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Abstract— We consider the problems of a wheeled mobile
robot navigation and guidance towards an unknown stationary
or maneuvering target using range-only measurements. We
propose and study several methods for navigation and guidance
termed Equiangular Navigation Guidance (ENG) laws. We give
mathematically rigorous proofs of convergence and stability
of the proposed guidance laws. The performance is confirmed
with computer simulations and experiments with ActivMedia
Pioneer 3-DX wheeled robots.

I. INTRODUCTION

Navigation and guidance of mobile robots towards steady

or moving objects (targets) is one of the most important

areas of robotics that has attracted a lot of attention in

recent decades (see e.g. [3], [10], [6] and references therein.

However, in most of existing methods, both the line-of-sight

angle (bearing) and the relative distance (range) are assumed

to be available for navigation and guidance algorithms. There

is also a relatively large body of research on navigation and

guidance with bearings-only measurements. In contrast, few

results on problems of navigation and guidance using range-

only measurements were published.

Various problems of navigation, guidance, location estima-

tion and target tracking based on range-only measurements

often arise in new wireless networks related applications.

In these problems, the only available information about

the target is strength measurement of its radio signal [17],

[12], [11]. The received radio signal strength approach is a

natural low cost solution in these problems whereas Global

Positioning Systems fail in indoor navigation where GPS

signals cannot be reliably received. Furthermore, in some

applications Video or IR based guidance is impossible be-

cause the target is either too small to appear in an image

frame or located behind an obstacle in indoor applications

or too far from the robot in outdoor applications. Such

problems become more important with the growing use of

mobile robots for deployment and localization of nodes in

sensor networks [14], [11] or for localization of various small

devices [2]. The received radio signal strength is a function

of the range, hence, the range can be estimated using the

robust extended Kalman filtering [11], [16]. Furthermore,

range-only guidance problems may appear as an effort to

reduce the cost of active target tracking or in robust tracking

in highly noisy environment where angle measurements are

often missing especially in naval applications (see e.g. [15]).
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In this paper, we propose several similar guidance al-

gorithms for approaching and following both steady and

moving targets. The proposed guidance methods have the

property that the trajectory of the controlled robot is close to

a certain curve called equiangular spiral. Therefore, we call

the proposed algorithms Equiangular Navigation Guidance

(ENG) laws. We give theoretical analysis of the proposed

ENG laws with mathematically rigorous proof of their sta-

bility and performance. The applicability and performance

of the proposed method is also confirmed by computer sim-

ulations and robotic experiments with ActivMedia Pioneer

3-DX wheeled robots. The videos of our experiments can

be found on internet, [4]. We consider the case of wheeled

mobile robots, however, the obtained results are obviously

applicable to many other mechanical systems described by

similar kinematics equations such as unmanned aerial vehi-

cles (UAVs), missiles, space robots, underwater vehicles.

The proofs of all the presented results will be given in the

full version of this paper.

II. PROBLEM DESCRIPTION

Let us consider a three-wheeled, non-holonomic mobile

robot of Dubin’s car type, which moves in a horizontal plane.

In a two-dimensional space, the position of the robot can be

represented by a triplet PR = (XR,YR,θR) where (XR,YR) is

the location of the middle of the wheel base and θR is the

heading angle with respect to the reference line. Let VR be

the linear velocity and ωR the angular velocity of mobile

robot. A rolling-without-slippage model is assumed for the

robot. The kinematics model is classically given by:

ẊR(t) = VR(t)cos(θR(t))

ẎR(t) = VR(t)sin(θR(t))

θ̇R(t) = ωR(t)

(2.1)

with U(t) = [VR(t) ωR(t)]T as the control vector of the

mobile robot, U(t) ∈ [Vmin,Vmax]× [−ωmax ωmax] with V1 >
0,V2 > 0,ωmax > 0. The equations (2.1) may also describe

the kinematics of tactical missiles, space robots or UAVs;

see e.g. [19], [7], [8].

The target may be stationary or moving in any direction

with the velocity VT (t). We assume that the robot and the

target are moving on a smooth horizontal surface and in an

obstacle-free environment. The only available information

about the target is the relative distance between the robot and

the target. No information about target motion model is avail-

able. In particular, the target may be another nonholonomic

mobile robot with its position and orientation (XT ,YT ,θT )
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Fig. 1. Robot position and orientation with respect to target

and the same kinematic equation (2.1). We assume that

the robot maximum linear speed is greater than the target

maximum linear speed. It is obvious that if this assumption

does not hold then for any guidance law there exists a target

motion such that

|XT (t)−XR(t)|+ |YT (t)−YR(t)| → ∞

as t → ∞. On the other hand, it should be pointed out that the

target may be more maneuvering that the robot, for example,

the target may have a smaller minimum turning radius than

the controlled robot.

Given the robot position and orientation with respect to the

target position in the polar coordination system, we define

the relative distance between the robot and target, d, and the

angle between the front-direction and the target direction, λ ,

as shown in Fig. (1)

d =
√

d2
X + d2

Y

λR = ψR −θR

λT = ψR −θT

(2.2)

where θR and θT are the robot and target heading angles,

respectively. ψR is the line-of-sight angle and |λR| ≤ π ,

|λT | ≤ π . The robot-target motions is expressed by

ḋ = −VRcos(λR)+VT cos(λT ) (2.3a)

λ̇R = −ωR +
VR

d
sin(λR)−

VT

d
sin(λT ) (2.3b)

Note that the kinematic equations (2.3) are only valid for

non-zero values of the LOS-range, since λR is undefined for

d = 0.

The objective is to design a guidance law that uses only

measurements of the relative distance d(t) between the robot

and the target and allows the robot to approach a stationery or

follow a maneuvering target while keeping a certain distance

from the target.

III. EQUIANGULAR NAVIGATION GUIDANCE (ENG)

LAWS

We assume that the distance d(t) to the target and its

derivative ḋ(t) are both available to the robot controller.

Furthermore, we assume that the robot linear velocity is

constant:

VR(t) ≡VR0 > 0. (3.4)

In this case, the minimal turning radius of the robot is

Rmin =
VR0

ωmax

. (3.5)

We wish to introduce a robot guidance law of the form:

ωR(t) = F
(

d(·) |t0, ḋ(·) |t0
)

. (3.6)

Of course, our guidance law (3.6) must satisfy the constraint:

−ωmax ≤ ωR(t) ≤ ωmax. (3.7)

A. Steady Targets

In this subsection, we will consider the case of a steady

target:

XT (t) ≡ XT0, YT (t) ≡ YT 0.

Definition 3.1: A guidance law of the form (3.6) is said

to be encircling if it satisfies (3.7) and for any steady target

location the robot (1) guided by this law after a certain finite

time moves along a circle of the minimal turning radius (3.5)

such that the steady target lies inside this circle.

. We suppose that the following assumption holds:

d(0) > 4Rmin. (3.8)

Let L be a given constant such that

0 < L < VR0. (3.9)

We will use the notation ν(t−0) for the limit of the function

ν(t) at the time t from the left, i.e.,

ν(t −0) := lim
ε>0,ε→0

ν(t − ε).

Also introduce the sign function as follows:

sgn(x) =







1 x > 0

0 x = 0

−1 x < 0

(3.10)

Introduce a symbolic variable S(t) that takes values in the

set of three symbols S(t) ∈ {A,B,C}, and a real variable

g that takes values in the set {−1,1}. We introduce the

following guidance law:

S(0) := A;
(

S(t) := B and g := sgn(L+ ḋ(0))
)

if
(

S(t −0) = A and ḋ(t) = −L
)

;

S(t) := C if
(

S(t −0) = B and
VR0

d(t)

√

1−
L2

V 2
R0

= ωmax

)

;

ωR =















ωmax S(t) = A

g
VR0

d(t)

√

1− L2

V 2
R0

S(t) = B

gωmax S(t) = C.

(3.11)

Remark 3.1: The guidance law (3.11) is based on switch-

ing between three modes corresponding to the values A,B
and C of the symbolic variable S(t). A robotic system with

such guidance law belongs to the class of so-called hybrid
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Fig. 2. Geometry of switching role in the first part of the trajectory

dynamical systems, see e.g. [13] and [9] and references

therein.

Now we are in a position to present the following theorem.

Theorem 3.1: Let L be a given number. Suppose that

assumptions (3.4), (3.9) and (3.8) hold. Then, the guidance

law (3.11) is encircling.

The proof of this theorem will be given in the full version

of this paper.

Remark 3.2: It follows from the proof of Theorem 3.1

that ḋ(t) = −L during the second part of the trajectory

when S(t) = B. Therefore, if d(0) >> Rmin, the time before

”encircling the target” is close to
d(0)

L
. Hence, with a larger

L the robot approaches the target with a higher speed. On

the other hand, a smaller L makes the guidance law more

robust subject to noise and uncertainties in measurements of

d(t) and ḋ(t). Therefore, the choice of L is determined by a

trade-off between the convergence speed and robustness.

We will also present a robust modification of the guidance

law (3.11). We introduce the following definition which is

applicable to both steady and moving targets

Definition 3.2: Let D > 0 be a given constant. A guidance

law of the form (3.6) is said to be D−approaching for a

target if it satisfies (3.7) and there exists a time t∗ such that

the distance d(t) between the robot and the target satisfies

d(t∗) = D.

Introduce a symbolic variable S(t) that takes values in the set

of three symbols S(t)∈{A,B,stop}, and a real variable g that

takes values in the set {−1,1}. Our guidance law is defined

over finite time, and S(t∗) = stop means that the requirement

d(t∗) = D is achieved and the robot stops or switches to

another guidance law. Let k > 1 be a given constant. We

propose the following modification of the guidance law

(3.11):

S(0) := A;
(

S(t) := B and g := sgn(L+ ḋ(0))
)

if
(

S(t −0) = A and ḋ(t) = −L
)

;

S(t) := stop if
(

S(t −0) = B and
kVR0

d(t)

√

1−
L2

V 2
R0

= ωmax

)

;

ωR =







ωmax S(t) = A

−kgsgn(L+ ḋ(t)) VR0

d(t)

√

1− L2

V 2
R0

S(t) = B
(3.12)

Now we are in a position to present the following analysis

result for the guidance law (3.12).

Theorem 3.2: Let L and k > 1 be given numbers. More-

over, introduce

D := k

√

1−
L2

V 2
R0

Rmin. (3.13)

Suppose that assumptions (3.4), (3.9) and (3.8) hold. Then,

the guidance law (3.12) is D−approaching.

The proof of this theorem will be given in the full

version of this paper. We now introduce the following simple

guidance law:

ωR(t) = ωmaxsgn(L+ ḋ(t)). (3.14)

We will need the following assumption:

λR(0) 6= −arccos

(

L

VR

)

. (3.15)

The following theorem gives a mathematical analysis of

the guidance law (3.14).

Theorem 3.3: Let L be a given number. Suppose that

assumptions (3.4), (3.9), (3.8) and (3.15) hold. Then, the

guidance law (3.14) is encircling.

The proof of this theorem will be given in the full version

of this paper.

Remark 3.3: It follows from the proofs of Theorems ,

3.1, 3.2 and 3.3 that during the most important part of our

robot trajectories with the guidance laws (3.11), (3.12) and

(3.14) corresponding to the sliding mode with the surface

ḋ(t) = −L, the angle λR between the robot heading and the

direction to target remains constant. That is why we call

all the guidance laws presented in this paper Equiangular

Navigation Guidance (ENG) Laws. The geometry of motion

with a constant angle between the heading and the direction

to the steady target is described by the so-called equiangular

spiral; see e.g. [5]). Considering the steady target at the

origin, the equiangular spiral is a spiral whose polar equation

is given by

d = doe−bγ (3.16)

where d is the distance to the origin, and d0 is the initial

distance. Moreover, b = cot(λ0), where 0 < |λ0| <
π
2

is the

approaching angle, and γ is the angle between the x-axis and

the line the target and the robot, see Fig. (3).

Remark 3.4: Due to the symmetry properties, the guid-

ance law

ωR = −ωmaxsgn(L+ ḋ) (3.17)

has similar performance and characteristics as the guidance

law (3.14).

B. Moving Targets

In this subsection, we consider the case of a moving

target. The target is another wheeled robot with kinematics

described by the equation of the form (2.1). Unlike the

controlled robot, the target linear velocity VT may be time-

varying. We assume that that there exists a known constant

VT0 > 0 such that

VT (t) ≤VT 0 ∀t ≥ 0. (3.18)
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Fig. 3. An equiangular spiral

Furthermore, we suppose that the following assumption

holds:

VR0 > 3VT0. (3.19)

We will need a constant L satisfying the constraints:

2VT0 < L < VR0 −VT0 (3.20)

(such constants do exist due to (3.19)). Furthermore, the gain

constant k is required to satisfy the following assumption:

k >

√

1− (L−VT0)2

V 2
R0

√

1− L2

V 2
R0

. (3.21)

Moreover, since the target is moving we need a stronger

version of the assumption (3.8):

d(0) > 6Rmin. (3.22)

Now we present an analysis of the guidance law (3.12)

for the case of a moving target.

Theorem 3.4: Let L and k be given numbers. Suppose

that assumptions (3.4), (3.18), (3.20), (3.21) and (3.22) hold.

Then, the guidance law (3.12) is D−approaching with D

defined by (3.13).

The proof of this theorem will be given in the full version

of this paper.

Now we present an analysis of the guidance law (3.14)

for the case of a moving target.

Theorem 3.5: Let L be a given number. Suppose that

assumptions (3.4), (3.18), (3.20) and (3.22) hold. Moreover,

assume that λR(0) does not belong to the interval
[

−arccos

(

L−VT0

VR0

)

,−arccos

(

L+VT0

VR0

)]

.

Then, the guidance law (3.14) is D−approaching with D =
4
3
Rmin.

The proof of this theorem will be given in the full version

of this paper.

IV. COMPUTER SIMULATION

In this section, we present computer simulation results for

steady and maneuvering targets. For simulation purposes and

also throughout the experiment with real robots, we use the

guidance law (3.14), due to its simplicity and applicability.
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Fig. 4. Approaching a stationary target with different values of L

−9 −8 −7 −6 −5 −4 −3 −2 −1 0

−4

−3

−2

−1

0

1

2

3

 

 

w = sgn (d’+L)

target location

w = − sgn (d’+L)

Fig. 5. Symmetry of two trajectories

A. Encircling a steady target

Fig.(4) shows the robot trajectory with different values of

L when it moves towards a stationary target with the guidance

law (3.14). Since the value of λR is nearly constant along the

trajectory, the robot trajectory towards the target is a semi-

equiangular spiral. The parameter b and hence, the arc length

and the curvature change with L where 0 < L <VR. Different

paths can be generated for different values of L and since it

is real, an infinite number of paths is possible. As L → 0,

λR → π
2

and as a result b → 0, the robot path becomes more

curved and spiral approaches a circle. With smaller values of

L, the robot trajectory converges to a circle and as L →VR,

λR → 0 and the trajectory converges to a straight line.

B. Symmetry of trajectories

Applying the proposed steering controls (3.14) and (3.17),

the robot approaches the target in symmetric trajectories.

Having applied (3.17), the robot approaches the target with

a negative approaching angle λR and the spiral’s turning

direction is clockwise. While, λR is positive with (3.14) and

the spiral turns counterclockwise. Fig. (5) displays the robot

trajectories for steering controls (3.14) and (3.17) with the

same control parameter L.

C. Following a maneuvering target

In this simulation, the robot is supposed to approach a

moving target with a smaller linear velocity. The target

linear and angular velocities are VT = 0.1 m/s and ωT =
0.05cos(.001t + 1), respectively. The robot has a constant
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Fig. 6. Moving target following with constant linear velocity

(a) Robot (b) Target

Fig. 7. The pursuer robot is equipped with a SICK laser rangefinder and
the target which is connected to the laptop

linear velocity VR = 0.5 m/s and we have ωmax = 1 rad/sec.

Choosing L = 0.32 with respect to the constraint (3.20), the

result of simulation has been shown in Fig. (6). Having

applied (3.14), the robot approaches the target and eventually

goes into a circular trajectory around it.

V. EXPERIMENTAL RESULTS

To verify validity and study the performance of ENG,

various tests have been conducted on ActivMedia Pioneer 3-

DX robots. The pursuer robot is equipped with a Sick laser

scanner which gives the distant to the target if it is inside the

field of view of the scanner and is controlled using its on-

board PC. The target is connected and controlled via a laptop

PC and carries two books to easily be recognized by laser

sensor, see Fig. (7). Both pursuer and moving target robots

move in an obstacle-free horizontal plane. To implement the

guidance algorithm, we use C++ and Active Media Robotics

Interface Application (ARIA), which is an Object Oriented

C++ library for controlling ActivMedia mobile robots, [1].

Software development environment running in the Linux

operating system.

Remark 5.1: Using the laser scanner, although we can

also get the angle between the moving direction and target

direction, in our experiments, we only use the relative

distance between the robot and target.

Remark 5.2: In order to reject the measurement noise

effects in generating LOS-range variation, since the scanning

frequency is much faster compare to the robot speed, we take

the mean of each 10 readings, as the LOS-range at the current

time d(t), and use it afterwards to produce ḋ(t).

A. Approaching a Stationary target

In this experiment, applying the guidance law (3.14), the

robot approaches a stationary target. The robot linear velocity

is constant VR = 0.3 m/s and ωmax = 1 rad/sec. Fig. (8)

shows some snapshots of this experiment, at which the robot

approaches the steady target along an equi-angular spiral

with L = 0.1, and eventually goes into a circular trajectory

around the target.

B. Approaching a Moving target

In the second experiment, we consider another mobile

robot as the moving target. The parameters we used through-

out this experiment, are the same as those we considered

during the simulation with moving target in subsection IV-

C. Four different snapshots of this experiment are shown in

Fig. (9). The pursuer robot and the moving target trajectories

are depicted with dotted and dashed lines, respectively. The

robot approaches the target and goes into a circular trajectory

around it. In order to prevent any collision, the target stops

moving when d < 4
3
Rmin.

Remark 5.3: Experimental results including two videos

that demonstrate the application of ENG on approaching

stationary and maneuvering targets can be found on Internet

[4].
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