Y0 = S0 =
diag{1.5, 1.5, 1.5, 1.5}, R̄ = diag{1, 1} and Q = 1. Then

the parameters d and d̂ can be defined as d = d̂ = 8.78
so that both conditions (3) and (4) hold. Using the initial

conditions P (0) = Y −1

0
, S(0) = Y0, the solutions of both

the Riccati differential equation (5) and the jump Riccati
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differential equation (8) are defined and positive definite over

the time interval [0, 15].

The solution S(t) of the Riccati differential equation (5)

allows us to estimate the bounds L1 and L2 of the mea-

surements y1(t) and y2(t), respectively, for all t ∈ [0, 15]
by using Eqns (10)–(14). The bounds are found to be L1 =
L2 = 25.7. Therefore, given a quantization error bound as

ǫ = 0.1, we pick the quantization parameters q1 and q2 as

q1 = q2 = 518 so that condition (19) holds.

Finally, using the proposed coders F1 and F2 (17) for

Sensors 1 and 2, and the decoder-estimator G (18) for

the fusion center together with the above-mentioned design

parameters, we obtain the simulation results for the state

estimation of system (21) and they are shown in Fig. 3 and

Fig. 4. The upper and lower bounds of the state estimates

are evaluated from (20).
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Fig. 3. Estimation of states x1 (Top) and x2 (Bottom). True value x(t)
(−), estimate x̂(t)(−−), upper bound (· · · ), lower bound (·−)
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Fig. 4. Estimation of states x3 (Top) and x4 (Bottom). True value x(t)
(−), estimate x̂(t) (−−), upper bound (· · · ), lower bound (·−)
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